Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
PeerJ ; 12: e17394, 2024.
Article in English | MEDLINE | ID: mdl-38827296

ABSTRACT

The increasing frequency of zoonotic spillover events and viral mutations in low and middle-income countries presents a critical global health challenge. Contributing factors encompass cultural practices like bushmeat consumption, wildlife trade for traditional medicine, habitat disruption, and the encroachment of impoverished settlements onto natural habitats. The existing "vaccine gap" in many developing countries exacerbates the situation by allowing unchecked viral replication and the emergence of novel mutant viruses. Despite global health policies addressing the root causes of zoonotic disease emergence, there is a significant absence of concrete prevention-oriented initiatives, posing a potential risk to vulnerable populations. This article is targeted at policymakers, public health professionals, researchers, and global health stakeholders, particularly those engaged in zoonotic disease prevention and control in low and middle-income countries. The article underscores the importance of assessing potential zoonotic diseases at the animal-human interface and comprehending historical factors contributing to spillover events. To bridge policy gaps, comprehensive strategies are proposed that include education, collaborations, specialized task forces, environmental sampling, and the establishment of integrated diagnostic laboratories. These strategies advocate simplicity and unity, breaking down barriers, and placing humanity at the forefront of addressing global health challenges. Such a strategic and mental shift is crucial for constructing a more resilient and equitable world in the face of emerging zoonotic threats.


Subject(s)
Developing Countries , Zoonoses , Humans , Animals , Zoonoses/prevention & control , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Mutation , Health Policy/legislation & jurisprudence , Global Health , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/transmission
2.
J Med Virol ; 96(6): e29737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874191

ABSTRACT

Outbreaks of airborne viral emerging infectious diseases (EIDs) cause an increasing burden on global public health, particularly with a backdrop of intensified climate change. However, infection sources and drivers for outbreaks of airborne viral EIDs remain unknown. Here, we aim to explore the driving mechanisms of outbreaks based on the one health perspective. Outbreak information for 20 types of airborne viral EIDs was collected from the Global Infectious Disease and Epidemiology Network database and a systematic literature review. Four statistically significant and high-risk spatiotemporal clusters for airborne viral EID outbreaks were identified globally using multivariate scan statistic tests. There were 112 outbreaks with clear infection sources, and zoonotic spillover was the most common source (95.54%, 107/112). Since 1970, the majority of outbreaks occurred in healthcare facilities (24.82%), followed by schools (17.93%) and animal-related settings (15.93%). Significant associations were detected between the number of earthquakes, storms, duration of floods, and airborne viral EIDs' outbreaks using a case-crossover study design and multivariable conditional logistic regression. These findings implied that zoonotic spillover and extreme weather events are driving global outbreaks of airborne viral EIDs, and targeted prevention and control measures should be made to reduce the airborne viral EIDs burden.


Subject(s)
Communicable Diseases, Emerging , Disease Outbreaks , Weather , Zoonoses , Humans , Animals , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Zoonoses/epidemiology , Zoonoses/virology , Zoonoses/transmission , Global Health , Air Microbiology , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/virology , Climate Change
3.
Future Microbiol ; 19(9): 841-856, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38648093

ABSTRACT

The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.


Bats are the most diverse mammalian order, with over 1400 species found worldwide. Studies on bats have revealed that they frequently carry and transmit multiple viruses. They are also known to recover from viral infections. Further, human interference and climatic changes in bats' native habitat have led to virus spillover events from bats to human populations, posing a serious public health risk. A deeper understanding of the coexistence of bats and viruses, as well as the mechanisms of disease transmission to humans, is required to minimize the risk of future viral outbreaks.


