Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.032
Filter
1.
Acta Neuropathol Commun ; 12(1): 79, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773545

ABSTRACT

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Subject(s)
Mice, Inbred C57BL , Neuroprotective Agents , Niacinamide , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Niacinamide/pharmacology , Niacinamide/administration & dosage , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Mice , Administration, Oral , Intravitreal Injections , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/drug therapy , MPTP Poisoning/pathology , MPTP Poisoning/metabolism , MPTP Poisoning/drug therapy
2.
Mar Drugs ; 22(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786584

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Oligosaccharides , Animals , Gastrointestinal Microbiome/drug effects , Mice , Oligosaccharides/pharmacology , Male , Neuroprotective Agents/pharmacology , Dysbiosis/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Dopaminergic Neurons/drug effects , Parkinson Disease/drug therapy , Mannose/pharmacology , Mannose/chemistry , Mannose/analogs & derivatives , Glucuronates/pharmacology
3.
Mol Biol Rep ; 51(1): 669, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787465

ABSTRACT

BACKGROUND: The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS: An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS: OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS: This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Dopaminergic Neurons , Extracellular Signal-Regulated MAP Kinases , Orexins , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Animals , Mice , Phosphorylation/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Orexins/metabolism , Orexins/pharmacology , Humans , Male , Cell Line, Tumor , Disease Models, Animal , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , 1-Methyl-4-phenylpyridinium/toxicity , MAP Kinase Signaling System/drug effects
4.
Ecotoxicol Environ Saf ; 279: 116446, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772138

ABSTRACT

The discovery of MPTP, an industrial chemical and contaminant of illicit narcotics, which causes parkinsonism in humans, non-human primates and rodents, has led to environmental pollutants exposure being convicted as key candidate in Parkinson's disease (PD) pathogenesis. Though MPTP-induced mitochondrial dysfunction and neuroinflammation are mainly responsible for the causative issue of MPTP neurotoxicity, the underlying mechanism involved remains unclear. Here, we reveal a novel signaling mechanism of CDK5-USP30-MAVS regulating MPTP/MPP+ induced PD. MPP+ (the toxic metabolite of MPTP) treatment not only led to the increased protein levels of USP30 but also to mitophagy inhibition, mitochondrial dysfunction, and MAVS-mediated inflammation in BV2 microglial cells. Both mitophagy stimulation (Urolithin A administration) and USP30 knockdown relieved MAVS-mediated inflammation via restoring mitophagy and mitochondrial function in MPP+-induced cell model. Notably, MPTP/MPP+-induced CDK5 activation regulated USP30 phosphorylation at serine 216 to stabilize USP30. Moreover, CDK5-USP30 pathway promoted MAVS-mediated inflammation in MPTP/MPP+-induced PD model. Inhibition of CDK5 not only had a protective effect on MPP+-induced cell model of PD via suppressing the upregulation of USP30 and the activation of MAVS inflammation pathway in vitro, but also prevented neurodegeneration in vivo and alleviated movement impairment in MPTP mouse model of PD. Overall, our study reveal that CDK5 blocks mitophagy through phosphorylating USP30 and activates MAVS inflammation pathway in MPTP/MPP+-induced PD model, which suggests that CDK5-USP30-MAVS signaling pathway represents a valuable treatment strategy for PD induced by environmental neurotoxic pollutants in relation to MPTP.


Subject(s)
Cyclin-Dependent Kinase 5 , Inflammation , Mitophagy , Signal Transduction , Mitophagy/drug effects , Animals , Mice , Inflammation/chemically induced , Cyclin-Dependent Kinase 5/metabolism , Mice, Inbred C57BL , Male , Disease Models, Animal , Mitochondria/drug effects , Mitochondria/metabolism , Parkinson Disease , Cell Line , Adaptor Proteins, Signal Transducing/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
5.
Org Lett ; 26(22): 4672-4677, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38787765

ABSTRACT

Picrachinentins A-F (1-6, respectively), six novel cyclopeptide alkaloid-type burpitides (CPABs), were isolated and fully elucidated from the EtOH extract of the stems and leaves of Picrasma chinensis. Structurally, compounds 1-6 have a 14-membered paracyclophane ring system that was closed through an ether bond between the ß-hydroxy amino acid and tyrosine and modified with a 4,5-methylenedioxybenzoyloxy (MDBz, 3 and 5) or hexanoyl (Hexa, 1, 2, 4, and 6) group at the N-terminus. Interestingly, this is the first report on the isolation and characterization of CPABs from plants of the Simaroubaceae family. In addition, all compounds showed a neuroprotective effect against H2O2-damaged SH-SY5Y cells. Compound 1 was further investigated for its neuroprotective activities using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease animal model, and it dramatically improved MPTP-impaired motor behavioral performance. Biochemical analysis revealed compound 1 restored the tyrosine hydroxylase expression in the striatum of the MPTP-damaged mouse brain, which demonstrates its protective effect on dopaminergic neurons.


