Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Comput Biol Med ; 173: 108300, 2024 May.
Article in English | MEDLINE | ID: mdl-38547654

ABSTRACT

Effective methods for automatic sleep staging are important for diagnosis and treatment of sleep disorders. EEG has weak signal properties and complex frequency components during the transition of sleep stages. Wavelet-based adaptive spectrogram reconstruction (WASR) by seed growth is utilized to capture dominant time-frequency patterns of sleep EEG. We introduced variant energy from Teager operator in WASR to capture hidden dynamic patterns of EEG, which produced additional spectrograms. These spectrograms enabled a light weight CNN to detect and extract finer details of different sleep stages, which improved the feature representation of EEG. With specially designed depthwise separable convolution, the light weight CNN achieved more robust sleep stage classification. Experimental results on Sleep-EDF 20 dataset showed that our proposed model yielded overall accuracy of 87.6%, F1-score of 82.1%, and Cohen kappa of 0.83, which is competitive compared with baselines with reduced computation cost.


Subject(s)
Sleep Stages , Sleep Wake Disorders , Humans , Sleep , Electroencephalography/methods
2.
Sci Rep ; 14(1): 5561, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448538

ABSTRACT

Obstructive sleep apnea (OSA) is a disorder which blocks the upper airway during sleep. The severity of OSA will lead heart attack, stroke and end of life. This proposed study explored the classification of OSA and healthy subjects using brain connectivity analysis from electroencephalogram (EEG) signals. Institute of System and Robotics-University of Coimbra (ISRUC) database were used for acquiring 50 EEG signals using 4 channels and noise removal has been accomplished by 50 Hz notch filter. The Institute of System and Robotics-University of Coimbra (ISRUC) database contained 50 EEG signals, with four channels, and a 50 Hz notch filter was applied to remove noise. Wavelet packet decomposition method was performing the segregation of EEG signals into five bands; Gamma (γ), beta (ß), alpha (α), theta (θ) and delta (δ). A total of 4 electrode positions were used for the brain connectivity analysis for each EEG band. Pearson correlation method was effectively used for measuring the correlation between healthy and OSA subjects. The nodes and edges were highlighted the connection between brain and subjects. The highest correlation was achieved in delta band of OSA subjects which starts from 0.7331 to 0.9172 respectively. For healthy subjects, the positive correlation achieved was 0.6995. The delta band has been correlated well with brain when compared other bands. It has been noted that the positive correlation well associated with brain in OSA subjects, which classifies OSA from healthy subjects.


Subject(s)
Brain , Sleep Apnea, Obstructive , Humans , Nose , Electroencephalography , Sleep
3.
Article in English | MEDLINE | ID: mdl-37982231

ABSTRACT

To enhance the accuracy of motor imagery(MI)EEG signal recognition, two methods, namely power spectral density and wavelet packet decomposition combined with a common spatial pattern, were employed to explore the feature information in depth in MI EEG signals. The extracted MI EEG signal features were subjected to series feature fusion, and the F-test method was used to select features with higher information content. Here regarding the accuracy of MI EEG signal classification, we further proposed the Platt Scaling probability calibration method was used to calibrate the results obtained from six basic classifiers, namely random forest (RF), support vector machines (SVM), Logistic Regression (LR), Gaussian naïve bayes (GNB), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). From these 12 classifiers, three to four with higher accuracy were selected for model fusion. The proposed method was validated on Datasets 2a of the 4th International BCI Competition, achieving an average accuracy of MI EEG data of nine subjects reached 91.46%, which indicates that model fusion was an effective method to improve classification accuracy, and provides some reference value for the research on MI brain-machine interface.

4.
Sensors (Basel) ; 23(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37837161

ABSTRACT

In modern power systems or new energy power stations, the medium voltage circuit breakers (MVCBs) are becoming more crucial and the operation reliability of the MVCBs could be greatly improved by online monitoring technology. The purpose of this research is to put forward a fault diagnosis approach based on vibration signal envelope analysis, including offline fault feature training and online fault diagnosis. During offline fault feature training, the envelope of the vibration signal is extracted from the historic operation data of the MVCB, and then the typical fault feature vector M is built by using the wavelet packet-energy spectrum. In the online fault diagnosis process, the fault feature vector T is built based on the extracted envelope of the real-time vibration signal, and the MVCB states are assessed by using the distance between the feature vectors T and M. The proposed method only needs to handle the envelope of the vibration signal, which dramatically reduces the signal bandwidth, and then the cost of the processing hardware and software could be cut down.

