Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.556
Filter
1.
J Cancer ; 15(13): 4047-4058, 2024.
Article in English | MEDLINE | ID: mdl-38947399

ABSTRACT

Background: Tamoxifen is commonly used in the treatment of hormonal-positive breast cancer. However, 30%-40% of tumors treated with tamoxifen develop resistance; therefore, an important step to overcome this resistance is to understand the underlying molecular and metabolic mechanisms. In the present work, we used metabolic profiling to determine potential biomarkers of tamoxifen resistance, and gene expression levels of enzymes important to these metabolites and then correlated the expression to the survival of patients receiving tamoxifen. Methods: Tamoxifen-resistant cell lines previously developed and characterized in our laboratory were metabolically profiled with nuclear magnetic resonance spectroscopy (NMR) using cryogenic probe, and the findings were correlated with the expression of genes that encode the key enzymes of the significant metabolites. Moreover, the effect of significantly altered genes on the overall survival of patients was assessed using the Kaplan-Meier plotter web tool. Results: We observed a significant increase in the levels of glutamine, taurine, glutathione, and xanthine, and a significant decrease in the branched-chain amino acids, valine, and isoleucine, as well as glutamate and cysteine in the tamoxifen-resistant cells compared to tamoxifen sensitive cells. Moreover, xanthine dehydrogenase and glutathione synthase gene expression were downregulated, whereas glucose-6-phosphate dehydrogenase was upregulated compared to control. Additionally, increased expression of xanthine dehydrogenase was associated with a better outcome for breast cancer patients. Conclusion: Overall, this study sheds light on metabolic pathways that are dysregulated in tamoxifen-resistant cell lines and the potential role of each of these pathways in the development of resistance.

2.
Arch Pharm (Weinheim) ; : e2400137, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963324

ABSTRACT

In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 µM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.

3.
Biol Futur ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967876

ABSTRACT

Young shoots of cereals are widely regarded as superfoods with health benefits attributed to their potential antioxidant activity and antioxidant-related effects (e.g. anticancer). The current study aimed to examine the chemical characteristics of Hordeum vulgare methanolic and aqueous extracts and assess their antioxidant activity using the DDPH and ORAC. Furthermore, the inhibitory effect of xanthine oxidase was screened. TLC bioautography was employed to determine the polarity of the compounds present in the extracts that exhibited the most potent free radical scavenging activity. Total flavonoid content of the methanolic and aqueous extracts was 0.14 mg QE/g and 0.012 mg QE/g, respectively. The antioxidant activity of the methanolic extract was found to be more potent, with a value of 0.97 ± 0.13 mmol TE/g than the aqueous extract which had no activity. This study presents novel findings on the xanthine inhibitory activity of H. vulgare. The methanolic extract demonstrated moderate inhibition of xanthine oxidase with a value of 23.24%. The results of our study were compared with the phytochemical and pharmacological analysis of Triticum aestivum, and further comparison was made with the data reported in the literature. Inconsistencies were observed in the chemical and pharmacological properties of H. vulgare, which could be a result of using herbal material harvested in different vegetative phases and various methods used for extraction. The findings of our study indicate that the timing of the harvest and extraction method may play crucial role in attaining the optimal phytochemical composition of H. vulgare, hence enhancing its pharmacological activity.

4.
Article in English | MEDLINE | ID: mdl-38984499

ABSTRACT

The crystal structure of lithium xanthinate hydrate was studied by single crystal X-ray diffraction and Raman spectroscopy on cooling to 100 K and under compression to 5.3 GPa. A phase transition at ∼4 GPa is observed. No phase transitions occur on cooling. Anisotropy of lattice strain and changes in intermolecular interactions are compared.

5.
Nat Prod Res ; : 1-5, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004844

ABSTRACT

Maclura tricuspidata (MT) leaf demonstrated various health benefits, notably the inhibition of xanthine oxidase (XOD) activity, which is crucial in the management of hyperuricaemia and many diseases related to oxidative stress. This study aimed to identify the primary compound responsible for this inhibitory effect. Through a systematic investigation, MT leaf extracts were subjected to solvent-solvent partitioning using ethyl acetate, n-hexane, n-butanol, and dichloromethane. Further purification involved adsorption and desorption using Amberlite XAD-2 resin, followed by column chromatography on Silica Gel and Sephadex LH-20. The purified compounds were analysed using UPLC-QTOF-MS coupled with NMR spectroscopy. Our findings identified quercetin, a phenolic compound, as the most significant inhibitor of XOD activity in MT leaf, with an IC50 value of 212.92 µg/ml. This is the first report of purifying and identifying a single compound responsible for XOD inhibition in MT.