Subject(s)
Alkaloids , Neuroprotective Agents , Peptides, Cyclic , Picrasma , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/isolation & purification , Mice , Picrasma/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Plant Leaves/chemistry , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
6.
Exp Cell Res ; 439(1): 114088, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38744409

ABSTRACT

Neuroinflammation mediated by microglia plays an important role in the etiology of Parkinson's disease (PD). Rho family GTPase 3 (RND3) exerts anti-inflammatory effects and may act as a potential new inducer of neuroprotective phenotypes in microglia. However, whether RND3 can be used to regulate microglia activation or reduce neuroinflammation in PD remains elusive. The study investigated the microglia modulating effects and potential anti-inflammatory effects of RND3 in vivo and in vitro, using animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and cell models of BV-2 cells stimulated by LPS plus IFN-γ with or without RND3-overexpression. The results showed that RND3 was highly expressed in the MPTP-induced PD mouse model and BV-2 cells treated with LPS and IFN-γ. In vivo experiments confirmed that RND3 overexpression could modulate microglia phenotype and ameliorate MPTP-induced neuroinflammation through inhibiting activation of the NLRP3 inflammasome in substantia nigra pars compacta (SNpc). In vitro study showed that RND3 overexpression could attenuate the production of pro-inflammatory factors in BV2 cells stimulated by LPS and IFN-γ. Mechanistically, RND3 reduced the activation of the NLRP3 inflammasome upon LPS and IFN-γ stimulation. Taken together, these findings suggest that RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation.


Subject(s)
Inflammasomes , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Parkinson Disease , rho GTP-Binding Proteins , Animals , Microglia/metabolism , Microglia/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Inflammasomes/metabolism , Male , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Lipopolysaccharides/pharmacology , Disease Models, Animal , Cell Polarity , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Interferon-gamma/metabolism
7.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574977

ABSTRACT

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Subject(s)
Dopaminergic Neurons , Ferroptosis , Mitophagy , Parkinson Disease , Sodium-Potassium-Exchanging ATPase , Animals , Mitophagy/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Humans , Male , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Haploinsufficiency , Mice, Knockout
8.
Mol Biol Rep ; 51(1): 593, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683404

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common central nervous system neurodegenerative disease. Neuroinflammation is one of the significant neuropathological hallmarks. As a traditional Chinese medicine, Safranal exerts anti-inflammatory effects in various diseases, however, whether it plays a similar effect on PD is still unclear. The study was to investigate the effects and mechanism of Safranal on PD. METHODS: The PD mouse model was established by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine MPTP firstly. Next, the degree of muscle stiffness, neuromuscular function, motor retardation and motor coordination ability were examined by observing and testing mouse movement behavior. Immunofluorescence staining was used to observe the expression of tyrosine hydroxylase (TH). The dopamine (DA) content of the striatum was detected by High-performance liquid chromatography (HPLC). The expression of TH and NLRP3 inflammasome-related markers NLRP3, IL-1ß, and Capase-1 were detected by Real-time Polymerase Chain Reaction (qRT-PCR) and western blotting (WB) respectively. RESULTS: Through behavioral testing, Parkinson's mouse showed a higher muscle stiffness and neuromuscular tension, a more motor retardation and activity disorders, together with a worse motor coordination compared with sham group. Simultaneously, DA content and TH expression in the striatum were decreased. However, after using Safranal treatment, the above pathological symptoms of Parkinson's mouse all improved compared with Safranal untreated group, the DA content and TH expression were also increased to varying degrees. Surprisingly, it observed a suppression of NLRP3 inflammation in the striatum of Parkinson's mouse. CONCLUSIONS: Safranal played a neuroprotective effect on the Parkinson's disease and its mechanism was related to the inhibition of NLRP3 inflammasome activation.