Subject(s)
Chiroptera , Disease Reservoirs , Chiroptera/virology , Chiroptera/immunology , Animals , Humans , Disease Reservoirs/virology , Virus Diseases/immunology , Virus Diseases/virology , Virus Diseases/veterinary , Viral Zoonoses/transmission , Viral Zoonoses/virology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Viruses/immunology , Viruses/classification , Viruses/genetics , Zoonoses/virology , Zoonoses/transmission , Zoonoses/immunology
4.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459433

ABSTRACT

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Subject(s)
Marmota , Yersinia pestis , Animals , Humans , Tibet/epidemiology , China/epidemiology , Disease Outbreaks , Yersinia pestis/genetics , Genetic Variation
5.
bioRxiv ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38464184

ABSTRACT

Understanding viral infection dynamics in wildlife hosts can help forecast zoonotic pathogen spillover and human disease risk. Bats are particularly important reservoirs of zoonotic viruses, including some of major public health concern such as Nipah virus, Hendra virus, and SARS-related coronaviruses. Previous work has suggested that metapopulation dynamics, seasonal reproductive patterns, and other bat life history characteristics might explain temporal variation in spillover of bat-associated viruses into people. Here, we analyze viral dynamics in free-ranging bat hosts, leveraging a multi-year, global-scale viral detection dataset that spans eight viral families and 96 bat species from 14 countries. We fit hierarchical Bayesian models that explicitly control for important sources of variation, including geographic region, specimen type, and testing protocols, while estimating the influence of reproductive status on viral detection in female bats. Our models revealed that late pregnancy had a negative effect on viral shedding across multiple data subsets, while lactation had a weaker influence that was inconsistent across data subsets. These results are unusual for mammalian hosts, but given recent findings that bats may have high individual viral loads and population-level prevalence due to dampening of antiviral immunity, we propose that it would be evolutionarily advantageous for pregnancy to either not further reduce immunity or actually increase the immune response, reducing viral load, shedding, and risk of fetal infection. This novel hypothesis would be valuable to test given its potential to help monitor, predict, and manage viral spillover risk from bats.

6.
Cell Host Microbe ; 31(12): 1961-1973.e11, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37989312

ABSTRACT

Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rhinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad angiotensin-converting enzyme 2 (ACE2) usage and that receptor-binding domain (RBD) mutations further expand receptor promiscuity and enable human ACE2 utilization. We determine a cryo-EM structure of the PRD-0038 RBD bound to Rhinolophus alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryo-EM and monoclonal antibody reactivity reveals its distinct antigenicity relative to SARS-CoV-2 and identifies PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicits greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared with SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.


Subject(s)
Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/genetics , Tropism , Spike Glycoprotein, Coronavirus , Antibodies, Viral
7.
Global Health ; 19(1): 82, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940941

ABSTRACT

BACKGROUND: Emerging infectious diseases of zoonotic origin present a critical threat to global population health. As accelerating globalisation makes epidemics and pandemics more difficult to contain, there is a need for effective preventive interventions that reduce the risk of zoonotic spillover events. Public policies can play a key role in preventing spillover events. The aim of this review is to identify and describe evaluations of public policies that target the determinants of zoonotic spillover. Our approach is informed by a One Health perspective, acknowledging the inter-connectedness of human, animal and environmental health. METHODS: In this systematic scoping review, we searched Medline, SCOPUS, Web of Science and Global Health in May 2021 using search terms combining animal health and the animal-human interface, public policy, prevention and zoonoses. We screened titles and abstracts, extracted data and reported our process in line with PRISMA-ScR guidelines. We also searched relevant organisations' websites for evaluations published in the grey literature. All evaluations of public policies aiming to prevent zoonotic spillover events were eligible for inclusion. We summarised key data from each study, mapping policies along the spillover pathway. RESULTS: Our review found 95 publications evaluating 111 policies. We identified 27 unique policy options including habitat protection; trade regulations; border control and quarantine procedures; farm and market biosecurity measures; public information campaigns; and vaccination programmes, as well as multi-component programmes. These were implemented by many sectors, highlighting the cross-sectoral nature of zoonotic spillover prevention. Reports emphasised the importance of surveillance data in both guiding prevention efforts and enabling policy evaluation, as well as the importance of industry and private sector actors in implementing many of these policies. Thoughtful engagement with stakeholders ranging from subsistence hunters and farmers to industrial animal agriculture operations is key for policy success in this area. CONCLUSION: This review outlines the state of the evaluative evidence around policies to prevent zoonotic spillover in order to guide policy decision-making and focus research efforts. Since we found that most of the existing policy evaluations target 'downstream' determinants, additional research could focus on evaluating policies targeting 'upstream' determinants of zoonotic spillover, such as land use change, and policies impacting infection intensity and pathogen shedding in animal populations, such as those targeting animal welfare.