6.
Food Chem X ; 23: 101588, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39036483

ABSTRACT

The identification and quantification of xanthine are crucial for assessing the freshness and quality of food products, particularly in the seafood industry. Herein, a new approach was developed, involving the in-situ controllable growth of Pt91Ru9 nanoparticles on graphitic carbon nitride to yield Pt91Ru9@C3N4 catalytic materials. By integrating Pt91Ru9@C3N4 with the xanthine/xanthine oxidase (XOD) enzyme catalytic system, a nanozyme-enzyme tandem platform was obtained for the quantification analysis of xanthine. Under the catalytic oxidation of xanthine by XOD in the presence O2, H2O2 was generated. Upon the addition of peroxidase-like activity of Pt91Ru9@C3N4, H2O2 can be decomposed into •OH and 1O2, which can further catalyze the oxidation of TMB to its oxidation product oxTMB with an absorption peak at 652 nm. This smartphone-assisted portable colorimetric sensor for visual monitoring xanthine with a low detection limit of 8.92 nmol L-1, and successfully applied to detect xanthine in grass carp and serum samples.

7.
J Ethnopharmacol ; 334: 118519, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971340

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Vietnamese people use mugwort (Artemisia vulgaris L.) to treat arthritis and gout. Our previous research shows that mugwort contains flavonoids, and its extract possesses antibacterial and anti-inflammatory activities. However, no publications have been on the xanthine oxidase inhibitory activity of mugwort and acute anti-inflammatory activity in vivo. AIM OF THE STUDY: The study aimed to verify the antioxidant, xanthine oxidase inhibitory, and anti-inflammatory capabilities of mugwort extract in vitro and in vivo, isolate phyto-compounds from potential bioactive fractions, and then evaluate their potential in inhibiting xanthine oxidase. METHODS: According to established methods, the extract and the active flavonoids were obtained using different chromatographic techniques. DPPH, ABTS, reducing power, and H2O2 elimination were used to evaluate antioxidant activity. The model of LPS-induced RAW264.7 cells was used to measure the inhibition of NO production. The carrageenan-induced paw oedema model was used to assess acute inflammation in mice. In vitro, xanthine oxidase inhibition assay was applied to investigate the effects of extract/compounds on uric acid production. Chemical structures were identified by spectral analysis. RESULTS: The assessment of the acute inflammatory model in mice revealed that both the 96% ethanol and the 50% ethanol extracts significantly decreased oedema in the mice's feet following carrageenan-induced inflammation. 96% ethanol extract exhibited a better reduction in oedema at the low dose. The analysis revealed that the ethyl acetate fraction had the highest levels of total polyphenols and flavonoids. Additionally, this fraction demonstrated significant antioxidant activity in various assays, such as DPPH, ABTS, reducing power, and H2O2 removal. Furthermore, it displayed the most potent inhibition of xanthine oxidase, an anti-inflammatory activity. Five phytochemicals were isolated and determined from the active fraction such as luteolin (1), rutin (2), apigenin (3), myricetin (4), and quercetin (5). Except for rutin, the other compounds demonstrated the ability to inhibit effective xanthine oxidase compared to standard (allopurinol). Moreover, quercetin (5) inhibited NO production (IC50 21.87 µM). CONCLUSION: The results indicate that extracts from A. vulgaris effectively suppressed the activity of xanthine oxidase and exhibited antioxidant and anti-inflammatory properties, potentially leading to a reduction in the production of uric acid in the body and eliminating ROS. The study identified mugwort extract and bioactive compounds derived from Artemisia vulgaris, specifically luteolin, apigenin, and quercetin, as promising xanthine oxidase inhibitors. These findings suggest that further development of these compounds is warranted. At the same time, the above results also strengthen the use of mugwort to treat gout disease in Vietnam.