5.
Micromachines (Basel) ; 14(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37512779

ABSTRACT

Rolling bearings are crucial mechanical components in the mechanical industry. Timely intervention and diagnosis of system faults are essential for reducing economic losses and ensuring product productivity. To further enhance the exploration of unlabeled time-series data and conduct a more comprehensive analysis of rolling bearing fault information, this paper proposes a fault diagnosis technique for rolling bearings based on graph node-level fault information extracted from 1D vibration signals. In this technique, 10 categories of 1D vibration signals from rolling bearings are sampled using a sliding window approach. The sampled data is then subjected to wavelet packet decomposition (WPD), and the wavelet energy from the final layer of the four-level WPD decomposition in each frequency band is used as the node feature. The weights of edges between nodes are calculated using the Pearson correlation coefficient (PCC) to construct a node graph that describes the feature information of rolling bearings under different health conditions. Data augmentation of the node graph in the dataset is performed by randomly adding nodes and edges. The graph convolutional neural network (GCN) is employed to encode the augmented node graph representation, and deep graph contrastive learning (DGCL) is utilized for the pre-training and classification of the node graph. Experimental results demonstrate that this method outperforms contrastive learning-based fault diagnosis methods for rolling bearings and enables rapid fault diagnosis, thus ensuring the normal operation of mechanical systems. The proposed WPDPCC-DGCL method offers two advantages: (1) the flexibility of wavelet packet decomposition in handling non-smooth vibration signals and combining it with the powerful multi-scale feature encoding capability of GCN for richer characterization of fault information, and (2) the construction of graph node-level fault samples to effectively capture underlying fault information. The experimental results demonstrate the superiority of this method in rolling bearing fault diagnosis over contrastive learning-based approaches, enabling fast and accurate fault diagnoses for rolling bearings and ensuring the normal operation of mechanical systems.

6.
Clin EEG Neurosci ; : 15500594221148285, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604821

ABSTRACT

Motor imagery (MI) signals recorded by electroencephalography provide the most practical basis for conceiving brain-computer interfaces (BCI). These interfaces offer a high degree of freedom. This helps people with motor disabilities communicate with the device by tackling a sequence of motor imagery tasks. However, the extracting user-specific features and increasing the accuracy of the classifier remain as difficult tasks in MI-based BCI. In this work, we propose a new method using artificial neural network (ANN) enhancing the performance of the motor imagery classification. Feature extraction techniques, like time domain parameters, band power features, signal power features, and wavelet packet decomposition (WPD), are studied and compared. Four classification algorithms are implemented which are Quadratic Discriminant Analysis, k-Nearest Neighbors, Linear Discriminant Analysis, and proposed ANN architecture. We added Batch Normalization layers to the proposed ANN architecture to improve the learning time and accuracy of the neural network. These layers also alleviate the effect of weight initialization and the addition of a regularization effect on the network. Our proposed method using ANN architecture achieves 0.5545 of kappa and 58.42% of accuracy on the BCI Competition IV-2a dataset. Our results show that the modified ANN method, with frequency and spatial features extracted by WPD and Common Spatial Pattern, respectively, offers a better classification compared to other current methods.

7.
Environ Sci Pollut Res Int ; 30(14): 40799-40824, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36622613

ABSTRACT

As an efficient, economical, and clean energy, natural gas plays an important role in the development of the new energy revolution. Accurate prediction of natural gas consumption and production can adjust energy deployment in advance, which can ensure the stable operation of natural gas. Considering the complex and non-linear characteristics of natural gas production and consumption data, this paper develops a new hybrid forecasting model (WPD-VMD-LSTM) based on the fuzzy entropy, variational mode decomposition (VMD), wavelet packet decomposition (WPD), and Long Short-Term Memory (LSTM). In this model, WPD and VMD undertake the tasks of primary and secondary decompositions, respectively; fuzzy entropy is used for the preprocessing process before the re-decomposition; and LSTM is used to predict the decomposed time series. In particular, the different criteria set by fuzzy entropy lead to the establishment of two prediction models. Then, two models are used to study monthly natural gas consumption and production in the USA. The results demonstrate that the proposed model performs significantly better than other comparable models and the target model has some practical value. Meanwhile, models may cope with different types of energy data, and models can accurately predict energy transformations with strong applicability, which can be applied to future energy forecasting in various fields. Finally, the constructed models are used to forecast the NGC and NGP in the USA in the next 3 years and make reasonable policy recommendations based on the forecast results.


