Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39203144

ABSTRACT

This paper presents the results of a study on the effect of the dispersed phase on the lubricating and rheological properties of selected lubricant compositions. A vegetable oil base (rapeseed oil) was used to prepare vegetable lubricants, which were then thickened with lithium stearate, calcium stearate, aluminum stearate, amorphous silica, and montmorillonite. Based on the results of the tribological tests of selected lubricating compositions, it was found that calcium stearate and montmorillonite have the most beneficial effect on the anti-wear properties of the tested lubricating greases, while silica thickeners (amorphous silica and montmorillonite) provide the effective anti-wear protection in compared to the lubricants produced on lithium and aluminum stearate. The lowest structural viscosity was found for grease thickened with montmorillonite. Much higher values of this parameter were observed for composition, where aluminum stearate was the dispersed phase, while the highest value of structural viscosity was observed for composition, where aerosol-amorphous silica was the thickener. The composition thickened with amorphous silica had the highest yield point value, while the composition in which montmorillonite was the dispersed phase had the lowest value. Dynamic viscosity decreases with temperature, which is characteristic of lubricants. No significant differences in dynamic viscosity were found for the lubricating compositions tested at temperatures above 50 [°C]. The most favorable rheological properties were observed for composition, which was produced using calcium stearate, as it allows the lowest dynamic viscosity at -20 [°C]. Lubricants produced with lithium stearate or aluminum stearate were characterized by higher viscosity at low temperatures. For grease, in which the lithium stearate was used as a thickener, the value of the elasticity index determines the weak viscoelastic properties of tested grease and a greater tendency to change structure under the influence of applied forces. For vegetable grease thickened with aluminum stearate, more than 15 times lower values of the MSD function were observed, and the calculated elasticity index value proves the stronger viscoelastic properties of the aluminum stearate grease in relation to grease thickened with the lithium stearate. The elasticity index value for grease thickened with amorphous silica was lower than for greases thickened with lithium and aluminum stearate, indicating its stronger viscoelastic properties in relation to these two greases. For grease composition prepared on the vegetable oil base and thickened with montmorillonite. The value of the elasticity index was lower than most of the tested grease compositions, without the composition, in which the calcium stearate was used as a thickener. Such results testify to moderately strong viscoelastic properties, which leads to the conclusion that the produced lubricant was a stable substance on changes in chemical structure under the influence of variable conditions prevailing during work in tribological joints.

2.
J Biomech Eng ; 146(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38323620

ABSTRACT

The stress-strain curve of biological soft tissues helps characterize their mechanical behavior. The yield point on this curve is when a specimen breaches its elastic range due to irreversible microstructural damage. The yield point is easily found using the offset yield method in traditional engineering materials. However, correctly identifying the yield point in soft tissues can be subjective due to its nonlinear material behavior. The typical method for yield point identification is visual inspection, which is investigator-dependent and does not lend itself to automation of the analysis pipeline. An automated algorithm to identify the yield point objectively assesses soft tissues' biomechanical properties. This study aimed to analyze data from uniaxial extension testing on biological soft tissue specimens and create a machine learning (ML) model to determine a tissue sample's yield point. We present a trained machine learning model from 279 uniaxial extension curves from testing aneurysmal/nonaneurysmal and longitudinal/circumferential oriented tissue specimens that multiple experts labeled through an adjudication process. The ML model showed a median error of 5% in its estimated yield stress compared to the expert picks. The study found that an ML model could accurately identify the yield point (as defined) in various aortic tissues. Future studies will be performed to validate this approach by visually inspecting when damage occurs and adjusting the model using the ML-based approach.


Subject(s)
Aorta , Machine Learning , Humans , Stress, Mechanical , Biomechanical Phenomena
3.
Materials (Basel) ; 16(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37763523

ABSTRACT

This paper describes an investigation of the effects of silicone-containing additives on the tribological and rheological properties of various lubricant blends. Aerosil® and layered silicate were used to modify lubricants containing rapeseed, linseed and soy oil that were thickened with soap thickener. Tribological tests were carried out using a four-ball concentric contact tester. On the basis of the data obtained from the tribological studies of the selected lubricant blends, it was concluded that the addition of amorphous silica increased the anti-seizure and anti-wear properties of the tested lubricants. The addition of montmorillonite caused a significant increase in the values of the individual parameters determining the level of lubricating properties of the tested lubricants in comparison with the lubricants modified with the silica additive. Based on the results of the rheological tests of the studied lubricants, it was found that the applied additives caused a change in the dynamic viscosity and chemical structure of the tested lubricants, expressed by a change in the values of the G' and G″ indices. The main finding of this manuscript was to demonstrate that the use of montmorillonite and aerosil additives improves the functional properties of vegetable-based plastic lubricants. The performance of tribological and rheological tests is of great scientific importance, as it provides an insight into the interaction of siliceous additives with the results of tribological tests on vegetable-oil-based greases. These findings make it possible to determine the behaviour of the lubricant under load and add to the knowledge of vegetable greases.

