Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.778.806
Filter
1.
Goiânia; SES-GO; jul 2024. 20 p. quad, map, fig.(Boletim epidemiológico: monitoramento dos casos de arboviroses em Goiás, 3, 5).
Monography in Portuguese | LILACS, CONASS, SES-GO | ID: biblio-1561817

ABSTRACT

As arboviroses transmitidas pelo mosquito Aedes aegypt são um dos principais problemas de saúde pública no Estado de Goiás. O boletim epidemiológico das arboiross tem o objetivo de apresentar a situação epidemiológica dos casos no estado, utilizando como fonte de dados os registros de casos suspeitos e confirmados ocorridos nos últimos anos, disponíveis no SINan Online e SINAN Net também são apresentados dados relativos à síndrome congênita associada à infecção peli Zika vírus, disponíveis no Sistema de Registro de Eventos em Saúde Pública (RESP) - Microcefalias


Arboviruses transmitted by the Aedes aegypt mosquito are one of the main public health problems in the State of Goiás. The arboiross epidemiological bulletin aims to present the epidemiological situation of cases in the state, using records of suspected and confirmed cases as a data source. occurred in recent years, available on SINan Online and SINAN Net, data relating to congenital syndrome associated with Zika virus infection, available on the Public Health Event Registration System (RESP) - Microcephaly, is also presented


Subject(s)
Humans , Arbovirus Infections/epidemiology , Arbovirus Infections/diagnosis , Arbovirus Infections/drug therapy , Dengue/mortality , Dengue/epidemiology , Chikungunya Fever/epidemiology , Zika Virus Infection/epidemiology
2.
J Pharm Biomed Anal ; 248: 116326, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959756

ABSTRACT

Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotic therapy, characterized by intestinal inflammation which reduces the quality of life of patients. Xianglian Pill (XLP) has long been used to treat abdominal pain, diarrhea, bacillary dysentery and enteritis. Studies found that XLP has curative effect on AAD; however, the chemical constituents and mechanism of XLP have not been fully elucidated because of the lack of in vitro and in vivo studies. In this study, ultra-high performance liquid chromatography mass spectrometry method (UPLC-Q-Exactive-Orbitrap-HRMS) was used to examine the components of the XLP. Then, the binding between active compounds and the key targets was studied using network pharmacology and molecular docking. A comparative tissue distribution study was established for the simultaneous determination of the 10 active components in healthy and AAD mouse models. Forty-six components were characterized from XLP. According to the network pharmacology degree value, a prediction was made that encompassed 42 components and 14 core targets, which were intricately involved in crucial biological pathways, such as the AGE-RAGE signaling, cellular senescence, and MAPK signaling. Tissue distribution analysis showed that the 10 components were widely distributed in the heart, liver, spleen, lungs, kidneys, small intestine, and large intestine of mice, with varying concentrations in healthy and AAD mice. Molecular docking analysis also indicated that the active compounds in the tissue distribution could bind tightly to key targets of network pharmacological studies. This study provides a reference for further investigations of the relationships between the chemical components and pharmacological activities of XLP.


Subject(s)
Anti-Bacterial Agents , Diarrhea , Disease Models, Animal , Drugs, Chinese Herbal , Molecular Docking Simulation , Animals , Mice , Diarrhea/chemically induced , Diarrhea/drug therapy , Male , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Tissue Distribution , Network Pharmacology/methods
3.
J Pharm Biomed Anal ; 248: 116320, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959758

ABSTRACT

Diethylnitrosamine (DEN) was applied to create the primary liver cancer (PLC) animal model. In the study, the normal group, model group, cyclophosphamide (CTX) group, Cortex Juglandis Mandshuricae (CJM) extract group, myricetin group and myricitrin group were divided. LC-MS/MS technology was applied to determine the metabolites of liver tissue samples from different locations (nodular and non-nodular parts of liver tissue) in each group of rats. Through metabolomics research, the connection and difference of anti-PLC induced by the CJM extract, myricetin and myricitrin was analyzed. The surface of the liver tissues of rats in the model group was rough, dimly colored, inelastic, on which there were scattered gray white cancer nodules and blood stasis points. The number of cancer nodules was significantly reduced, and the degree of cell malignancy was low, but there were some inflammatory cell infiltrations, necrosis area and karyokinesis in the CJM extract group, myricetin group, myricitrin group and CTX group. The result of metabolic research indicated that 45 potential biomarkers of the PLC were found, as gamma-aminoisobutyrate, taurochenodeoxycholate, xanthurenic acid, etc. There were 22 differential metabolites in the CTX group, 16 differential metabolites in the CJM extract group, 14 differential metabolites in the myricetin group, 14 differential metabolites in the myricitrin group.