Subject(s)
Natural Gas , Neural Networks, Computer , Forecasting , Time Factors
8.
Entropy (Basel) ; 24(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35741519

ABSTRACT

The transmission of digital medical information is affected by data compression, noise, scaling, labeling, and other factors. At the same time, medical data may be illegally copied and maliciously tampered with without authorization. Therefore, the copyright protection and integrity authentication of medical information are worthy of attention. In this paper, based on the wavelet packet and energy entropy, a new method of medical image authentication is designed. The proposed method uses the sliding window to measure the energy of the detail information. In the time-frequency data distribution, the local details of the data are mined. The complexity of energy is quantitatively described to highlight the valuable information. Based on the energy weight, the local energy entropy is constructed and normalized. The adjusted entropy value is used as the feature vector of the authentication information. A series of experiments show that the authentication method has good robustness against shearing attacks, median filtering, contrast enhancement, brightness enhancement, salt-and-pepper noise, Gaussian noise, multiplicative noise, image rotation, scaling attacks, sharpening, JPEG compression, and other attacks.

9.
Sensors (Basel) ; 22(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35590859

ABSTRACT

The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. Since successful detection of various neurological and neuromuscular disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard, this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: (i) difference in the signal to noise ratio ( ) and (ii) percentage reduction in motion artifacts ( ). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average and values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e., WPD-CCA has produced the best average (16.55 dB, utilizing db1 wavelet packet) and largest average (41.40%, using fk8 wavelet packet). The highest average and using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed in comparison with the single-stage WPD method. In addition, the average also increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS signals. The increment in both and values is a clear indication that two-stage WPD-CCA performs relatively better compared to single-stage WPD. The results reported using the proposed methods outperform most of the existing state-of-the-art techniques.


Subject(s)
Artifacts , Canonical Correlation Analysis , Algorithms , Electroencephalography/methods , Motion , Signal Processing, Computer-Assisted , Wavelet Analysis
10.
Environ Sci Pollut Res Int ; 29(43): 65585-65598, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35488159

ABSTRACT

An efficient carbon trading market can effectively curb excessive carbon emissions and thus slow down the pace of global warming, which heightens the necessity of improving the accuracy of carbon price forecasting. In order to overcome the weakness of previous prediction model that always trained data in one-way neural networks and propagated the data sequentially, this paper proposes a novel hybrid learning paradigm WPD-ISSA-BiLSTM combining wavelet packet decomposition (WPD), improved sparrow search algorithm (ISSA), and Bi-directional long short-term memory network for deep feature exploration of carbon prices. Firstly, WPD decomposes and reconstructs the original carbon price series into several independent subseries. Then, the input features of the all subseries are filtered with random forest to select the best input features for the prediction model. Finally, a Bi-directional long short-term memory network optimized by the ISSA is employed to deeply delineate the intrinsic evolutionary trends of carbon prices, and the prediction results of all subseries are superimposed on each other to obtain the final carbon price prediction results. The actual carbon emission trading prices are collected as input to the model, and the experimental results show that the RMSE values of the proposed model are 0.2516 and 0.2962 under the mild and severe volatility scenarios, respectively. The proposed model has superiority and robustness compared to the comparison model and several existing models and better understands the intrinsic correlation between historical carbon price data. The results of this study can provide meaningful references for the carbon market development and emission reduction pathways.