4.
Gels ; 9(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37504392

ABSTRACT

In order to solve the problem of poor dispersion and stability of mixed metal hydroxide (MMH), a kind of mixed metal hydroxide-like compound (MMHlc) gel was synthesized for use as the base mud in drilling fluid instead of bentonite gel. Na2CO3, Na2SiO3, and C17H33CO2Na were used as precipitants to form MMHlc with larger interlayer spacing and smaller particle size. MMHlc was synthesized by the coprecipitation method at 25 °C with a metal molar ratio of Mg:Al:Fe = 3:1:1. The performance evaluation of the treated drilling fluid showed that MMHlc (S2) synthesized using Na2SiO3 as the precipitant had the characteristics of low viscosity, low filtration, and a high dynamic plastic ratio at 25 °C, which fully met the requirements of oil field application, and it maintained its excellent properties after being aged at 250 °C for 16 h. Linear expansion and rolling recovery experiments showed that the S2 sample had excellent rheological properties and good inhibition. X-ray diffraction and FT-IR experiments showed that S2 had the most complete crystal structure, its interlayer distance was large, and its ion exchange capacity was strong. The thermogravimetric experiment showed that the S2 crystal was stable and the temperature resistance of the crystal could reach 340 °C. Zeta potential, particle size analysis, SEM, and TEM results showed that S2 is a nanomaterial with a complete morphology and uniform distribution. The drilling fluid of this formula had the characteristics of low viscosity, low filtration loss, and a high dynamic plastic ratio, and it met the conditions for oil field application. Considering these results, the new MMH prepared by our research institute is a drilling fluid material that can be used at ultra-high temperatures and can provide important support for drilling ultra-deep wells.

5.
Biomimetics (Basel) ; 8(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36648813

ABSTRACT

3D-bioprinting for tissue regeneration relies on, among other things, hydrogels with favorable rheological properties. These include shear thinning for cell-friendly extrusion, post-printing structural stability as well as physiologically relevant elastic moduli needed for optimal cell attachment, proliferation, differentiation and tissue maturation. This work introduces a cost-efficient gelatin-methylcellulose based hydrogel whose rheological properties can be independently optimized for optimal printability and tissue engineering. Hydrogel viscosities were designed to present three different temperature regimes: low viscosity for eased cell suspension and printing with minimal shear stress, form fidelity directly after printing and long term structural stability during incubation. Enzymatically crosslinked hydrogel scaffolds with stiffnesses ranging from 5 to 50 kPa were produced, enabling the hydrogel to biomimic cell environments for different types of tissues. The bioink showed high intrinsic cytocompatibility and tissues fabricated by embedding and bioprinting NIH 3T3 fibroblasts showed satisfactory viability. This novel hydrogel uses robust and inexpensive technology, which can be adjusted for implementation in tissue regeneration, e.g., in myocardial or neural tissue engineering.

6.
Gels ; 8(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36354597

ABSTRACT

The influence of casein hydrolysates (CHs) and yeast on the viscoelasticity of wheat dough at 25 °C were analysed. Three wheat doughs were studied: the unyeasted dough (UYD), the unyeasted dough with CHs (UYD-C) and the yeasted dough (YD). The characteristic parameters in the linear viscoelastic range (LVER) were analysed by stress sweep at 6.3 rad/s: UYD-C dough exhibited higher values of stress (σmax) and strain (γmax) amplitudes, and softer gel network (lower complex modulus, G*) comparing with UYD dough. The oscillatory data suggest that CHs would work as (energy and time) stabilising-agents based on the greatest reticular energy (E parameter) and the lowest frequency dependence of phase angle (δ) at the low frequency range. The rotatory tests show that CHs may act as shear thinning agents in the gluten-starch network, facilitating the solid-fluid transition at the yield point (UYD-C dough). The yeasted dough (YD) exhibited a more shear sensitive structure, evidenced in the highest influence of frequency on the elastic (G') and viscous (G″) parameters, and gel to sol transition at 0.23 rad/s was observed.