Subject(s)
Cyclohexenes , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroprotective Agents , Parkinson Disease , Terpenes , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Terpenes/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Male , Cyclohexenes/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice, Inbred C57BL , Inflammation/drug therapy , Inflammation/metabolism , Dopamine/metabolism , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Interleukin-1beta/metabolism , Tyrosine 3-Monooxygenase/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Caspase 1/metabolism
9.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 100-106, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678620

ABSTRACT

Nervonic acid (NA) is a primary long-chain fatty acid and has been confirmed to have neuroprotective effects in neurologic diseases. Oxidative stress and neuronal damage are the main causes of Parkinson's disease (PD). This study mainly explored whether NA is involved in regulating oxidative stress and apoptosis in MPTP-induced mouse model and MPP-induced cell model. Through behavior tests, we proved that MPTP-induced motor dysfunction in mice was recovered by NA treatment. NA can reduce MPTP-induced neuronal damage, manifested by elevated levels of TH and dopamine, as well as decreased levels of α-syn. In the in vitro model, we observed from CCK8 assay and flow cytometry that the induction of MPP markedly suppressed cell activity and enhanced cell apoptosis, but these functions were all reversed by NA. Furthermore, NA administration reversed the increase in ROS production and MDA levels induced by MPTP or MPP, as well as the decrease in SOD levels, suggesting the antioxidant properties of NA in PD. Meanwhile, we confirmed that NA can regulate oxidative stress and neuronal damage by activating the MEK/ERK pathway. Overall, we concluded that NA could alleviate MPTP-induced PD via MEK/ERK pathway.


Subject(s)
MAP Kinase Signaling System , Mice, Inbred C57BL , Oxidative Stress , Animals , Male , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Apoptosis/drug effects , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/therapeutic use , MAP Kinase Signaling System/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy , Reactive Oxygen Species/metabolism
10.
Gene Ther ; 31(5-6): 324-334, 2024 May.
Article in English | MEDLINE | ID: mdl-38627469

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Subject(s)
Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor , Macrophages , Microglia , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Mice , Macrophages/metabolism , Microglia/metabolism , Male , Parkinson Disease/therapy , Parkinson Disease/metabolism , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Exosomes/metabolism , Substantia Nigra/metabolism
11.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 107-112, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678615

ABSTRACT

Parkinson's disease (PD) is defined as a progressive neurodegenerative disease in middle-aged and elderly people. The therapeutic effect of ω-3 PUFAs in several neurodegenerative diseases has been well recognized. Nevertheless, whether nutrition supplementing ω-3 PUFAs exerts a neuroprotective role in PD remains elusive. Bioinformatics revealed 2D chemical structural formula of three components. Mice received indicated treatment with saline, MPTP or ω-3 PUFAs according to grouping. Behavioral function of mice was measured through motor tests such as rearing, akinesia, and rotarod tests. OFT test measured anxiety-like behaviors of mice. Western blotting and TUNEL staining measured dopaminergic fibers and neurons of mice. Western blotting measured inflammation and apoptosis-related protein levels in mouse tissue. FACS measured iTreg cell proportion in colon and brain tissues of mice. ω-3 PUFAs repaired MPTP-stimulated motor function damage in PD mice. ω-3 PUFAs mitigated MPTP-stimulated comorbid anxiety in PD mice. ω-3 PUFAs relieved MPTP-stimulated deficits of dopaminergic fibers and neurons in PD mice. ω-3 PUFAs repressed MPTP-stimulated inflammation and apoptosis pathway activation in PD mice. ω-3 PUFAs repaired MPTP-stimulated immune function damage in PD mice. ω-3 PUFAs exert a protective role in PD mice through alleviating motor function impairment and neuroinflammation by increasing intestinal inducible Treg cells, which may provide a new direction for seeking targeted therapy plans for PD in humans.


Subject(s)
Disease Models, Animal , Fatty Acids, Omega-3 , Mice, Inbred C57BL , Parkinson Disease , T-Lymphocytes, Regulatory , Animals , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Intestines/drug effects , Intestines/pathology , Behavior, Animal/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Inflammation/pathology , Inflammation/drug therapy , Inflammation/metabolism
12.
Phytomedicine ; 127: 155494, 2024 May.
Article in English | MEDLINE | ID: mdl-38471370

ABSTRACT

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Triterpenes , Mice , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , Neuroprotection , Neuroinflammatory Diseases , Molecular Docking Simulation , Microglia , Parkinson Disease/metabolism , Dopaminergic Neurons , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
13.
Physiol Res ; 73(1): 139-155, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38466012

ABSTRACT

Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/metabolism , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 270-279, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38501412