Subject(s)
Carbon , Memory, Short-Term , Algorithms , Forecasting , Neural Networks, Computer
11.
Accid Anal Prev ; 166: 106549, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34974208

ABSTRACT

As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Accidents, Traffic , Entropy , Humans , Support Vector Machine
12.
ISA Trans ; 125: 514-527, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34253339

ABSTRACT

This paper introduces a newly developed multi-sensor data fusion for the milling chatter detection with a cheap and easy implementation compared with traditional chatter detection schemes. The proposed multi-sensor data fusion utilizes microphone and accelerometer sensors to measure the occurrence of chatter during the milling process. It has the advantageous over the dynamometer in terms of easy installation and low cost. In this paper, the wavelet packet decomposition is adopted to analyze both measured sound and vibration signals. However, the parameters of the wavelet packet decomposition require fine-tuning to provide good performance. Hence the result of the developed scheme has been improved by optimizing the selection of the wavelet packet decomposition parameters including the mother wavelet and the decomposition level based on the kurtosis and crest factors. Furthermore, the important chatter features are selected using the recursive feature elimination method, and its performance is compared with metaheuristic algorithms. Finally, several machine learning techniques have been adopted to classify the cutting stabilities based on the selected features. The results confirm that the proposed multi-sensor data fusion scheme can provide an effective chatter detection under industrial conditions, and it has higher accuracy than the traditional schemes.

13.
Front Neurosci ; 15: 774857, 2021.
Article in English | MEDLINE | ID: mdl-34867174

ABSTRACT

The classification of electroencephalogram (EEG) signals is of significant importance in brain-computer interface (BCI) systems. Aiming to achieve intelligent classification of motor imagery EEG types with high accuracy, a classification methodology using the wavelet packet decomposition (WPD) and the proposed deep residual convolutional networks (DRes-CNN) is proposed. Firstly, EEG waveforms are segmented into sub-signals. Then the EEG signal features are obtained through the WPD algorithm, and some selected wavelet coefficients are retained and reconstructed into EEG signals in their respective frequency bands. Subsequently, the reconstructed EEG signals were utilized as input of the proposed deep residual convolutional networks to classify EEG signals. Finally, EEG types of motor imagination are classified by the DRes-CNN classifier intelligently. The datasets from BCI Competition were used to test the performance of the proposed deep learning classifier. Classification experiments show that the average recognition accuracy of this method reaches 98.76%. The proposed method can be further applied to the BCI system of motor imagination control.

14.
J Vet Res ; 65(3): 253-264, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34917836

ABSTRACT

INTRODUCTION: H7N9 avian influenza has broken out in Chinese poultry 10 times since 2013 and impacted the industry severely. Although the epidemic is currently under control, there is still a latent threat. MATERIAL AND METHODS: Epidemiological surveillance data for non-human H7N9 avian influenza from April 2013 to April 2020 were used to analyse the regional distribution and spatial correlations of positivity rates in different months and years and before and after comprehensive immunisation. In addition, positivity rate monitoring data were disaggregated into a low-frequency and a high-frequency trend sequence by wavelet packet decomposition (WPD). The particle swarm optimisation algorithm was adopted to optimise the least squares support-vector machine (LS-SVM) model parameters to predict the low-frequency trend sequence, and the autoregressive integrated moving average (ARIMA) model was used to predict the high-frequency one. Ultimately, an LS-SVM-ARIMA combined model based on WPD was constructed. RESULTS: The virus positivity rate was the highest in late spring and early summer, and overall it fell significantly after comprehensive immunisation. Except for the year 2015 and the single month of December from 2013 to 2020, there was no significant spatiotemporal clustering in cumulative non-human H7N9 avian influenza virus detections. Compared with the ARIMA and LS-SVM models, the LS-SVM-ARIMA combined model based on WPD had the highest prediction accuracy. The mean absolute and root mean square errors were 2.4% and 2.0%, respectively. CONCLUSION: Low error measures prove the validity of this new prediction method and the combined model could be used for inference of future H7N9 avian influenza virus cases. Live poultry markets should be closed in late spring and early summer, and comprehensive H7N9 immunisation continued.