7.
Materials (Basel) ; 16(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36614534

ABSTRACT

Lüders deformation is one type of discontinuous yielding in ferrite-pearlite steel. The yield-point phenomenon and localized plastic bands are two features of the Lüders phenomenon. It is believed that the yield-point phenomenon is related to the formation of plastic bands, but the correlation between them is unclear. In this study, this correlation was investigated by examining the global and local deformation behaviors in the tension processes of four ferrite-pearlite steels (carbon content, 0.05-0.3%; pearlite fraction, 1.2-32%) via an extensometer and digital image correlation (DIC) technique. The main obtained results are as follows: (1) the degree of yield drop decreased with an increase in the pearlite fraction (the magnitude of the yield stress drop was 8.6-0 MPa), and (2) a plastic band was formed at a certain stress level smaller than the upper yield stress; when the stress level was larger than 92% of the upper yield stress, the upper yield point disappeared.

8.
Materials (Basel) ; 13(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204329

ABSTRACT

This study analyzes the possibility of applying the acoustic emission method (AE) and the Kolmogorov-Sinai (K-S) metric entropy phenomenon in determining the structural changes that take place within the EN AW 7020 aluminum alloy. The experimental part comprised of a static tensile test carried out on aluminum alloy samples, and the simultaneous recording of the acoustic signal generated inside the material. This signal was further processed and diagrams of the effective electrical signal value (RMS) as a function of time were drawn up. The diagrams obtained were applied on tensile curves. A record of measurements carried out was used to analyze the properties of the material, applying a method based on Kolmogorov-Sinai (K-S) metric entropy. For this purpose, a diagram of metric entropy as a function of time was developed for each sample and applied on the corresponding course of stretching. The results of studies applying the AE and the K-S metric entropy method show that K-S metric entropy can be used as a method to determine the yield point of the material where there are no pronounced yield points.

9.
Biomed Eng Lett ; 9(2): 189-201, 2019 May.
Article in English | MEDLINE | ID: mdl-31168424

ABSTRACT

Biomechanical properties of human gallbladder (GB) wall in passive state can be valuable to diagnosis of GB diseases. In the article, an approach for identifying damage effect in GB walls during uniaxial tensile test was proposed and a strain energy function with the damage effect was devised as a constitutive law phenomenologically. Scalar damage variables were introduced respectively into the matrix and two families of fibres to assess the damage degree in GB walls. The parameters in the constitutive law with the damage effect were determined with a custom MATLAB code based on two sets of existing uniaxial tensile test data on human and porcine GB walls in passive state. It turned out that the uniaxial tensile test data for GB walls could not be fitted properly by using the existing strain energy function without the damage effect, but could be done by means of the proposed strain energy function with the damage effect involved. The stresses and Young moduli developed in two families of fibres were more than thousands higher than the stresses and Young's moduli in the matrix. According to the damage variables estimated, the damage effect occurred in two families of fibres only. Once the damage occurs, the value of the strain energy function will decrease. The proposed constitutive laws are meaningful for finite element analysis on human GB walls.

10.
Biomedical Engineering Letters ; (4): 189-201, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-785508

ABSTRACT

Biomechanical properties of human gallbladder (GB) wall in passive state can be valuable to diagnosis of GB diseases. In the article, an approach for identifying damage effect in GB walls during uniaxial tensile test was proposed and a strain energy function with the damage effect was devised as a constitutive law phenomenologically. Scalar damage variables were introduced respectively into the matrix and two families of fibres to assess the damage degree in GB walls. The parameters in the constitutive law with the damage effect were determined with a custom MATLAB code based on two sets of existing uniaxial tensile test data on human and porcine GB walls in passive state. It turned out that the uniaxial tensile test data for GB walls could not be fitted properly by using the existing strain energy function without the damage effect, but could be done by means of the proposed strain energy function with the damage effect involved. The stresses and Young moduli developed in two families of fibres were more than thousands higher than the stresses and Young's moduli in the matrix. According to the damage variables estimated, the damage effect occurred in two families of fibres only. Once the damage occurs, the value of the strain energy function will decrease. The proposed constitutive laws are meaningful for finite element analysis on human GB walls.