Subject(s)
Flavonoids , Metabolomics , Tandem Mass Spectrometry , Animals , Metabolomics/methods , Tandem Mass Spectrometry/methods , Rats , Male , Flavonoids/analysis , Flavonoids/pharmacology , Chromatography, Liquid/methods , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Diethylnitrosamine/toxicity , Liquid Chromatography-Mass Spectrometry
4.
Nature ; 631(8021): 686-693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961287

ABSTRACT

The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.


Subject(s)
Cryoelectron Microscopy , Morphine , Naloxone , Receptors, Opioid, mu , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Naloxone/pharmacology , Animals , Mice , Allosteric Regulation/drug effects , Humans , Morphine/pharmacology , Morphine/chemistry , Male , Models, Molecular , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Analgesics, Opioid/metabolism , Narcotic Antagonists/pharmacology , Narcotic Antagonists/chemistry , Ligands , Female , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Opiate Overdose/drug therapy , Kinetics , Fentanyl/chemistry , Fentanyl/pharmacology , Fentanyl/analogs & derivatives
5.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963051

ABSTRACT

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin­α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin­α on lipid metabolism, Salusin­α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi­quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin­α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin­α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein­1c, fatty acid synthase and acetyl­CoA carboxylase. The addition of Compound C abrogated the Salusin­α­mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin­α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin­α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Lipogenesis , Protein Serine-Threonine Kinases , Signal Transduction , Humans , Lipogenesis/genetics , Lipogenesis/drug effects , AMP-Activated Protein Kinases/metabolism , Hep G2 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , AMP-Activated Protein Kinase Kinases/genetics , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/genetics , Lipid Metabolism Disorders/drug therapy , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
6.
Target Oncol ; 19(4): 483-494, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963655

ABSTRACT

The treatment landscape for patients with advanced urothelial carcinoma continues to evolve. Enfortumab vedotin plus pembrolizumab has received Food and Drug Administration approval based on recent phase 3 trial data showing superior efficacy compared with first-line platinum-based chemotherapy; however, its distinct toxicity profile may make it less suitable for some patients, and availability in some countries may be limited by cost considerations. Consequently, platinum-based chemotherapy is expected to remain an important first-line treatment option. Choice of platinum regimen (cisplatin- or carboplatin-based) is informed by assessment of clinical characteristics, including performance status, kidney function, and presence of peripheral neuropathy or heart failure. For patients without disease progression after completing platinum-based chemotherapy, avelumab first-line maintenance treatment is recommended by international guidelines. For patients who have disease progression, pembrolizumab is the preferred approach. Additionally, following results from a recent phase 3 trial, nivolumab plus cisplatin-based chemotherapy has also received Food and Drug Administration approval and is an additional first-line treatment option for cisplatin-eligible patients. Later-line options for patients with advanced urothelial carcinoma, depending on prior treatment, may include enfortumab vedotin, erdafitinib (for patients with FGFR2/3 mutations or fusions/rearrangements), sacituzumab govitecan, and platinum rechallenge. For the small proportion of patients ineligible for any platinum-based chemotherapy (i.e., unsuitable for cisplatin or carboplatin), immune checkpoint inhibitor monotherapy with pembrolizumab or atezolizumab is a first-line treatment option, although approved agents vary between countries. In summary, this podcast discusses recent developments in the treatment landscape for advanced urothelial carcinoma, eligibility for platinum-based chemotherapy, potential first-line treatment options, and treatment sequencing. Supplementary file1 (MP4 246907 KB).


