ABSTRACT
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Subject(s)
Bariatric Surgery , Ethanol , Aldehydes , Biological Evolution , OxidoreductasesABSTRACT
Thimet oligopeptidase (TOP) is a metallopeptidase involved in the metabolism of oligopeptides inside and outside cells of various tissues. It has been proposed that substrate or inhibitor binding in the TOP active site induces a large hinge-bending movement leading to a closed structure, in which the bound ligand is enclosed. The main goal of the present work was to study this conformational change, and fluorescence techniques were used. Four active TOP mutants were created, each equipped with a single-Trp residue (fluorescence donor) and a p-nitro-phenylalanine (pNF) residue as fluorescence acceptor at opposite sides of the active site. pNF was biosynthetically incorporated with high efficiency using the amber codon suppression technology. Inhibitor binding induced shorter Donor-Acceptor (D-A) distances in all mutants, supporting the view that a hinge-like movement is operative in TOP. The activity of TOP is known to be dependent on the ionic strength of the assay buffer and D-A distances were measured at different ionic strengths. Interestingly, a correlation between the D-A distance and the catalytic activity of TOP was observed: the highest activities corresponded to the shortest D-A distances. In this study for the first time the hinge-bending motion of a metallopeptidase in solution could be studied, yielding insight about the position of the equilibrium between the open and closed conformation. This information will contribute to a more detailed understanding of the mode of action of these enzymes, including therapeutic targets like neurolysin and angiotensin-converting enzyme 2 (ACE2).
Subject(s)
Metalloendopeptidases , Oligopeptides , Catalytic Domain , Ligands , Metalloendopeptidases/chemistry , Oligopeptides/metabolism , Substrate SpecificityABSTRACT
Background: Matrix metalloproteinase 12 (MMP12), a member of MMPs, can take lots of roles including extracellular matrix component degradation, viral infection, inflammation, tissue remodeling and tumorigenesis. To explore the transcriptional regulation of MMP12 gene, a sensitive luciferase reporter HEK293 cell line for endogenous MMP12 promoter was generated by CRISPR/Cas9 technology. Results: The HEK293-MMP12-T2A-luciferase-KI cell line was successfully established by CRISPR/Cas9 technology. The sequencing results indicated that one allele of the genome was proven to have a site-directed insertion of luciferase gene and another allele of the genome was confirmed to have additional 48 bp insertion in this cell line. The cell line was further demonstrated to be a sensitive reporter of the endogenous MMP12 promoter by applying transcription factors STAT3, AP-1 and SP-1 to the cell line. The reporter cell line was then screened with bioactive small molecule library, and a small molecule Tanshinone I was found to significantly inhibit the transcriptional activity of MMP12 gene in HEK293-MMP12-T2A-luciferase-KI cell line by luciferase activity assay, which was further confirmed to inhibit the expression of MMP12 mRNA in wild-type HEK293 cells. Conclusions: This novel luciferase knock-in reporter system will be helpful for investigating the transcriptional regulation of MMP12 gene and screening the drugs targeting MMP12 gene.
Subject(s)
Humans , Matrix Metalloproteinase 12/genetics , CRISPR-Cas Systems , Luciferases/genetics , Transcription, Genetic , Cell Communication , Cell Line , Promoter Regions, Genetic/genetics , Cell Culture Techniques , Extracellular Matrix , Gene Knock-In Techniques , Clustered Regularly Interspaced Short Palindromic RepeatsABSTRACT
Immunogenicity induced by recombinant plasmids based on the BAB1_0267 and BAB1_0270 open reading frames (ORFs) of Brucella abortus 2308 was evaluated. Bioinformatics analyses indicate that the BAB1_0267 and BAB1_0270 ORFs encode a protein with a SH3 domain and a Zn-dependent metalloproteinase, respectively. Both ORFs have important effects on intracellular survival and replication of B. abortus 2308, mediated via professional and non-professional phagocytic cells. Our results show that immunization with the recombinant plasmid based on the BAB1_0267 ORF significantly increases the production of IgG1, levels of IFN-γ and the lymphoproliferative response of splenocytes. However, BAB1_0267 did not provide significant levels of protection. The plasmid based on the BAB1_0270 significantly increased IgG2a production, levels of IFN-γ and TNF-α, and the lymphoproliferative response of splenocytes. These results demonstrate that immunization with the BAB1_0270 derived recombinant plasmid induce a Th1-type immune response, correlated with a heightened resistance to B. abortus 2308 infection in mice. It is concluded that the Th1-type immune response against bacterial Zn-dependent metalloproteinase induces a protective response in mice, and that pV270 recombinant plasmid is an effective candidate microbicide against brucellosis.