ABSTRACT

OBJECTIVE: To investigate the protective effect of resveratrol on intestinal barrier in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse models and its mechanism for regulating TLR4/MyD88/NF-κB signaling to protect dopaminergic neurons. METHODS: Fifty-two C57BL/6J mice were randomized into control group (n= 12), MPTP group (n=14), MPTP + resveratrol (30 mg/kg) group (n=13), and MPTP + resveratrol (90 mg/kg) group (n=13), and mouse models were established by intraperitoneal MPTP (30 mg/kg) injection for 7 days in the latter 3 groups. Behavioral tests were conducted to evaluate the effect of resveratrol on motor symptoms of the mice. Western blotting was used to detect the expression of TH, α-syn, ZO-1, Claudin-1, TLR4, MyD88, and NF-κB in the brain tissues of the mice. Immunohistochemistry, immunofluorescence, ELISA and transmission electron microscopy were used to verify the effect of resveratrol for suppressing inflammation and protecting the intestinal barrier. RESULTS: Compared with those in the normal control group, the mice in MPTP group showed significant changes in motor function, number of dopaminergic neurons, neuroinflammation, levels of LPS and LBP, and expressions of tight junction proteins in the intestinal barrier. Resveratrol treatment significantly improved motor function of the PD mice (P < 0.01), increased the number of neurons and TH protein expression (P < 0.05), down-regulated the expressions of GFAP, Iba-1, and TLR4, lowered fecal and plasma levels of LPS and LBP (P < 0.05), restored the expression levels of ZO-1 and Claudin-1 (P < 0.01), and down-regulated the expressions of TLR4, MyD88, and NF-κB in the colon tissue (P < 0.05). The mice with resveratrol treatment at 30 mg/kg showed normal morphology of the tight junction complex with neatly and tightly arranged intestinal villi. CONCLUSION: Resveratrol repairs the intestinal barrier by inhibiting TLR4/MyD88/NF-κB signaling pathway-mediated inflammatory response, thereby improving motor function and neuropathy in mouse models of MPTP-induced PD.


Subject(s)
Parkinson Disease , Animals , Mice , Parkinson Disease/drug therapy , Dopaminergic Neurons/metabolism , Resveratrol/pharmacology , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Brain-Gut Axis , Lipopolysaccharides/pharmacology , Claudin-1/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Mice, Inbred C57BL , Signal Transduction , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
15.
Comput Biol Med ; 171: 108200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428099

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS: To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS: We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS: Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.


Subject(s)
COVID-19 , Parkinson Disease , Animals , Mice , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Molecular Docking Simulation , Pandemics , SARS-CoV-2 , Disease Models, Animal
16.
J Agric Food Chem ; 72(11): 5734-5745, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38453725

ABSTRACT

Parkinson's disease (PD) is marked by the degeneration of dopaminergic neurons of the substantia nigra (SN), with neuroinflammation and mitochondrial dysfunction being key contributors. The neuroprotective potential of folic acid (FA) in the dopaminergic system of PD was assessed in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. MPTP (20 mg/kg of body weight) was administered to C57BL/6J mice to simulate PD symptoms followed by FA treatment (5 mg/kg of body weight). Behavioral tests, pole, rotarod, and open-field tests, evaluated motor function, while immunohistochemistry, ELISA, RT-qPCR, and Western blotting quantified neuroinflammation, oxidative stress markers, and mitochondrial function. FA supplementation considerably improved motor performance, reduced homocysteine levels and mitigated oxidative damage in the SN. The FA-attenuated activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome lessened glial cell activity and reduced neuroinflammation. At the molecular level, FA reduced DNA damage, downregulated phosphorylated p53, and induced the expression of peroxisome proliferator-activated receptor α coactivator 1α (PGC-1α), enhancing mitochondrial function. Therefore, FA exerts neuroprotection in MPTP-induced PD by inhibiting neuroinflammation via NLRP3 inflammasome suppression and promoting mitochondrial integrity through the p53-PGC-1α pathway. Notable limitations of our study include its reliance on a single animal model and the incompletely elucidated mechanisms underlying the impact of FA on mitochondrial dynamics. Future investigations will explore the clinical utility of FA and its molecular mechanisms, further advancing it as a potential therapeutic for managing and delaying the progression of PD.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Dopaminergic Neurons , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , Neuroinflammatory Diseases , Tumor Suppressor Protein p53/metabolism , Mice, Inbred C57BL , Parkinson Disease/genetics , Mitochondria/metabolism , Body Weight , Disease Models, Animal , Neuroprotective Agents/pharmacology
17.
Fitoterapia ; 175: 105908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479621

ABSTRACT

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.