Subject(s)
Carcinoma, Transitional Cell , Humans , Carcinoma, Transitional Cell/drug therapy , Neoplasm Metastasis , Urinary Bladder Neoplasms/drug therapy , Urologic Neoplasms/drug therapy
7.
J Pharm Biomed Anal ; 248: 116322, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38964167

ABSTRACT

Cystic fibrosis is one of the most common genetic diseases among caucasian population. This disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding for the CFTR protein. Lumacaftor, elexacaftor, tezacaftor, and ivacaftor were currently used as the treatment to Cystic fibrosis. In this study, we describe a new method for the simultaneous quantification of four molecules: lumacaftor, elexacaftor, tezacaftor, and ivacaftor, alongside two metabolites of ivacaftor, specifically hexyl-methyl ivacaftor and ivacaftor carboxylate by liquid chromatography-tandem mass spectrometry. This method holds significant utility for therapeutic drug monitoring and the optimization of treatments related to CFTR modulators. Molecules were extracted from 100 µL of plasma by a simple method of protein precipitation using acetonitrile. Following extraction, chromatographic separation was carried out by reverse chromatography on a C18 analytical column, using a gradient elution of water (0.05 % formic acid, V/V) and acetonitrile (0.05 % formic acid, V/V). The run time was 7 minutes at a flow rate of 0.5 mL/min. After separation, molecules were detected by electrospray ionization on a Xevo TQD triple-quadrupole-mass-spectrometer (Waters®, Milford, USA). The calibration range were: 0.053-20.000 mg/L for elexacaftor, tezacaftor and lumacaftor, 0.075-14.000 mg/L for ivacaftor, and 0.024-6.500 mg/L for hexyl-methyl ivacaftor and ivacaftor carboxylate. The proposed method underwent throughout validation demonstrating satisfactory precision (inter- and intra-day coefficients of variation less than 14.3 %) and a good accuracy (inter- and intra-day bias ranging between -13.7 % and 14.7 %) for all the analytes. The presented method for the simultaneous quantification of CFTR modulators and their metabolites in human plasma has undergone rigorous validation process yielding good results including strong precision and accuracy for all analytes. This method has been effectively used in routine analytical analysis and clinical investigations within our laboratory.


Subject(s)
Aminophenols , Aminopyridines , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Indoles , Quinolones , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Humans , Quinolones/blood , Quinolones/pharmacokinetics , Aminophenols/blood , Aminophenols/pharmacokinetics , Benzodioxoles/blood , Aminopyridines/blood , Aminopyridines/pharmacokinetics , Indoles/blood , Indoles/pharmacokinetics , Chromatography, Liquid/methods , Cystic Fibrosis/drug therapy , Cystic Fibrosis/blood , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Monitoring/methods , Reproducibility of Results , Pyrazoles/blood , Pyrazoles/pharmacokinetics , Pyrroles/blood , Pyrroles/pharmacokinetics , Liquid Chromatography-Mass Spectrometry , Pyridines , Pyrrolidines
8.
J Am Med Inform Assoc ; 31(8): 1693-1703, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38964369

ABSTRACT

OBJECTIVE: The aim of this project was to create time-aware, individual-level risk score models for adverse drug events related to multiple sclerosis disease-modifying therapy and to provide interpretable explanations for model prediction behavior. MATERIALS AND METHODS: We used temporal sequences of observational medical outcomes partnership common data model (OMOP CDM) concepts derived from an electronic health record as model features. Each concept was assigned an embedding representation that was learned from a graph convolution network trained on a knowledge graph (KG) of OMOP concept relationships. Concept embeddings were fed into long short-term memory networks for 1-year adverse event prediction following drug exposure. Finally, we implemented a novel extension of the local interpretable model agnostic explanation (LIME) method, knowledge graph LIME (KG-LIME) to leverage the KG and explain individual predictions of each model. RESULTS: For a set of 4859 patients, we found that our model was effective at predicting 32 out of 56 adverse event types (P < .05) when compared to demographics and past diagnosis as variables. We also assessed discrimination in the form of area under the curve (AUC = 0.77 ± 0.15) and area under the precision-recall curve (AUC-PR = 0.31 ± 0.27) and assessed calibration in the form of Brier score (BS = 0.04 ± 0.04). Additionally, KG-LIME generated interpretable literature-validated lists of relevant medical concepts used for prediction. DISCUSSION AND CONCLUSION: Many of our risk models demonstrated high calibration and discrimination for adverse event prediction. Furthermore, our novel KG-LIME method was able to utilize the knowledge graph to highlight concepts that were important to prediction. Future work will be required to further explore the temporal window of adverse event occurrence beyond the generic 1-year window used here, particularly for short-term inpatient adverse events and long-term severe adverse events.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Risk Assessment , Electronic Health Records , Neural Networks, Computer , Female , Male , Middle Aged , Adult
10.
Assay Drug Dev Technol ; 22(5): 217-228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967602