Subject(s)
Communicable Diseases, Emerging , Zoonoses , Animals , Humans , Zoonoses/prevention & control , Zoonoses/epidemiology , Communicable Diseases, Emerging/prevention & control , Global Health , Policy Making , Policy
8.
One Health ; 17: 100644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38024265

ABSTRACT

Live bird markets (LBMs) are critical for poultry trade in many developing countries that are regarded as hotspots for the prevalence and contamination of avian influenza viruses (AIV). Therefore, we conducted weekly longitudinal environmental surveillance in LBMs to determine annual cyclic patterns of AIV subtypes, environmental risk zones, and the role of climatic factors on the AIV presence and persistence in the environment of LBM in Bangladesh. From January 2018 to March 2020, we collected weekly fecal and offal swab samples from each LBM and tested using rRT-PCR for the M gene and subtyped for H5, H7, and H9. We used Generalized Estimating Equations (GEE) approaches to account for repeated observations over time to correlate the AIV prevalence and potential risk factors and the negative binomial and Poisson model to investigate the role of climatic factors on environmental contamination of AIV at the LBM. Over the study period, 37.8% of samples tested AIV positive, 18.8% for A/H5, and A/H9 was, for 15.4%. We found the circulation of H5, H9, and co-circulation of H5 and H9 in the environmental surfaces year-round. The Generalized Estimating Equations (GEE) model reveals a distinct seasonal pattern in transmitting AIV and H5. Specifically, certain summer months exhibited a substantial reduction of risk up to 70-90% and 93-94% for AIV and H5 contamination, respectively. The slaughtering zone showed a significantly higher risk of contamination with H5, with a three-fold increase in risk compared to bird-holding zones. From the negative binomial model, we found that climatic factors like temperature and relative humidity were also significantly associated with weekly AIV circulation. An increase in temperature and relative humidity decreases the risk of AIV circulation. Our study underscores the significance of longitudinal environmental surveillance for identifying potential risk zones to detect H5 and H9 virus co-circulation and seasonal transmission, as well as the imperative for immediate interventions to reduce AIV at LBMs in Bangladesh. We recommend adopting a One Health approach to integrated AIV surveillance across animal, human, and environmental interfaces in order to prevent the epidemic and pandemic of AIV.

9.
Heliyon ; 9(9): e19682, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809375

ABSTRACT

Nipah virus, which originated in South-East Asia is a bat-borne virus causing Nipah virus infection in humans. This emerging infectious disease has become one of the most alarming threats to public health due to its periodic outbreaks and extremely high mortality rate. We establish and study a novel SIRS model to describe the dynamics of Nipah virus transmission, considering human-to-human as well as zoonotic transmission from bats and pigs as well as loss of immunity. We determine the basic reproduction number which can be obtained as the maximum of three threshold parameters corresponding to various ways of disease transmission and determining in which of the three species the disease becomes endemic. By constructing appropriate Lyapunov functions, we completely describe the global dynamics of our model depending on these threshold parameters. Numerical simulations are shown to support our theoretical results and assess the effect of various intervention measures.