8.
Cureus ; 16(6): e62472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39015868

ABSTRACT

Hyperuricemia results due to the underexcretion of uric acid through kidneys or overproduction due to either intake of purine-rich foods, a high caloric diet, or a decreased activity of purine recycler hypoxanthine-guanine phosphoribosyl transferase (HGPRT). Increased xanthine oxidoreductase (XOR) enzyme activity may contribute to hyperuricemia. Literature provides growing evidence that an independent component that contributes to the development of metabolic syndrome (MetS) and associated comorbidities is hyperuricemia. Thus, precise cellular mechanisms involved during MetS and related comorbidities in hyperuricemia, and the role of anti-urate medicines in these mechanisms require further investigations. We searched online libraries PubMed and Google Scholar for data collection. We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines for literature identification, selection, screening, and determining eligibility to produce unbiased meaningful outcomes. We applied quality assessment tools for the quality appraisal of the studies. And, outcomes were extracted from the selected studies, which revealed the relationship between hyperuricemia and MetS components by causing inflammation, endothelial dysfunction, oxidative stress, and endoplasmic reticulum stress. The selected studies reflected the role of xanthine oxide (XO) inhibitors beyond inhibition. This systematic review concluded that hyperuricemia independently causes inflammation, oxidative stress, endothelial damage, and endoplasmic reticulum stress in patients with hyperuricemia. These mechanisms provide a cellular basis for metabolic syndrome and related comorbidities. In this context, XO inhibitors and their beneficial effects go beyond XOR inhibition to ameliorate these pathological mechanisms.

9.
ChemMedChem ; : e202400478, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031172

ABSTRACT

Xanthine oxidase is a known therapeutic target for the treatment of hyperuricemia and related diseases. Despite the availability of current drugs such as allopurinol and febuxostat, the search for new compounds to effectively inhibit this enzyme remains relevant. In our study, 75 virtual structures of 4-(5-aminosubstituted-4-cyanooxazol-2-yl)benzoic acids with structural similarity to febuxostat were designed for evaluation of their potency against xanthine oxidase. After molecular docking simulations, eight compounds were selected for synthesis and in vitro testing. The synthesized compounds were found to exhibit in vitro xanthine oxidase inhibitory activity in the nanomolar concentration range. The most effective inhibitors with 4-benzylpiperidin-1-yl or 1,2,3,4-tetrahydroisoquinolin-2-yl substituents at position 5 of the oxazole ring had IC50 values close to that of febuxostat. The kinetic data suggest a mixed-type inhibition when the inhibitor binds preferentially to the free enzyme rather than to the enzyme-substrate complex. Molecular docking and molecular dynamic simulations were carried out to get insight into the key interactions of the inhibitors bound to the xanthine oxidase active site.

11.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893328

ABSTRACT

Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.


Subject(s)
Allopurinol , Taste , Xanthine , Allopurinol/chemistry , Humans , Xanthine/chemistry , Biosensing Techniques/methods
12.
Poult Sci ; 103(8): 103887, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38861845

ABSTRACT

Hyperuricemia (HUA) is a metabolic disorder caused by excessive production of uric acid (UA) or impaired uric acid metabolism. Smilax China L. has a wide range of pharmacological activities such as immunomodulatory, anti-inflammatory, and antioxidant. Its roots and rhizomes have been widely used for the treatment of HUA. However, its mechanisms for treating HUA and reducing renal impairment have not been fully elucidated. In the present study, we evaluated the effect of Smilax China L. extract (SC) on UA metabolism and further explored its mechanism of action by feeding a high-calcium and high-protein diet to chickens to induce a model of HUA in chickens. SC significantly reduced serum UA levels and improved renal function in hyperuricemic chickens. Meanwhile, SC was able to inhibit the activity of xanthine oxidase (XOD) in vivo and in vitro, reducing the production of uric acid. In addition, SC was able to increase the expression of Breast Cancer Resistance Protein (BCRP) in the kidney and ileum and increase uric acid excretion. Therefore, our results suggest that SC may be a candidate for anti-hyperuricemia.

13.
J Food Sci ; 89(7): 4192-4204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38829742

ABSTRACT

Opuntia ficus-indica fruit (OFI) is rich in bioactive compounds, which can promote human health. In this work, the purified OFI extract was prepared from OFI and its bioactivities were investigated. Xanthine oxidase (XOD) and α-glucosidase (α-Glu) inhibitors of the purified OFI extract were screened and identified by bio-affinity ultrafiltration combined with UPLC-QTRAP-MS/MS technology. The inhibitory effect of these inhibitors on enzymes were verified, and the potential mechanism of action and binding sites of inhibitors with enzymes were revealed based on molecular docking. The results showed that the total phenolic content of the purified OFI extract was 355.03 mg GAE/g DW, which had excellent antioxidant activity. Additionally, the extract had a certain inhibitory effect on XOD (IC50 = 199.00 ± 0.14 µg/mL) and α-Glu (IC50 = 159.67 ± 0.01 µg/mL). Seven XOD inhibitors and eight α-Glu inhibitors were identified. Furthermore, XOD and α-Glu inhibition experiments in vitro confirmed that inhibitors such as chlorogenic acid, taxifolin, and naringenin had significant inhibitory effects on XOD and α-Glu. The molecular docking results indicated that inhibitors could bind to the corresponding enzymes and had strong binding force. These findings demonstrate that OFI contains potential substances for the treatment of hyperuricemia and hyperglycemia.