ABSTRACT

Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Drug Resistance, Neoplasm , Fluorouracil , MicroRNAs , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Fluorouracil/pharmacology , Drug Resistance, Neoplasm/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Cell Proliferation/drug effects , Apoptosis/drug effects , Dose-Response Relationship, Drug , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor
11.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968122

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Subject(s)
Single-Cell Analysis , Male , Humans , Single-Cell Analysis/methods , Animals , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Antigens, Surface/metabolism , Antigens, Surface/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/drug therapy , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy
12.
Eur J Obstet Gynecol Reprod Biol ; 299: 322-328, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968783

ABSTRACT

BACKGROUND: Tubal ectopic pregnancy (EP) is a life-threatening condition, especially if undiagnosed or misdiagnosed, tipically in low income countries and/or where women have limited access to health care. The current management protocol of tubal EP consists of either surgical management, or medical management with methotrexate. Recent studies, while few, have suggested that letrozole, an aromatase inhibitor, may play a role in the medical treatment of tubal EP. OBJECTIVES: To evaluate the effectiveness of letrozole alone in the medical treatment of tubal EP. SEARCH STRATEGY: Electronic databases were searched until 31 December 2023. SELECTION CRITERIA: Retrospective or prospective studies reporting the treatment of tubal EP with letrozole alone were considered eligible for inclusion. DATA COLLECTION AND ANALYSIS: Pooled results were expressed as OR with 95 %CI. Heterogeneity was assessed using Higgins I2. Subgroup analysis was performed to compare outcomes according to time after intervention. Subgroup differences were checked through χ2 test. RESULTS: A total of 152 patients were included. Seventy-nine patients (51.97 %) were treated with letrozole, 39 patients (16.54 %) with methotrexate, and 34 patients (31.49 %) underwent surgical treatment. Pooled data analysis supports the consistency of the effect of letrozole in reducing ß-hCG over time at a comparable rate among studies, and that treatment with letrozole is superior to surgery and has the same efficacy as methotrexate. However, all the included studies were judged at high risk of bias in terms of study design, sample representativeness, and sampling technique. Furthermore, short and long term side effects were not reported in any of the included studies. CONCLUSIONS: Letrozole is a promising alternative to methotrexate and surgical therapy in the treatment of tubal EP. Although this meta-analysis suggests efficacy and low hazard of the drug and encourages its application, the data available today remain extremely sparse, which weakens any claims that can be made, and is not sufficient to assert that letrozole is safe and effective in the treatment of EPs. There is an absolute need for randomized studies with accurate patient selection, fixed doses, large sample sizes, and reporting of short- and long-term side effects to refute or confirm this assumption.


Subject(s)
Aromatase Inhibitors , Letrozole , Methotrexate , Pregnancy, Tubal , Humans , Letrozole/therapeutic use , Female , Pregnancy , Methotrexate/therapeutic use , Aromatase Inhibitors/therapeutic use , Pregnancy, Tubal/drug therapy , Pregnancy, Tubal/surgery , Abortifacient Agents, Nonsteroidal/therapeutic use , Treatment Outcome
13.
J Theor Biol ; 592: 111895, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-38969168

ABSTRACT

In HIV drug therapy, the high variability of CD4+ T cells and viral loads brings uncertainty to the determination of treatment options and the ultimate treatment efficacy, which may be the result of poor drug adherence. We develop a dynamical HIV model coupled with pharmacokinetics, driven by drug adherence as a random variable, and systematically study the uncertainty quantification, aiming to construct the relationship between drug adherence and therapeutic effect. Using adaptive generalized polynomial chaos, stochastic solutions are approximated as polynomials of input random parameters. Numerical simulations show that results obtained by this method are in good agreement, compared with results obtained through Monte Carlo sampling, which helps to verify the accuracy of approximation. Based on these expansions, we calculate the time-dependent probability density functions of this system theoretically and numerically. To verify the applicability of this model, we fit clinical data of four HIV patients, and the goodness of fit results demonstrate that the proposed random model depicts the dynamics of HIV well. Sensitivity analyses based on the Sobol index indicate that the randomness of drug effect has the greatest impact on both CD4+ T cells and viral loads, compared to random initial values, which further highlights the significance of drug adherence. The proposed models and qualitative analysis results, along with monitoring CD4+ T cells counts and viral loads, evaluate the influence of drug adherence on HIV treatment, which helps to better interpret clinical data with fluctuations and makes several contributions to the design of individual-based optimal antiretroviral strategies.