10.
Proc Natl Acad Sci U S A ; 120(33): e2302661120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549288

ABSTRACT

Polycystic Echinococcosis (PE), a neglected life-threatening zoonotic disease caused by the cestode Echinococcus vogeli, is endemic in the Amazon. Despite being treatable, PE reaches a case fatality rate of around 29% due to late or missed diagnosis. PE is sustained in Pan-Amazonia by a complex sylvatic cycle. The hunting of its infected intermediate hosts (especially the lowland paca Cuniculus paca) enables the disease to further transmit to humans, when their viscera are improperly handled. In this study, we compiled a unique dataset of host occurrences (~86000 records) and disease infections (~400 cases) covering the entire Pan-Amazonia and employed different modeling and statistical tools to unveil the spatial distribution of PE's key animal hosts. Subsequently, we derived a set of ecological, environmental, climatic, and hunting covariates that potentially act as transmission risk factors and used them as predictors of two independent Maximum Entropy models, one for animal infections and one for human infections. Our findings indicate that temperature stability promotes the sylvatic circulation of the disease. Additionally, we show how El Niño-Southern Oscillation (ENSO) extreme events disrupt hunting patterns throughout Pan-Amazonia, ultimately affecting the probability of spillover. In a scenario where climate extremes are projected to intensify, climate change at regional level appears to be indirectly driving the spillover of E. vogeli. These results hold substantial implications for a wide range of zoonoses acquired at the wildlife-human interface for which transmission is related to the manipulation and consumption of wild meat, underscoring the pressing need for enhanced awareness and intervention strategies.


Subject(s)
Echinococcosis , Echinococcus , Animals , Humans , Disease Hotspot , Echinococcosis/epidemiology , Zoonoses/epidemiology , Risk Factors , El Nino-Southern Oscillation
11.
One Health ; 16: 100547, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37363219

ABSTRACT

North Africa is home to more than 200 million people living across five developing economies (Egypt, Libya, Tunisia, Algeria, and Morocco) and two Spanish exclaves (Ceuta and Melilla), many of whom are impacted by ticks and tick-borne zoonoses. Populations in Europe are also increasingly vulnerable to North African ticks and tick-borne zoonoses due to a combination of climate change and the movement of ticks across the Mediterranean on migratory birds, human travellers, and trafficked wildlife. The human-biting ticks and tick-borne zoonoses in North Africa are reviewed along with their distribution in the region. We also assess present and future challenges associated with ticks and tick-borne zoonoses in North African and highlight opportunities for collaboration and coordination between governments in Europe and North Africa to address public health challenges posed by North African ticks and tick-borne zoonoses.

12.
DNA Cell Biol ; 42(6): 289-304, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37015068

ABSTRACT

Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.


Subject(s)
Oncolytic Viruses , Orthoreovirus, Mammalian , Orthoreovirus , Reoviridae , Animals , Humans , Orthoreovirus/genetics , Reoviridae/genetics , Orthoreovirus, Mammalian/genetics , Oncolytic Viruses/genetics , Mammals
14.
Bull Math Biol ; 85(4): 30, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36892680

ABSTRACT

Tick-borne diseases are an increasing global public health concern due to an expanding geographical range and increase in abundance of tick-borne infectious agents. A potential explanation for the rising impact of tick-borne diseases is an increase in tick abundance which may be linked to an increase in density of the hosts on which they feed. In this study, we develop a model framework to understand the link between host density, tick demography and tick-borne pathogen epidemiology. Our model links the development of specific tick stages to the specific hosts on which they feed. We show that host community composition and host density have an impact on tick population dynamics and that this has a consequent impact on host and tick epidemiological dynamics. A key result is that our model framework can exhibit variation in host infection prevalence for a fixed density of one host type due to changes in density of other host types that support different tick life stages. Our findings suggest that host community composition may play a crucial role in explaining the variation in prevalence of tick-borne infections in hosts observed in the field.


