Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 952: 175440, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39153611

ABSTRACT

Diverse enteric pathogens, transmitted through human and animal feces, can cause gastroenteritis. Enteric viruses, such as human Aichi virus, specifically genotype A (AiV-A), are emerging pathogens that cause illnesses even at low doses and are spreading globally. This research developed a reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the 3CD junction and a reverse transcription colorimetric loop-mediated isothermal amplification (RT-cLAMP) duplex assay targeting junctions 2BC and 3CD of the AiV-A genome for rapid and sensitive detection of this virus in metropolitan and regional wastewater samples in Queensland, Australia. The performance of these assays was evaluated using control materials and by analyzing wastewater samples. In serially diluted control materials, RT-qPCR provided quantifiable data (mean 1.51 log10 GC/2 µL of nucleic acid) down to a dilution of 1 × 10-5 pg/µL. In comparison, the duplex RT-cLAMP assay detected down to 1 × 10-4 pg/µL, indicating that its sensitivity was one order of magnitude less than that of RT-qPCR. Of the 38 wastewater samples from 38 metropolitan and regional wastewater treatment plants (WWTPs) in Queensland, Australia, 21 (55.3 %) tested positive by RT-qPCR with concentrations ranging from 3.60 to 6.23 log10 GC/L. In contrast, only 15 (39.5 %) of 38 wastewater samples were positive using the duplex RT-cLAMP assay. The methods demonstrated substantial qualitative agreement (κ = 0.730), with a concordance of 86.5 %, demonstrating the reliability of RT-cLAMP for detecting AiV-A in wastewater samples. The duplex RT-cLAMP assay, despite demonstrating reduced detection sensitivity, has proven effective and holds promise as a supplementary approach, especially in settings with limited resources where rapid and affordable testing is crucial.


Subject(s)
Environmental Monitoring , Kobuvirus , Nucleic Acid Amplification Techniques , Wastewater , Wastewater/virology , Kobuvirus/genetics , Queensland , Nucleic Acid Amplification Techniques/methods , Environmental Monitoring/methods , Real-Time Polymerase Chain Reaction/methods , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods
2.
Pathogens ; 13(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057816

ABSTRACT

Sewage surveillance can be used as an effective complementary tool for detecting pathogens in local communities, providing insights into emerging threats and aiding in the monitoring of outbreaks. In this study using qPCR and whole genomic sewage surveillance, we detected the Mpox virus along with other viruses, in municipal and hospital wastewaters in Belo Horizonte, Brazil over a 9-month period (from July 2022 until March 2023). MPXV DNA detection rates varied in our study, with 19.6% (11 out of 56 samples) detected through the hybrid capture method of whole-genome sequencing and 20% (12 out of 60 samples) through qPCR. In hospital wastewaters, the detection rate was higher, at 40% (12 out of 30 samples) compared to 13.3% (4 out of 30 samples) in municipal wastewaters. This variation could be attributed to the relatively low number of MPXV cases reported in the city, which ranged from 106 to 341 cases during the study period, and the dilution effects, given that each of the two wastewater treatment plants (WWTP) investigated serves approximately 1.1 million inhabitants. Additionally, nine other virus families were identified in both hospitals and municipal wastewaters, including Adenoviridade, Astroviridae, Caliciviridae, Picornaviridade, Polyomaviridae, Coronaviridae (which includes SARS-CoV-2), Herspesviridae, Papillomaviridae and Flaviviridae (notably including Dengue). These findings underscore the potential of genomic sewage surveillance as a robust public health tool for monitoring a wide range of viruses circulating in both community and hospitals environments, including MPXV.

3.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39013607

ABSTRACT

AIMS: This study aimed to assess the use of cross-assembled phage (crAssphage) as an endogenous control employing a multivariate normalization analysis and its application as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data normalizer. METHODS AND RESULTS: A total of 188 twelve-hour composite raw sewage samples were obtained from eight wastewater treatment plants (WWTP) during a 1-year monitoring period. Employing the N1 and N2 target regions, SARS-CoV-2 RNA was detected in 94% (177) and 90% (170) of the samples, respectively, with a global median of 5 log10 genomic copies per liter (GC l-1). CrAssphage was detected in 100% of the samples, ranging from 8.29 to 10.43 log10 GC l-1, with a median of 9.46 ± 0.40 log10 GC l-1, presenting both spatial and temporal variabilities. CONCLUSIONS: Although SARS-CoV-2 data normalization employing crAssphage revealed a correlation with clinical cases occurring during the study period, crAssphage normalization by the flow per capita per day of each WWTP increased this correlation, corroborating the importance of normalizing wastewater surveillance data in disease trend monitoring.