Subject(s)
Anti-HIV Agents , HIV Infections , Medication Adherence , Viral Load , Humans , HIV Infections/drug therapy , HIV Infections/virology , Anti-HIV Agents/therapeutic use , Uncertainty , Models, Biological , CD4-Positive T-Lymphocytes/virology , Monte Carlo Method , Stochastic Processes , Computer Simulation
14.
J Pharm Biomed Anal ; 248: 116338, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38971092

ABSTRACT

Tetrahydroxy stilbene glucoside (TSG) is a water-soluble natural product that has shown potential in treating atherosclerosis (AS). However, its underlying mechanisms remain unclear. Here, we demonstrate that an 8-week TSG treatment (100 mg/kg/d) significantly reduces atherosclerotic lesions and alleviates dyslipidemia symptoms in ApoE-/- mice. 1H nuclear magnetic resonance metabolomic analysis reveals differences in both lipid components and water-soluble metabolites in the livers of AS mice compared to control groups, and TSG treatment shifts the metabolic profiles of AS mice towards a normal state. At the transcriptional level, TSG significantly restores the expression of fatty acid metabolism-related genes (Srepb-1c, Fasn, Scd1, Gpat1, Dgat1, Pparα and Cpt1α), and regulates the expression levels of disturbed cholesterol metabolism-related genes (Srebp2, Hmgcr, Ldlr, Acat1, Acat2 and Cyp7a1) associated with lipid metabolism. Furthermore, at the cellular level, TSG remarkably polarizes aortic macrophages to their M2 phenotype. Our data demonstrate that TSG alleviates arthrosclerosis by dual-targeting to hepatic lipid metabolism and aortic M2 macrophage polarization in ApoE-/- mice, with significant implications for translational medicine and the treatment of AS using natural products.


Subject(s)
Aorta , Apolipoproteins E , Atherosclerosis , Glucosides , Lipid Metabolism , Liver , Macrophages , Stilbenes , Animals , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Mice , Glucosides/pharmacology , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Aorta/drug effects , Aorta/metabolism , Stilbenes/pharmacology , Apolipoproteins E/genetics , Male , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Mice, Knockout
15.
Stem Cell Res Ther ; 15(1): 200, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971770

ABSTRACT

BACKGROUND: Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS: Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-ß (Aß) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS: ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aß-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αß toxicity and prevent synapse loss after Aß treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aß toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS: Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Neurogenesis , Neuroprotective Agents , Receptor, trkB , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Neurogenesis/drug effects , Receptor, trkB/metabolism , Receptor, trkB/agonists , Receptor, trkB/genetics , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neuroprotective Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Amyloid beta-Peptides/metabolism , Hippocampus/drug effects , Hippocampus/metabolism
16.
Nat Commun ; 15(1): 5670, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971872

ABSTRACT

Targeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions. By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate. The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency.


Subject(s)
CD24 Antigen , CD47 Antigen , Macrophages , Peptides , Phagocytosis , Signal Transduction , CD47 Antigen/metabolism , CD47 Antigen/immunology , Animals , Macrophages/immunology , Macrophages/drug effects , Mice , Phagocytosis/drug effects , CD24 Antigen/metabolism , CD24 Antigen/immunology , Female , Humans , Cell Line, Tumor , Peptides/pharmacology , Signal Transduction/drug effects , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Immunotherapy/methods , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Antibodies/immunology , Antibodies/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors
19.
Clin Exp Rheumatol ; 42(7): 1387-1397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976290