Subject(s)
Ixodes , Tick-Borne Diseases , Animals , Humans , Models, Biological , Mathematical Concepts , Tick-Borne Diseases/epidemiology
15.
BMC Microbiol ; 23(1): 43, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36803552

ABSTRACT

BACKGROUND: Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS: In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS: This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Animals , Cattle , Female , Anti-Bacterial Agents/pharmacology , Caco-2 Cells , Caenorhabditis elegans , Canada , Drug Resistance, Microbial , Genomics , Mastitis, Bovine/microbiology , Microbial Sensitivity Tests , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcus aureus
16.
Infection ; 51(1): 253-259, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35986880

ABSTRACT

PURPOSE: The risk of secondary zoonotic transmission of SARS-CoV-2 from pet animals remains unclear. Here, we report on a 44 year old Caucasian male presenting to our clinic with COVID-19 pneumonia, who reported that his dog displayed respiratory signs shortly prior to his infection. The dog tested real-time-PCR (RT-PCR) positive for SARS-CoV-2 RNA and the timeline of events suggested a transmission from the dog to the patient. METHODS: RT-PCR and serological assays were used to confirm SARS-CoV-2 infection in the nasopharyngeal tract in the dog and the patient. We performed SARS-CoV-2-targeted amplicon-based next generation sequencing of respiratory samples from the dog and patient for sequence comparisons. RESULTS: SARS-CoV-2 infection of the dog was confirmed by three independent PCR-positive pharyngeal swabs and subsequent seroconversion. Sequence analysis identified two separate SARS-CoV-2 lineages in the canine and the patient's respiratory samples. The timeline strongly suggested dog-to-human transmission, yet due to the genetic distance of the canine and the patient's samples paired-transmission was highly unlikely. CONCLUSION: The results of this case support current knowledge about the low risk of secondary zoonotic dog-to-human transmissions of SARS-CoV-2 and emphasizes the strength of genomic sequencing in deciphering viral transmission chains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Dogs , Male , Animals , Adult , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction
17.
Elife ; 112022 09 16.
Article in English | MEDLINE | ID: mdl-36111781

ABSTRACT

Background: Zoonotic spillover from animal reservoirs is responsible for a significant global public health burden, but the processes that promote spillover events are poorly understood in complex urban settings. Endemic transmission of Leptospira, the agent of leptospirosis, in marginalised urban communities occurs through human exposure to an environment contaminated by bacteria shed in the urine of the rat reservoir. However, it is unclear to what extent transmission is driven by variation in the distribution of rats or by the dispersal of bacteria in rainwater runoff and overflow from open sewer systems. Methods: We conducted an eco-epidemiological study in a high-risk community in Salvador, Brazil, by prospectively following a cohort of 1401 residents to ascertain serological evidence for leptospiral infections. A concurrent rat ecology study was used to collect information on the fine-scale spatial distribution of 'rattiness', our proxy for rat abundance and exposure of interest. We developed and applied a novel geostatistical framework for joint spatial modelling of multiple indices of disease reservoir abundance and human infection risk. Results: The estimated infection rate was 51.4 (95%CI 40.4, 64.2) infections per 1000 follow-up events. Infection risk increased with age until 30 years of age and was associated with male gender. Rattiness was positively associated with infection risk for residents across the entire study area, but this effect was stronger in higher elevation areas (OR 3.27 95% CI 1.68, 19.07) than in lower elevation areas (OR 1.14 95% CI 1.05, 1.53). Conclusions: These findings suggest that, while frequent flooding events may disperse bacteria in regions of low elevation, environmental risk in higher elevation areas is more localised and directly driven by the distribution of local rat populations. The modelling framework developed may have broad applications in delineating complex animal-environment-human interactions during zoonotic spillover and identifying opportunities for public health intervention. Funding: This work was supported by the Oswaldo Cruz Foundation and Secretariat of Health Surveillance, Brazilian Ministry of Health, the National Institutes of Health of the United States (grant numbers F31 AI114245, R01 AI052473, U01 AI088752, R01 TW009504 and R25 TW009338); the Wellcome Trust (102330/Z/13/Z), and by the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB/JCB0020/2016). MTE was supported by a Medical Research UK doctorate studentship. FBS participated in this study under a FAPESB doctorate scholarship.