Subject(s)
Humans , Diagnosis , Finite Element Analysis , Gallbladder , Jurisprudence
11.
Materials (Basel) ; 10(9)2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28832526

ABSTRACT

This work evaluates the possibility of identifying mechanical parameters, especially upper and lower yield points, by the analytical processing of specific elements of the topography of surfaces generated with abrasive waterjet technology. We developed a new system of equations, which are connected with each other in such a way that the result of a calculation is a comprehensive mathematical-physical model, which describes numerically as well as graphically the deformation process of material cutting using an abrasive waterjet. The results of our model have been successfully checked against those obtained by means of a tensile test. The main prospect for future applications of the method presented in this article concerns the identification of mechanical parameters associated with the prediction of material behavior. The findings of this study can contribute to a more detailed understanding of the relationships: material properties-tool properties-deformation properties.

12.
ACS Appl Mater Interfaces ; 7(41): 23257-64, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26437763

ABSTRACT

Mechanical buckling of thin films on elastomeric substrates is often used to determine the mechanical properties of polymers whose scarcity precludes obtaining a stress-strain curve. Although the modulus and crack-onset strain can readily be obtained by such film-on-elastomer systems, information critical to the development of flexible, stretchable, and mechanically robust electronics (i.e., the range of strains over which the material exhibits elastic behavior) cannot be measured easily. This paper describes a new technique called laser determination of yield point (LADYP), in which a polymer film on an elastic substrate is subjected to cycles of tensile strain that incrementally increase in steps of 1% (i.e., 0% → 1% → 0% → 2% → 0% → 3% → 0%, etc.). The formation of buckles manifests as a diffraction pattern obtained using a laser, and represents the onset of plastic deformation, or the yield point of the polymer. In the series of conjugated polymers poly(3-alkylthiophene), where the alkyl chain is pentyl, hexyl, heptyl, octyl, and dodecyl, the yield point is found to increase with increasing length of the side chain (from approximately 5% to 15% over this range when holding the thickness between ∼200 and 300 nm). A skin-depth effect is observed in which films of <150 nm thickness exhibit substantially greater yield points, up to 40% for poly(3-dodecylthiophene). Along with the tensile modulus obtained by the conventional analysis of the buckling instability, knowledge of the yield point allows one to calculate the modulus of resilience. Combined with knowledge of the crack-onset strain, one can estimate the total energy absorbed by the film (i.e., the modulus of toughness).

13.
J Theor Biol ; 353: 133-41, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24631870

ABSTRACT

For many gastropods, locomotion is driven by a succession of periodic muscular waves (contractions and relaxations) moving along the foot. The force generated by these waves is coupled to the substratum by a thin layer of pedal mucus. Gastropod pedal mucus has unusual physical properties: the mucus is a viscoelastic solid at small deformation and shows a sharp yield point; then, at greater strains, the mucus is a viscous liquid, although it will recover its solidity if allowed to heal for a certain period. In this paper, to clarify the role of the mucus and the flexible muscular waves in adhesive locomotion, we use a simple mathematical model to verify that directional migration can be realized through the interaction between the periodic muscular waves and the specific physical features of mucus. Our results indicate that the hysteresis property of mucus is essential in controlling kinetic friction for the realization of crawling locomotion. Furthermore, our numerical calculations show that both the hysteresis property of mucus and the contraction ratio of muscle give rise to two styles of locomotion, direct waves and retrograde waves, which until now have been explained by different mechanisms. The biomechanical effectiveness of mucus in adhesive locomotion is also discussed.


Subject(s)
Adhesives/metabolism , Gastropoda/physiology , Locomotion/physiology , Mucus/metabolism , Animals , Models, Biological , Muscles/physiology , Numerical Analysis, Computer-Assisted , Stress, Physiological , Time Factors
14.
Craniomaxillofac Trauma Reconstr ; 1(1): 31-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-22110787

ABSTRACT

In a series of articles spanning 8 years, Ed Ellis reviewed the clinical results of the treatment of 478 mandibular angle fractures managed by eight different techniques. During a series of benchtop investigations employing polyurethane synthetic mandible replicas, Rich Haug investigated the biomechanical behavior of approximately 15 different techniques designed to reconstruct mandibular angle fractures. This article reviews these two series of investigations in an attempt to gain insight into the biomechanical and biological factors that affect the successful reconstruction of mandibular angle fractures. It appears that the current techniques used to reconstruct mandibular angle fractures are sound from the standpoint of biomechanics within a range of forces encountered during clinical function. It also appears that an unsuccessful reconstruction is based on a biological result of a behavioral issue such as noncompliance, substance abuse, and/or nutritional or immune compromise.

SELECTION OF CITATIONS
SEARCH DETAIL