ABSTRACT

OBJECTIVES: The imbalance between apoptosis and proliferation in fibroblast-like synoviocytes (FLSs) plays a key role in the pathogenesis of rheumatoid arthritis (RA). This study aims to investigate the potential of all-trans retinoic acid (ATRA) as a supplementary therapeutic agent alongside methotrexate (MTX) for RA, by examining its ability to inhibit synovial cell proliferation and enhance apoptosis through the ROS-JNK signalling pathway. METHODS: The viability, apoptosis, and autophagy levels of human rheumatoid arthritis fibroblast-like synovial cells (HFLS-RA) were evaluated, while ROS generation was measured through the DCFH-DA fluorescence microplate assay. Western blotting was used to analyse the expression levels of JNK signalling pathway-related proteins. To assess therapeutic potential in vivo, a collagen-induced arthritis (CIA) model was established in Wistar rats. RESULTS: Small doses of MTX did not significantly affect the viability of HFLS-RAs or induce apoptosis. However, when ATRA was added to the treatment, the therapy markedly inhibited cell proliferation and induced apoptosis and excessive autophagy. Mechanistically, ATRA activated the ROS/JNK signalling pathway in HFLS-RAs. ROS scavengers and JNK inhibitors significantly attenuated ATRA-induced apoptosis and autophagy. In vivo, the combination therapy demonstrated a remarkable enhancement of the anti-arthritic efficacy in CIA rats. CONCLUSIONS: The ability of ATRA to inhibit proliferation in RA FLSs through autophagy and apoptosis underscores its potential as a supplementary therapeutic agent alongside MTX for RA, particularly when compared to the limited impact of MTX on these processes. This combined strategy holds promise for enhancing therapeutic outcomes and warrants further investigation in the management of RA.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Cell Proliferation , Methotrexate , Rats, Wistar , Reactive Oxygen Species , Synoviocytes , Tretinoin , Tretinoin/pharmacology , Apoptosis/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Methotrexate/pharmacology , Autophagy/drug effects , Animals , Humans , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Reactive Oxygen Species/metabolism , Synoviocytes/drug effects , Synoviocytes/pathology , Synoviocytes/metabolism , Cell Proliferation/drug effects , Drug Therapy, Combination , Antirheumatic Agents/pharmacology , Synovial Membrane/drug effects , Synovial Membrane/pathology , Synovial Membrane/metabolism , Male , MAP Kinase Signaling System/drug effects , Rats , Cell Line
20.
Vet Parasitol ; 330: 110241, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981319

ABSTRACT

Changes to the faecal microbiota of horses associated with administration of anthelmintic drugs is poorly defined. This study included horses with cyathostomin infection where susceptibility and resistance to oxfendazole and abamectin was known. This study assessed the changes to the faecal microbiota associated with administration of two different anthelmintics in this population. Twenty-four adult horses were included. Faecal egg counts were performed on all horses prior to random allocation into abamectin (n=8), oxfendazole (n=8) or Control groups (n=8) and at Day 14 post treatment. Faecal samples were collected for microbiota analysis prior to anthelmintic administration and on Day 3 and Day 14. From each faecal sample, DNA was extracted prior to PCR amplification, next generation sequencing and analysis using QIIME2. Anthelmintic treatment was associated with changes in alpha diversity (p <0.05), with increased evenness and diversity at Day 14 and increased richness at Day 3 within the abamectin group. Differences in relative abundance of bacteria at the phyla, family and genus taxonomic levels occurred after treatment; indicating that the microbiota was altered with anthelmintic administration. The results support that anthelmintic administration and removal of cyathostomins from the large intestine of horses is associated with changes in the faecal microbiota. The results suggest that removal of cyathostomins is associated with greater differences in microbiota, compared to anthelmintic drug administration that is ineffective in reducing cyathostomin infection. Cyathostomin removal was supported by adequate reduction of faecal egg counts, determined by faecal egg count reduction testing.


Subject(s)
Anthelmintics , Feces , Horse Diseases , Ivermectin , Parasite Egg Count , Animals , Horses , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/administration & dosage , Feces/parasitology , Feces/microbiology , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/therapeutic use , Horse Diseases/drug therapy , Horse Diseases/parasitology , Horse Diseases/microbiology , Parasite Egg Count/veterinary , Female , Male , Microbiota/drug effects , Benzimidazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...