Subject(s)
Leptospirosis , Poverty Areas , Adult , Animals , Brazil/epidemiology , Cohort Studies , Epidemiologic Studies , Geography , Humans , Leptospirosis/epidemiology , Male , Rats , Zoonoses/epidemiology
18.
J Family Med Prim Care ; 11(5): 1604-1609, 2022 May.
Article in English | MEDLINE | ID: mdl-35800558

ABSTRACT

This critical narrative review is intended to emphasize the comprehensive ecological issues related to the evolution of the novel coronavirus, the environmental factors associated with the disease progress, and the impact the pandemic is having on the environment. Approximately 60% of the emerging infectious disease of the last century (including deadly viruses like HIV, Ebola, Influenza, coronavirus strains like SARS, MERS) are linked to zoonotic spillover. Therefore, to escape the emergence of newer cross-species infections, proper precautionary measures should be taken. Every country has specific rules to deal with the biomedical waste produced in hospitals. But the COVID-19 pandemic has posed a unique global challenge due to the overwhelming amount of biomedical waste generated from dedicated COVID hospitals, diagnostic facilities, quarantine centers, and home quarantine facilities. Moreover, inappropriate disposal of masks by the general public may contaminate the environment turning it into a potential health hazard. Therefore, strict adherence to Biomedical Waste Management Guidelines for proper disposal of masks and other medical waste by all concerned is a must. Lockdown has brought about tremendous improvement in conditions of the world's atmosphere, hydrosphere, and biosphere. Dramatic improvement in air quality index, decrease in water, and noise pollution are some of the positive aspects of lockdown. However, these effects are temporary. But these teach an important lesson to the world to take some permanent measures to bring down greenhouse gases and other toxic emissions. Some harmful effects of lockdown are illegal deforestation, wildlife trafficking, encroachment of reserved areas etc.

19.
R Soc Open Sci ; 9(6): 220582, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35706674

ABSTRACT

Deforestation alters wildlife communities and modifies human-wildlife interactions, often increasing zoonotic spillover potential. When deforested land reverts to forest, species composition differences between primary and regenerating (secondary) forest could alter spillover risk trajectory. We develop a mathematical model of land-use change, where habitats differ in their relative spillover risk, to understand how land reversion influences spillover risk. We apply this framework to scenarios where spillover risk is higher in deforested land than mature forest, reflecting higher relative abundance of highly competent species and/or increased human-wildlife encounters, and where regenerating forest has either very low or high spillover risk. We find the forest regeneration rate, the spillover risk of regenerating forest relative to deforested land, and how rapidly regenerating forest regains attributes of mature forest determine landscape-level spillover risk. When regenerating forest has a much lower spillover risk than deforested land, reversion lowers cumulative spillover risk, but instaneous spillover risk peaks earlier. However, when spillover risk is high in regenerating and cleared habitats, landscape-level spillover risk remains high, especially when cleared land is rapidly abandoned then slowly regenerates to mature forest. These results suggest that proactive wildlife management and awareness of human exposure risk in regenerating forests could be important tools for spillover mitigation.

20.
Microorganisms ; 10(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744747

ABSTRACT

Humans continue to encroach on the habitats of wild animals, potentially bringing different species into contact that would not typically encounter each other under natural circumstances, and forcing them into stressful, suboptimal conditions. Stressors from unsustainable human land use changes are suspected to dramatically exacerbate the probability of zoonotic spillover of pathogens from their natural reservoir hosts to humans, both by increasing viral load (and shedding) and the interface between wildlife with livestock, pets and humans. Given their known role as reservoir hosts, bats continue to be investigated for their possible role as the origins of many viral outbreaks. However, the participation of bat-associated ectoparasites in the spread of potential pathogens requires further work to establish. Here, we conducted a comprehensive review of viruses, viral genes and other viral sequences obtained from bat ectoparasites from studies over the last four decades. This review summarizes research findings of the seven virus families in which these studies have been performed, including Paramyxoviridae, Reoviridae, Flaviviridae, Peribunyaviridae, Nairoviridae, Rhabdoviridae and Filoviridae. We highlight that bat ectoparasites, including dipterans and ticks, are often found to have medically important viruses and may have a role in the maintenance of these pathogens within bat populations.

SELECTION OF CITATIONS
SEARCH DETAIL