15.
Diagnostics (Basel) ; 11(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34573913

ABSTRACT

To classify between normal and sleep apnea subjects based on sub-band decomposition of electroencephalogram (EEG) signals. This study comprised 159 subjects obtained from the ISRUC (Institute of System and Robotics-University of Coimbra), Sleep-EDF (European Data Format), and CAP (Cyclic Alternating Pattern) Sleep database, which consists of normal and sleep apnea subjects. The wavelet packet decomposition method was incorporated to categorize the EEG signals into five frequency bands, namely, alpha, beta, delta, gamma, and theta. Entropy and energy (non-linear) for all bands was calculated and as a result, 10 features were obtained for each EEG signal. The ratio of EEG bands included four parameters, including heart rate, brain perfusion, neural activity, and synchronization. In this study, a support vector machine with kernels and random forest classifiers was used for classification. The performance measures demonstrated that the improved results were obtained from the support vector machine classifier with a kernel polynomial order 2. The accuracy (90%), sensitivity (100%), and specificity (83%) with 14 features were estimated using the data obtained from ISRUC database. The proposed study is feasible and seems to be accurate in classifying the subjects with sleep apnea based on the extracted features from EEG signals using a support vector machine classifier.

16.
J Neural Eng ; 18(4)2021 04 18.
Article in English | MEDLINE | ID: mdl-33636711

ABSTRACT

Objective.Electroencephalogram (EEG) based emotion recognition mainly extracts traditional features from time domain and frequency domain, and the classification accuracy is often low for the complex nature of EEG signals. However, to the best of our knowledge, the fusion of event-related potential (ERP) components and traditional features is not employed in emotion recognition, and the ERP components are only identified and analyzed by the psychology professionals, which is time-consuming and laborious.Approach.In order to recognize the consciousness and unconsciousness emotions, we propose a novel consciousness emotion recognition method using ERP components and modified multi-scale sample entropy (MMSE). Firstly, ERP components such as N200, P300 and N300 are automatically identified and extracted based on shapelet technique. Secondly, variational mode decomposition and wavelet packet decomposition are utilized to process EEG signals for obtaining different levels of emotional variational mode function (VMF), namelyVMFß+γ, and then nonlinear feature MMSE of eachVMFß+γare extracted. At last, ERP components and nonlinear feature MMSE are fused to generate a new feature vector, which is fed into random forest to classify the consciousness and unconsciousness emotions.Main results.Experimental results demonstrate that the average classification accuracy of our proposed method reach 94.42%, 94.88%, and 94.95% for happiness, horror and anger, respectively.Significance.Our study indicates that the fusion of ERP components and nonlinear feature MMSE is more effective for the consciousness and unconsciousness emotions recognition, which provides a new research direction and method for the study of nonlinear time series.


Subject(s)
Algorithms , Consciousness , Electroencephalography , Emotions , Entropy , Evoked Potentials
17.
Sensors (Basel) ; 21(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467463

ABSTRACT

Quadcopters are widely used in a variety of military and civilian mission scenarios. Real-time online detection of the abnormal state of the quadcopter is vital to the safety of aircraft. Existing data-driven fault detection methods generally usually require numerous sensors to collect data. However, quadcopter airframe space is limited. A large number of sensors cannot be loaded, meaning that it is difficult to use additional sensors to capture fault signals for quadcopters. In this paper, without additional sensors, a Fault Detection and Identification (FDI) method for quadcopter blades based on airframe vibration signals is proposed using the airborne acceleration sensor. This method integrates multi-axis data information and effectively detects and identifies quadcopter blade faults through Long and Short-Term Memory (LSTM) network models. Through flight experiments, the quadcopter triaxial accelerometer data are collected for airframe vibration signals at first. Then, the wavelet packet decomposition method is employed to extract data features, and the standard deviations of the wavelet packet coefficients are employed to form the feature vector. Finally, the LSTM-based FDI model is constructed for quadcopter blade FDI. The results show that the method can effectively detect and identify quadcopter blade faults with a better FDI performance and a higher model accuracy compared with the Back Propagation (BP) neural network-based FDI model.