Subject(s)
COVID-19 , SARS-CoV-2 , Sewage , Wastewater , SARS-CoV-2/genetics , Wastewater/virology , Humans , Sewage/virology , Bacteriophages/genetics , Bacteriophages/isolation & purification , RNA, Viral/genetics , RNA, Viral/analysis , Wastewater-Based Epidemiological Monitoring
4.
One Health ; 18: 100756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798735

ABSTRACT

Peru was one of the most affected countries during the COVID-19 pandemic. Moreover, multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and rising. According to Peru's Ministry of Health, various health facilities in the country were reallocated for the COVID-19 pandemic, thereby leading to reduced action to curb other diseases. Many viral diseases in the area are under-reported and not recognized. The One Health approach, in addition to clinical testing, incorporates environmental surveillance for detection of infectious disease outbreaks. The purpose of this work is to use a screening tool that is based on molecular methods, high throughput sequencing and bioinformatics analysis of wastewater samples to identify virus-related diseases circulating in Trujillo-Peru. To demonstrate the effectiveness of the tool, we collected nine untreated wastewater samples from the Covicorti wastewater utility in Trujillo-Peru on October 22, 2022. High throughput metagenomic sequencing followed by bioinformatic analysis was used to assess the viral diversity of the samples. Our results revealed the presence of sequences associated with multiple human and zoonotic viruses including Orthopoxvirus, Hepatovirus, Rhadinovirus, Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, Cytomegalovirus and Alphapapillomavirus. For confirmation purposes, we tested the samples for the presence of selective viruses belonging to the genera detected above. PCR based molecular methods confirmed the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), monkeypox virus (MPXV), noroviruses GI and GII (NoVGI and NoVGII), and rotavirus A (RoA) in our samples. Furthermore, publicly available clinical data for selected viruses confirm our findings. Wastewater or other environmental media surveillance, combined with bioinformatics methods, has the potential to serve as a systematic screening tool for the identification of human or zoonotic viruses that may cause disease. The results of this method can guide further clinical surveillance efforts and allocation of resources. Incorporation of this bioinformatic-based screening tool by public health officials in Peru and other Latin American countries will help manage endemic and emerging diseases that could save human lives and resources.

5.
Sci Total Environ ; 903: 165984, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37574072

ABSTRACT

Currently, discharge regulations for wastewater treatment plants (WWTPs) are based on conventional parameters, but more is needed to ensure safe water reuse. In particular, emerging pollutants, as antimicrobials and antibiotic resistance genes (ARGs), are not considered. This research focuses on the fate of emerging biological contaminants during wastewater treatment in Mexico City. intI1 and the ARGs cphA-02, OXA-10 and sul1 were analyzed by qPCR; pathogenic bacteria species were characterized by high throughput sequencing of complete 16S rRNA gene, and fragments of SARS-CoV-2 were quantified by RT-qPCR. Conventional parameters (chemical oxygen demand and coliform bacteria) were also determined. Two sampling campaigns (rainy and dry seasons) were carried out in four municipal WWTPs in Mexico City, representing five biological treatment processes: conventional activated sludge, extended aeration activated sludge, membrane bioreactor, direct anaerobic digestion, and constructed wetland, followed by ultraviolet light or chlorine disinfection. In most cases, gene fragments of SARS-CoV-2 were eliminated below the detection limit of RT-qPCR. The abundance of intI1 positively correlated with the sul1, OXA-10, and cphA-02 abundances; intI1 and the ARGs here studied were partially removed in the WWTPs, and in most cases, the number of copies per second discarded in the sludge were higher those in the effluent. The treatment processes decreased the abundance of dominant bacterial groups in the raw wastewater, while enriching bacterial groups in the effluent and the biological sludge, with possible pollutant removal capabilities. Bacterial communities in the raw wastewater showed the predominance of the genus Arcobacter (from 62.4 to 86.0 %) containing potentially pathogenic species. Additionally, DNA of some species persisted after the treatment processes: A. johnsonii, A. junii, A. caviae, A. hydrophila, A. veronii, A. butzleri, A. cryaerophilus, Chryseobacterium indologenes, Hafnia paralvei, M. osloensis, Pseudomonas putida and Vibrio cholerae, which deserves special attention in future regulation for safe water reuse.