Subject(s)
Neuroprotective Agents , Picrasma , Plant Leaves , Plant Stems , Sesquiterpenes , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Mice , Humans , Cell Line, Tumor , Molecular Structure , Picrasma/chemistry , Plant Stems/chemistry , Plant Leaves/chemistry , Male , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , China , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mice, Inbred C57BL
18.
J Cell Physiol ; 239(5): e31250, 2024 May.
Article in English | MEDLINE | ID: mdl-38477420

ABSTRACT

Parkinson's disease (PD) is the most prevalent neurodegenerative disorder. Neuroinflammation mediated by activated microglia and apoptosis of dopaminergic (DA) neurons in the midbrain are its primary pathological manifestations. Leucine-rich repeat protein kinase 2 (LRRK2) kinase has been observed to increase expression during neuroinflammation, however, the effect of LRRK2 on microglia activation remains poorly understood. In this study, we have established lipopolysaccharide (LPS) treated BV2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models for both in vivo and in vitro investigation. Our data in vivo reveal that LRRK2 can promote microglia activation by regulating ferroptosis and activating nuclear factor-κB. Inhibition of LRRK2 expression effectively suppressed the LPS-induced pro-inflammatory cytokines and facilitated the secretion of neuroprotective factors. Importantly, by co-overexpressing LRRK2 and glutathione peroxidase 4 (GPX4), we identified the system Xc-GSH-GPX4 pathway as a crucial component in LRRK2-mediated microglial ferroptosis and inflammatory responses. Using a microglial culture supernatant (MCS) transfer model, we found that inhibiting LRRK2 or downregulating ferroptosis in BV2 cells prevented SH-SY5Y cell apoptosis. Additionally, we observed abundant expression of LRRK2 and P-P65 in the midbrain, which was elevated in the MPTP-induced PD model, along with microglia activation. LRRK2 and P-P65 expression inhibition with PF-06447475 attenuated microglia activation in the nigrostriatal dense part of MPTP-treated mice. Based on our findings, it is evident that LRRK2 plays a critical role in promoting the neuroinflammatory response during the pathogenesis of PD by regulating the system Xc-GSH-GPX4 pathway. Taken together, our data highlights the potential research and therapeutic value of targeting LRRK2 to regulate neuroinflammatory response in PD through ferroptosis.


Subject(s)
Ferroptosis , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Microglia , Neuroinflammatory Diseases , Parkinson Disease , Animals , Humans , Male , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cell Line , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Ferroptosis/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , NF-kappa B/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Signal Transduction , Pyrimidines/pharmacology , Pyrroles/pharmacology
19.
Free Radic Biol Med ; 216: 60-77, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479634

ABSTRACT

Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.


Subject(s)
Deoxyadenosines , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Neuroinflammatory Diseases , Proteomics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects
20.
Methods Mol Biol ; 2761: 477-490, 2024.
Article in English | MEDLINE | ID: mdl-38427256

ABSTRACT

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has a direct impact on the dopaminergic neurons in the substantia nigra pars compacta (SNpc), dopamine in the striatum (ST), homovanillic acid (HVA), neurotrophic factors of the SNpc, and ST regions leading to Parkinson's disease (PD). Dopaminergic neuron atrophy in the SNpc and dopamine degradation in the ST have an explicit link to disrupted homeostasis of the neurotrophic factor brain-derived neurotrophic factor (BDNF) of the SNpc and ST regions. Chrysin is a flavonoid with a pharmacological potential that directly influences neurotrophic levels as well as neurotransmitters. As a result, analysis of the altering levels of neurotransmitters such as dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), are observed via high-performance liquid chromatography (HPLC) and the confirmation of the influential role of BDNF and glial-derived neurotrophic factor (GDNF) in the homeostasis of dopamine, DOPAC, and HAV via examination of gene expression. The observation confirmed that chrysin balances the altering levels of neurotransmitters as well as neurotrophic factors. The protocols for reverse transcription-polymerase chain reaction (RT-PCR) and HPLC analysis for neurotransmitter levels from the SNpc and ST regions of acute PD mice brain-induced MPTP are described in this chapter.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopamine/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Homovanillic Acid/metabolism , Substantia Nigra/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Corpus Striatum/metabolism , Neurotransmitter Agents/metabolism , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...