18.
Brain Sci ; 10(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212777

ABSTRACT

Motor deficiencies constitute a significant problem affecting millions of people worldwide. Such people suffer from a debility in daily functioning, which may lead to decreased and incoherence in daily routines and deteriorate their quality of life (QoL). Thus, there is an essential need for assistive systems to help those people achieve their daily actions and enhance their overall QoL. This study proposes a novel brain-computer interface (BCI) system for assisting people with limb motor disabilities in performing their daily life activities by using their brain signals to control assistive devices. The extraction of useful features is vital for an efficient BCI system. Therefore, the proposed system consists of a hybrid feature set that feeds into three machine-learning (ML) classifiers to classify motor Imagery (MI) tasks. This hybrid feature selection (FS) system is practical, real-time, and an efficient BCI with low computation cost. We investigate different combinations of channels to select the combination that has the highest impact on performance. The results indicate that the highest achieved accuracies using a support vector machine (SVM) classifier are 93.46% and 86.0% for the BCI competition III-IVa dataset and the autocalibration and recurrent adaptation dataset, respectively. These datasets are used to test the performance of the proposed BCI. Also, we verify the effectiveness of the proposed BCI by comparing its performance with recent studies. We show that the proposed system is accurate and efficient. Future work can apply the proposed system to individuals with limb motor disabilities to assist them and test their capability to improve their QoL. Moreover, the forthcoming work can examine the system's performance in controlling assistive devices such as wheelchairs or artificial limbs.

19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(2): 288-295, 2020 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-32329281

ABSTRACT

Human motion control system has a high degree of nonlinear characteristics. Through quantitative evaluation of the nonlinear coupling strength between surface electromyogram (sEMG) signals, we can get the functional state of the muscles related to the movement, and then explore the mechanism of human motion control. In this paper, wavelet packet decomposition and n: m coherence analysis are combined to construct an intermuscular cross-frequency coupling analysis model based on wavelet packet- n: m coherence. In the elbow flexion and extension state with 30% maximum voluntary contraction force (MVC), sEMG signals of 20 healthy adults were collected. Firstly, the subband components were obtained based on wavelet packet decomposition, and then the n: m coherence of subband signals was calculated to analyze the coupling characteristics between muscles. The results show that the linear coupling strength (frequency ratio 1:1) of the cooperative and antagonistic pairs is higher than that of the nonlinear coupling (frequency ratio 1:2, 2:1 and 1:3, 3:1) under the elbow flexion motion of 30% MVC; the coupling strength decreases with the increase of frequency ratio for the intermuscular nonlinear coupling, and there is no significant difference between the frequency ratio n: m and m: n. The intermuscular coupling in beta and gamma bands is mainly reflected in the linear coupling (1:1), nonlinear coupling of low frequency ratio (1:2, 2:1) between synergetic pair and the linear coupling between antagonistic pairs. The results show that the wavelet packet- n: m coherence method can qualitatively describe the nonlinear coupling strength between muscles, which provides a theoretical reference for further revealing the mechanism of human motion control and the rehabilitation evaluation of patients with motor dysfunction.


Subject(s)
Movement , Muscle, Skeletal/physiology , Adult , Algorithms , Electromyography , Humans , Muscle Contraction , Range of Motion, Articular
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-828168

ABSTRACT

Human motion control system has a high degree of nonlinear characteristics. Through quantitative evaluation of the nonlinear coupling strength between surface electromyogram (sEMG) signals, we can get the functional state of the muscles related to the movement, and then explore the mechanism of human motion control. In this paper, wavelet packet decomposition and : coherence analysis are combined to construct an intermuscular cross-frequency coupling analysis model based on wavelet packet- : coherence. In the elbow flexion and extension state with 30% maximum voluntary contraction force (MVC), sEMG signals of 20 healthy adults were collected. Firstly, the subband components were obtained based on wavelet packet decomposition, and then the : coherence of subband signals was calculated to analyze the coupling characteristics between muscles. The results show that the linear coupling strength (frequency ratio 1:1) of the cooperative and antagonistic pairs is higher than that of the nonlinear coupling (frequency ratio 1:2, 2:1 and 1:3, 3:1) under the elbow flexion motion of 30% MVC; the coupling strength decreases with the increase of frequency ratio for the intermuscular nonlinear coupling, and there is no significant difference between the frequency ratio : and : . The intermuscular coupling in beta and gamma bands is mainly reflected in the linear coupling (1:1), nonlinear coupling of low frequency ratio (1:2, 2:1) between synergetic pair and the linear coupling between antagonistic pairs. The results show that the wavelet packet- : coherence method can qualitatively describe the nonlinear coupling strength between muscles, which provides a theoretical reference for further revealing the mechanism of human motion control and the rehabilitation evaluation of patients with motor dysfunction.


Subject(s)
Adult , Humans , Algorithms , Electromyography , Movement , Muscle Contraction , Muscle, Skeletal , Physiology , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...