Subject(s)
Fruit , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Opuntia , Plant Extracts , Xanthine Oxidase , alpha-Glucosidases , Xanthine Oxidase/antagonists & inhibitors , Glycoside Hydrolase Inhibitors/pharmacology , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Opuntia/chemistry , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Tandem Mass Spectrometry/methods , Phenols/pharmacology , Phenols/chemistry , Flavanones/pharmacology
14.
Int J Biol Macromol ; 275(Pt 1): 133450, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944077

ABSTRACT

Xanthine oxidase (XO) is a typical target for hyperuricemia and gout, for which there are only three commercial xanthine oxidase inhibitors (XOIs): febuxostat, topiroxostat and allopurinol. However, these inhibitors have problems such as low bioactivity and several side effects. Therefore, the development of novel XOIs with high bioactivity for the treatment of hyperuricemia and gout is urgently needed. In this work we constructed a XO immobilized cellulose membrane colorimetric biosensor (XNCM) by the TEMPO oxidation, amide bond coupling and nitro blue tetrazolium chloride (NBT) loading method. As expected, the XNCM was able to detect xanthine, with high selectivity and sensitivity by colorimetric method with a distinctive color change from yellow to purple, which can be easily observed by the naked-eye in just 8 min without any complex instrumentation. In addition, the XNCM sensor performed screening of 21 different compounds and have been successfully pre-screened out XOIs with biological activity. Most importantly, the XNCM was able to quantitatively detect the IC50 values of two commercial inhibitors (febuxostat and allopurinol). All the results confirmed that the XNCM is a simple and effective tool which can be used for the accelerated screening of XOIs and has the potential to uncover additional XOIs.

15.
Foods ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928737

ABSTRACT

Hydroalcoholic extracts from Malbec and Torrontés wine pomaces (Vitis vinifera L.) originating from the high-altitude vineyards of Argentina's Calchaquí Valleys were characterized. Total phenolics, hydroxycinnamic acids, orthodiphenols, anthocyanins, non-flavonoid phenolics, total flavonoids, flavones/flavonols, flavanones/dihydroflavonols, and tannins were quantified through spectrophotometric methods, with the Malbec extract exhibiting higher concentrations in most of phytochemical groups when compared to Torrontés. HPLC-DAD identified more than 30 phenolic compounds in both extracts. Malbec displayed superior antiradical activity (ABTS cation, nitric oxide, and superoxide anion radicals), reduction power (iron, copper, and phosphomolybdenum), hypochlorite scavenging, and iron chelating ability compared to Torrontés. The cytotoxicity assessments revealed that Torrontés affected the viability of HT29-MTX and Caco-2 colon cancer cells by 70% and 50%, respectively, at the highest tested concentration (1 mg/mL). At the same time, both extracts did not demonstrate acute toxicity in Artemia salina or in red blood cell assays at 500 µg/mL. Both extracts inhibited the lipoxygenase enzyme (IC50: 154.7 and 784.7 µg/mL for Malbec and Torrontés), with Malbec also reducing the tyrosinase activity (IC50: 89.9 µg/mL), and neither inhibited the xanthine oxidase. The substantial phenolic content and diverse biological activities in the Calchaquí Valleys' pomaces underline their potentialities to be valorized for pharmaceutical, cosmetic, and food industries.

16.
Biosens Bioelectron ; 261: 116510, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38905859

ABSTRACT

The discovery of enzyme inhibitors from natural products is a crucial aspect in the development of therapeutic drugs. However, the complexity of natural products presents a challenge in developing simple and efficient methods for inhibitor screening. Herein, we have developed an integrated analytical model for screening xanthine oxidase (XOD) inhibitors that combines simplicity, accuracy, and efficiency. This model utilizes a colorimetric sensor and affinity chromatography technology with immobilized XOD. The colorimetric sensor procedure can quickly identify whether there are active components in complex samples. Subsequently, the active components in the samples identified by the colorimetric sensor procedure were further captured, separated, and identified through affinity chromatography. The integrated analytical model can significantly enhance the efficiency and accuracy of inhibitor screening. The proposed method was applied to screen for an activity inhibitor of XOD in five natural medicines. As a result, a potential active ingredient for XOD, polydatin, was successfully identified from Polygoni Cuspidati Rhizoma et Radix. This work is anticipated to offer new insights for the screening of enzyme inhibitors from natural medicines.


Subject(s)
Biosensing Techniques , Chromatography, Affinity , Colorimetry , Enzyme Inhibitors , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/chemistry , Chromatography, Affinity/methods , Colorimetry/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Drug Evaluation, Preclinical , Humans
17.
Chem Biodivers ; : e202400865, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867399

ABSTRACT

Chamaerops humilis L. is clumping palm of the family Arecaceae with promising health-promoting effects. Parts of this species are utilized as food and employed in folk medicine to treat several disorders. This study investigated the phytochemical constituents of C. humilis leaves and their antioxidant and xanthine (XO) inhibitory activities in vitro and in acetaminophen (APAP)-induced hepatotoxicity in rats. Eleven compounds were isolated from C. humilis ethanolic extract (CHEE). CHEE and the butanol, n-hexane, and dichloromethane fractions exhibited in vitro radical scavenging and XO inhibitory efficacy. The computational findings revealed the tendency of the isolated compounds towards the active site of XO. In vivo, CHEE ameliorated liver function markers (ALT, AST, ALP, and albumin) and prevented tissue injury induced by APAP in rats. CHEE suppressed hepatic XO, decreased serum uric acid and liver MDA, and enhanced GSH, SOD, and catalase in APAP-treated rats. CHEE ameliorated serum TNF-α and IL-1ß in APAP-treated rats. Thus, C. humilis is rich in beneficial phytochemicals that possess binding affinity towards XO. C. humilis exhibited potent in vitro antioxidant and XO inhibitory activities, and prevented APAP hepatotoxicity by attenuating tissue injury, oxidative stress and inflammation.

18.
Chem Biol Interact ; 397: 111087, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38823536

ABSTRACT

Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 µg/mL compared to 11.5 µg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.


Subject(s)
Enzyme Inhibitors , Luteolin , Molecular Docking Simulation , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Luteolin/chemistry , Luteolin/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Molecular Dynamics Simulation , Flowers/chemistry , Allopurinol/pharmacology , Allopurinol/chemistry , Humans , Binding Sites
19.
Biomed Pharmacother ; 177: 116859, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879892

ABSTRACT

Phellinus igniarius is an important medicinal and edible fungus with diverse biological activities. This study aimed to investigate the effects of aqueous extract from P. igniarius (API) on the treatment of hyperuricemia (HUA) and related kidney damage. The chemical constituents of API were determined. The therapeutic effects of API on HUA and renal injury were assessed in adenine/potassium oxonate (PO)-treated mice. The constituent analysis of API revealed a predominance of polysaccharides (33.4 %), followed by total flavonoids (9.1 %), and total triterpenoids (3.5 %). Compared to control, the adenine/PO treatment greatly elevated serum uric acid (UA) levels but this elevation was attenuated by API. In the liver, the expression and activity of xanthine oxidase (XOD) were increased by HUA which were diminished by API. Furthermore, API was found to enhance the expression of UA transporter ABCG2 in the kidney and intestine of HUA mice, suggesting elevating UA excretion. Additionally, API ameliorated HUA-induced renal injury, as indicated by reduced serum BUN/creatinine levels, decreased glomerular and tubular damage, and lowered fibrotic levels. Network pharmacology analysis predicted that P. igniarius may regulate mitochondrial function to improve HUA-related renal injury. This prediction was then substantialized by the API-induced upregulation of NAD+/NADH ratio, ATP level, SOD2 activity, and expression of SOD2/PCG-1α/PPARγ in the kidney of HUA mice. Our results demonstrate that API may effectively ameliorate HUA by reducing UA production in the liver and enhancing UA excretion in the kidney and intestine, and it might be a potential therapy to HUA-related renal injury.

20.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825475

ABSTRACT

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Glucose Transport Proteins, Facilitative , Hyperuricemia , Neoplasm Proteins , Organic Anion Transporters , Uric Acid , Xanthine Dehydrogenase , Humans , Hyperuricemia/etiology , Hyperuricemia/metabolism , Hyperuricemia/genetics , Uric Acid/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Xanthine Dehydrogenase/metabolism , Xanthine Dehydrogenase/genetics , Xanthine Dehydrogenase/deficiency , Animals , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/etiology , Renal Tubular Transport, Inborn Errors/metabolism , Urinary Calculi/etiology , Urinary Calculi/metabolism , Urinary Calculi/genetics , Metabolism, Inborn Errors
SELECTION OF CITATIONS
SEARCH DETAIL
...