6.
J Environ Chem Eng ; 10(5): 108298, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35873721

ABSTRACT

Since 2020, developed countries have rapidly shared both publicly and academically relevant wastewater surveillance information. Data on SARS-CoV-2 circulation is pivotal for guiding public health policies and improving the COVID-19 pandemic response. Conversely, low- and middle-income countries, such as Latin America and the Caribbean, showed timid activities in the Wastewater-Based Epidemiology (WBE) context. In these countries, isolated groups perform viral wastewater monitoring, and the data are unevenly shared or accessible to health agencies and the scientific community. This manuscript aims to highlight the relevance of a multiparty effort involving research, public health, and governmental agencies to support usage of WBE methodology to its full potential during the COVID-19 pandemic as part of a joint One Health surveillance approach. Thus, in this study, we explored the results obtained from wastewater surveillance in different regions of Brazil as a part of the COVID-19 Wastewater Monitoring Network ANA (National Water Agency), MCTI (Ministry of Science, Technology, and Innovations) and MS (Ministry of Health). Over the epidemiological weeks of 2021 and early 2022, viral RNA concentrations in wastewater followed epidemiological trends and variations. The highest viral loads in wastewater samples were detected during the second Brazilian wave of COVID-19. Corroborating international reports, our experience demonstrated usefulness of the WBE approach in viral surveillance. Wastewater surveillance allows hotspot identification, and therefore, early public health interventions. In addition, this methodology allows tracking of asymptomatic and oligosymptomatic individuals, who are generally underreported, especially in emerging countries with limited clinical testing capacity. Therefore, WBE undoubtedly contributes to improving public health responses in the context of this pandemic, as well as other sanitary emergencies.

7.
Case Stud Chem Environ Eng ; 6: 100214, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37520921

ABSTRACT

There are only a few established methods to determine the concentration of encapsulated viruses, such as SARS-CoV-2, in water matrices, limiting the application of wastewater-based epidemiology (WBE)-an important tool for public health research. The present study compared four methods that are commonly used to concentrate non-encapsulated enteric viruses for determining SARS-CoV-2 concentration in wastewater and wastewater-enriched river water samples. The four methods tested were electronegative membrane with Mg+2 addition, aluminum hydroxide-based precipitation, polyethylene glycol (PEG) 8000 precipitation, and ultrafiltration (with porosity of 10 and 50 kDa). Prior to the concentration step, filtration or centrifugation was performed to remove suspended particles from the samples (pretreatment). To evaluate the recovery efficiency (%), samples of SARS-CoV-2 from nasopharyngeal swabs obtained from RT-qPCR-positive patients were used as spiked samples. The second part of the analysis involved the quantification of the SARS-CoV-2 copy number in analytes without SARS-CoV-2-spiked samples. Among the tested methods, pretreatment via centrifugation followed by ultrafiltration with a 50-kDa cut-off was found the most efficient method for wastewater samples with spiked samples (54.3 or 113.01% efficiency). For the wastewater-enriched river samples with spiked samples, pretreatment via centrifugation followed by filtration using an electronegative membrane was the most efficient method (110.8% and 95.9% for N1 and N2 markers, respectively). However, ultrafiltration of the raw river water samples using 10 or 50 kDa cut-off filters and PEG 8000 precipitation showed the best concentration efficiency based on copy number, regardless of the pretreatment approach or sample type (values ranging from 3 × 105 to 6.7 × 103). The effectiveness of the concentration method can vary depending on the type of sample and concentration method. We consider that this study will contribute to more widespread use of WBE for the environmental surveillance of SARS-CoV-2.

8.
Food Environ Virol ; 13(4): 520-527, 2021 12.
Article in English | MEDLINE | ID: mdl-34532781

ABSTRACT

Hepatitis A virus (HAV) is the major cause of enterically transmitted infectious hepatitis. Between 2016 and 2017, the number of confirmed cases of hepatitis A virus (HAV) increased from 64 to 786 in São Paulo affecting mainly adults aged between 18 and 39 years (80%) and males (88%). To support epidemiological surveillance, the present study monitored the presence of HAV in urban sewage samples collected bimonthly for 1 year (November 2017-November 2018) in the central region of the city, where most of cases were detected. Sewage samples were concentrated by polyethylene glycol precipitation and HAV RNA was quantified by RT-qPCR. Nucleotide sequencing targeting the VP1/2A junction region was carried out to genotype the HAV strains. HAV was detected in 76.9% (40/52) of the samples, with a geometric mean viral load of 5.09 × 104 (± SD 4.51 × 105) genome copies (GC/L) (Mauá Street) and 5.27 × 104 (± SD 1.26 × 106) GC/L (Prestes Maia Avenue). Of the 40 positive samples, 8 were typed as HAV subgenotype IA [100% nucleotide (nt) identity with HAV strain VRD_521_2016]. Highest homology was obtained with sequences from European countries (Italy, Spain) and Israel, all of which had reported recent HAV outbreaks associated with men who have sex with men. Our results highlight that wastewater surveillance is a useful tool to support investigating HAV outbreaks in the community, including circulating genotypes.


Subject(s)
Hepatitis A virus , Hepatitis A , Sexual and Gender Minorities , Adolescent , Adult , Brazil/epidemiology , Disease Outbreaks , Genotype , Hepatitis A/epidemiology , Hepatitis A virus/genetics , Homosexuality, Male , Humans , Male , Phylogeny , RNA, Viral/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL