Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 436
Filter
1.
Mol Cancer Res ; 20(2): 280-292, 2022 02.
Article in English | MEDLINE | ID: mdl-34654720

ABSTRACT

Loss-of-function somatic mutations of STK11, a tumor suppressor gene encoding LKB1 that contributes to the altered metabolic phenotype of cancer cells, is the second most common event in lung adenocarcinomas and often co-occurs with activating KRAS mutations. Tumor cells lacking LKB1 display an aggressive phenotype, with uncontrolled cell growth and higher energetic and redox stress due to its failure to balance ATP and NADPH levels in response to cellular stimulus. The identification of effective therapeutic regimens for patients with LKB1-deficient non-small cell lung cancer (NSCLC) remains a major clinical need. Here, we report that LKB1-deficient NSCLC tumor cells displayed reduced basal levels of ATP and to a lesser extent other nucleotides, and markedly enhanced sensitivity to 8-Cl-adenosine (8-Cl-Ado), an energy-depleting nucleoside analog. Treatment with 8-Cl-Ado depleted intracellular ATP levels, raised redox stress, and induced cell death leading to a compensatory suppression of mTOR signaling in LKB1-intact, but not LKB1-deficient, cells. Proteomic analysis revealed that the MAPK/MEK/ERK and PI3K/AKT pathways were activated in response to 8-Cl-Ado treatment and targeting these pathways enhanced the antitumor efficacy of 8-Cl-Ado. IMPLICATIONS: Together, our findings demonstrate that LKB1-deficient tumor cells are selectively sensitive to 8-Cl-Ado and suggest that therapeutic approaches targeting vulnerable energy stores combined with signaling pathway inhibitors merit further investigation for this patient population.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , 2-Chloroadenosine/pharmacology , 2-Chloroadenosine/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Homeostasis , Humans , Lung Neoplasms/pathology , Mutation , Oxidation-Reduction , Signal Transduction , Transfection
2.
Pharmacol Res Perspect ; 9(4): e00827, 2021 08.
Article in English | MEDLINE | ID: mdl-34337892

ABSTRACT

Sevoflurane affects on the A1 receptor in the central nervous system and potentiates the action of neuromuscular blocking agents. In the present study, we investigated whether sevoflurane (SEVO) has the ability to potentiate the neuromuscular blocking effect of rocuronium and if the specific antagonist of adenosine receptor (SLV320) can reverse this effect. In this study, phrenic nerve-hemidiaphragm tissue specimens were obtained from 40 Sprague-Dawley (SD) rats. The specimens were immersed in an organ bath filled with Krebs buffer and stimulated by a train-of-four (TOF) pattern using indirect supramaximal stimulation at 20 s intervals. The specimens were randomly allocated to control, 2-chloroadenosine (CADO), SEVO, or SLV320 + SEVO groups. In the CADO and SLV320 + SEVO groups, CADO and SLV320 were added to the organ bath from the start to a concentration of 10 µM and 10 nM, respectively. We then proceeded with rocuronium-induced blockade of >95% depression of the first twitch tension of TOF (T1) and TOF ratio (TOFR). In the SEVO and SLV320 + SEVO groups, SEVO was added to the Krebs buffer solution to concentration of 400-500 µM for 10 min. Sugammadex-induced T1 and TOFR recovery was monitored for 30 min until >95% of T1 and >0.9 of TOFR were confirmed, and the recovery pattern was compared by plotting these data. T1 recovery in the SEVO and CADO groups was significantly delayed compared with the control and SLV320 + SEVO groups (p < .05). In conclusion, sevoflurane affects on the A1 receptor at the neuromuscular junction and delays sugammadex-induced recovery from neuromuscular blockade.


Subject(s)
2-Chloroadenosine/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Cyclohexanes/pharmacology , Diaphragm/drug effects , Heterocyclic Compounds, 2-Ring/pharmacology , Neuromuscular Blockade , Phrenic Nerve/drug effects , Purinergic P1 Receptor Antagonists/pharmacology , Sevoflurane/pharmacology , Animals , Diaphragm/physiology , In Vitro Techniques , Male , Neuromuscular Nondepolarizing Agents , Phrenic Nerve/physiology , Rats, Sprague-Dawley , Rocuronium , Sugammadex
3.
J Hematol Oncol ; 14(1): 70, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902674

ABSTRACT

BACKGROUND: BCL-2 inhibition through venetoclax (VEN) targets acute myeloid leukemia (AML) blast cells and leukemic stem cells (LSCs). Although VEN-containing regimens yield 60-70% clinical response rates, the vast majority of patients inevitably suffer disease relapse, likely because of the persistence of drug-resistant LSCs. We previously reported preclinical activity of the ribonucleoside analog 8-chloro-adenosine (8-Cl-Ado) against AML blast cells and LSCs. Moreover, our ongoing phase I clinical trial of 8-Cl-Ado in patients with refractory/relapsed AML demonstrates encouraging clinical benefit. Of note, LSCs uniquely depend on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. VEN inhibits OXPHOS in LSCs, which eventually may escape the antileukemic activity of this drug. FAO is activated in LSCs isolated from patients with relapsed AML. METHODS: Using AML cell lines and LSC-enriched blast cells from pre-treatment AML patients, we evaluated the effects of 8-Cl-Ado, VEN and the 8-Cl-Ado/VEN combination on fatty acid metabolism, glycolysis and OXPHOS using liquid scintillation counting, a Seahorse XF Analyzer and gene set enrichment analysis (GSEA). Western blotting was used to validate results from GSEA. HPLC was used to measure intracellular accumulation of 8-Cl-ATP, the cytotoxic metabolite of 8-Cl-Ado. To quantify drug synergy, we created combination index plots using CompuSyn software. The log-rank Kaplan-Meier survival test was used to compare the survival distributions of the different treatment groups in a xenograft mouse model of AML. RESULTS: We here report that VEN and 8-Cl-Ado synergistically inhibited in vitro growth of AML cells. Furthermore, immunodeficient mice engrafted with MV4-11-Luc AML cells and treated with the combination of VEN plus 8-Cl-Ado had a significantly longer survival than mice treated with either drugs alone (p ≤ 0.006). We show here that 8-Cl-Ado in the LSC-enriched population suppressed FAO by downregulating gene expression of proteins involved in this pathway and significantly inhibited the oxygen consumption rate (OCR), an indicator of OXPHOS. By combining 8-Cl-Ado with VEN, we observed complete inhibition of OCR, suggesting this drug combination cooperates in targeting OXPHOS and the metabolic homeostasis of AML cells. CONCLUSION: Taken together, the results suggest that 8-Cl-Ado enhances the antileukemic activity of VEN and that this combination represents a promising therapeutic regimen for treatment of AML.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/therapeutic use , 2-Chloroadenosine/pharmacology , 2-Chloroadenosine/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Humans , Mice , Mice, Inbred NOD , Oxidative Phosphorylation , Sulfonamides/pharmacology
4.
Cell Transplant ; 29: 963689720958656, 2020.
Article in English | MEDLINE | ID: mdl-32907379

ABSTRACT

8-Chloro-adenosine (8-Cl-Ado) has been shown to exhibit its antitumor activity by inducing apoptosis in human lung cancer A549 and H1299 cells or autophagy in chronic lymphocytic leukemia, and MDA-MB-231 and MCF-7 breast cancer cells. Adenosine deaminases acting on RNA 1 (ADAR1) is tightly associated with cancer development and progression. The aim of this study was to investigate the role of ADAR1 in the proliferation of MDA-MB-231 and SK-BR-3 breast cancer cell lines after 8-Cl-Ado exposure and its possible mechanisms. After 8-Cl-Ado exposure, CCK-8 assay was performed to determine the cell proliferation; flow cytometry was used to analyze the cell cycle profiles and apoptosis; and the protein levels of ADAR1, p53, p21, and cyclin D1 were measured by western blotting. The results showed that the cell proliferation was greatly inhibited, G1 cell cycle was arrested, and apoptosis was induced after 8-Cl-Ado exposure. ADAR1 and cyclin D1 protein levels were dramatically decreased, while p53 and p21 levels were increased after 8-Cl-Ado exposure. Moreover, the cell growth inhibition was rescued, apoptosis was reduced, and p53 and p21 protein levels were downregulated, while cyclin D1 was upregulated when cells were transfected with plasmids expressing ADAR1 proteins. More importantly, RNA-binding domain of ADAR1 is critical to the cell growth inhibition of breast cancer cells exposed to 8-Cl-Ado. Together, 8-Cl-Ado inhibits the cell proliferation, induces G1 phase arrest and apoptosis at least by targeting ADAR1/p53/p21 signaling pathway. The findings may provide us with insights into the role of ADAR1 in breast cancer progression and help us better understand the effects of 8-Cl-Ado in the treatment of breast cancer.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Adenosine Deaminase/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , RNA-Binding Proteins/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , 2-Chloroadenosine/pharmacology , Adenosine Deaminase/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation/drug effects , Female , Humans , Protein Domains , RNA-Binding Proteins/chemistry , Signal Transduction/drug effects
5.
Chem Res Toxicol ; 33(2): 402-413, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31778309

ABSTRACT

The exposure of RNA and DNA nucleobases to the oxidant hypochlorous acid (HOCl) results in the generation of different stable chlorinated products. These chlorinated nucleobases are formed in vivo, particularly in chronic inflammatory pathologies, which are characterized by the overproduction of HOCl by myeloperoxidase. As such, chlorinated nucleosides are used as biomarkers of inflammation. However, these compounds have also attracted attention as potential chemotherapeutic agents with 8-chloro-adenosine (8ClA), for example, currently in clinical trials for the treatment of hematological cancers, including chronic lymphocytic leukemia. 8ClA has mainly RNA-directed effects in malignant cells, with exposure resulting in ATP depletion and apoptotic cell death. Whether 8ClA has significant reactivity with nonmalignant cells has not been widely studied. Here we show that prolonged incubation of J774A.1 macrophage-like cells with 8ClA results in the perturbation of cellular metabolism and apoptotic cell death. These effects are associated with an accumulation of 8-chloroadenosine triphosphate (8Cl-ATP), an effect not seen in experiments utilizing other chlorinated nucleosides. Exposure of the macrophages to 8ClA did not significantly change basal mitochondrial respiration or glycolysis but resulted in an increase in maximal mitochondrial respiration as well as spare respiratory capacity within these cells. Additionally, 8ClA exposure also altered the mRNA expression of a range of antioxidant and DNA damage repair genes in the macrophages in a manner consistent with a reduction in the capacity of the cells to cope with oxidative stress and repair DNA damage. Taken together, these results provide new insight into pathways by which the production of HOCl during chronic inflammation could perturb immune cell function and may also have implications for the use of 8ClA as a chemotherapeutic drug.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Antioxidants/metabolism , DNA Repair/drug effects , Macrophages/drug effects , 2-Chloroadenosine/pharmacology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , DNA Damage , Macrophages/metabolism , Mice
6.
Hypertension ; 75(1): 109-118, 2020 01.
Article in English | MEDLINE | ID: mdl-31786976

ABSTRACT

c-Kit+ progenitor smooth muscle cells (P-SMCs) can develop into SMCs that contribute to injury-induced neointimal thickening. Here, we investigated whether adenosine reduces P-SMC migration and proliferation and whether this contributes to adenosine's inhibitory actions on neointima formation. In human P-SMCs, 2-chloroadenosine (stable adenosine analogue) and BAY60-6583 (A2B agonist) inhibited P-SMC proliferation and migration. Likewise, increasing endogenous adenosine by blocking adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl) adenine (inhibits adenosine deaminase) and 5-iodotubercidin (inhibits adenosine kinase) attenuated P-SMC proliferation and migration. Neither N6-cyclopentyladenosine (A1 agonist), CGS21680 (A2A agonist), nor N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (A3 agonist) affected P-SMC proliferation or migration. 2-Chloroadenosine increased cyclic AMP, reduced Akt phosphorylation (activates cyclin D expression), and reduced levels of cyclin D1 (promotes cell-cycle progression). Moreover, 2-chloroadenosine inhibited expression of Skp2 (promotes proteolysis of p27Kip1) and upregulated levels of p27Kip1 (negative cell-cycle regulator). A2B receptor knockdown prevented the effects of 2-chloroadenosine on cyclic AMP production and P-SMC proliferation and migration. Likewise, inhibition of adenylyl cyclase and protein kinase A rescued P-SMCs from the inhibitory effects of 2-chloroadenosine. The inhibitory effects of adenosine were similar in male and female P-SMCs. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 µmol/L for 7 days) reduced neointimal hyperplasia by 64.5% (P<0.05; intima/media ratio: control, 1.4±0.02; treated, 0.53±0.012) and reduced neointimal c-Kit+ cells. Adenosine inhibits P-SMC migration and proliferation via the A2B receptor/cyclic AMP/protein kinase A axis, which reduces cyclin D1 expression and activity via inhibiting Akt phosphorylation and Skp2 expression and upregulating p27kip1 levels. Adenosine attenuates neointima formation in part by inhibiting infiltration and proliferation of c-Kit+ P-SMCs.


Subject(s)
2-Chloroadenosine/pharmacology , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Receptor, Adenosine A2B/metabolism , Adenine/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Aminopyridines/pharmacology , Cell Movement/drug effects , Cyclic AMP/metabolism , Humans , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Phenethylamines/pharmacology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism
7.
Tohoku J Exp Med ; 249(4): 275-283, 2019 12.
Article in English | MEDLINE | ID: mdl-31875581

ABSTRACT

Vascular calcification is a typical feature of atherosclerosis and is associated with adverse cardiovascular events such as myocardial infarction and stroke. Several studies have suggested that adenosine, an ATP metabolite may function as an endogenous regulator of arterial calcification. However, its effects on vascular smooth muscle cell calcification have not been clarified. In this study, we investigated the inhibitory effects of adenosine on vascular calcification in vitro by utilizing the culture of human aortic smooth muscle cells (HASMCs). Osteoblastic differentiation of HASMCs was induced by the treatment with oncostatin M and osteogenic differentiation medium. Adenosine and its metabolically stable analogue, 2-chloroadenosine (CADO) significantly reduced matrix mineralization and alkaline phosphatase (ALP) activities in HASMCs. The mRNA expression of tissue non-specific alkaline phosphatase (TNAP) was down-regulated by adenosine and CADO, but the mRNA expression of other osteoblastic differentiation markers, such as Runt-related transcription factor 2 (RUNX2) and bone sialoprotein (BSP)-II, was not significantly affected by these two reagents. Among the adenosine receptor (AR) subtype-selective agonists used, only IB-MECA (A3 AR-selective agonist) significantly decreased in vitro mineralization and ALP activities in HASMCs, but not with CCPA (A1 AR-selective agonist), CGS21680 (A2a AR-selective agonist), or BAY60-6583 (A2b AR-selective agonist). Importantly, IB-MECA also down-regulated expression of TNAP mRNA. Finally, knockdown of A3 AR, but not A1 AR, A2a AR, or A2b AR, significantly reversed the inhibitory actions of adenosine, CADO, or IB-MECA on in vitro calcification and ALP activities in HASMCs. These data suggest that adenosine attenuates HASMC calcification through A3 AR.


Subject(s)
Adenosine/pharmacology , Aorta/pathology , Calcinosis/metabolism , Calcinosis/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Receptor, Adenosine A3/metabolism , 2-Chloroadenosine/pharmacology , Alkaline Phosphatase/metabolism , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Oncostatin M/pharmacology , Signal Transduction/drug effects
8.
Redox Biol ; 26: 101274, 2019 09.
Article in English | MEDLINE | ID: mdl-31307008

ABSTRACT

Infiltration of leukocytes within the vessel at sites of inflammation and the subsequent generation of myeloperoxidase-derived oxidants, including hypochlorous acid, are key characteristics of atherosclerosis. Hypochlorous acid is a potent oxidant that reacts readily with most biological molecules, including DNA and RNA. This results in nucleic acid modification and the formation of different chlorinated products. These products have been used as biomarkers of inflammation, owing to their presence in elevated amounts in different inflammatory fluids and diseased tissue, including atherosclerotic lesions. However, it is not clear whether these materials are simply biomarkers, or could also play a role in the development of chronic inflammatory pathologies. In this study, we examined the reactivity of different chlorinated nucleosides with human coronary artery endothelial cells (HCAEC). Evidence was obtained for the incorporation of each chlorinated nucleoside into the cellular RNA or DNA. However, only 8-chloro-adenosine (8ClA) had a significant effect on the cell viability and metabolic activity. Exposure of HCAEC to 8ClA decreased glycolysis, and resulted in a reduction in ATP, with a corresponding increase in the chlorinated analogue, 8Cl-ATP in the nucleotide pool. 8ClA also induced sustained endoplasmic reticulum stress within the HCAEC, which resulted in activation of the unfolded protein response, the altered expression of antioxidant genes and culminated in the release of calcium into the cytosol and cell death by apoptosis. Taken together, these data provide new insight into pathways by which myeloperoxidase activity and resultant hypochlorous acid generation could promote endothelial cell damage during chronic inflammation, which could be relevant to the progression of atherosclerosis.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Apoptosis/drug effects , Coronary Vessels/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Unfolded Protein Response/drug effects , 2-Chloroadenosine/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Line , DNA/chemistry , Glycolysis/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction/drug effects , RNA/chemistry
9.
Cell Prolif ; 52(3): e12595, 2019 May.
Article in English | MEDLINE | ID: mdl-30953394

ABSTRACT

OBJECTIVES: Mesenchymal stem cells (MSCs) could regulate the function of various immune cells. It remains unclear whether MSCs additionally possess immunostimulatory properties. We investigated the impact of human MSCs on the responsiveness of primary natural killer (NK) cells in terms of induction of anti-inflammatory purinergic signalling. MATERIAL AND METHODS: We obtained human bone marrow mesenchymal stem cells (BMMSCs) and dental pulp stem cells (DPSCs). NK cells were isolated from peripheral blood of healthy volunteers. Activated NK cells were cultured with MSCs. Proliferation assay, apoptosis analysis, activating or inhibitory receptor expression and degranulation assay were used to explore NK cells' function. High-performance liquid chromatography was used to investigate the purinergic signalling in activated NK cells. RESULTS: Both DPSCs and BMMSCs could impair proliferation and promote apoptosis of activated NK cells. Also, activated NK cells could cause DPSCs to lyse. Furthermore, the expression of activating NK cells' receptors was decreased, but inhibitory receptors of NK cells were elevated following co-cultivation. NK cells acquired CD73 expression, while MSCs could release ATP into the extracellular space where nucleotides were converted into adenosine (ADO) following co-culture system. Under the existence of exogenous 2-chloroadenosine (CADO), the cytotoxic capacity of NK cells was remarkably depressed in a concentration-dependent manner. CONCLUSIONS: DPSCs and BMMSCs could depress NK cells' function by hydrolysing ATP to ADO using CD39 and CD73 enzymatic activity. Our data suggested that DPSCs might represent a new strategy for treating immune-related diseases by regulating previously unrecognized functions in innate immune responses.


Subject(s)
Dental Pulp/cytology , Dental Pulp/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mesenchymal Stem Cells/immunology , 2-Chloroadenosine/pharmacology , 5'-Nucleotidase/metabolism , Apoptosis , Cell Proliferation , Coculture Techniques , Cytotoxicity, Immunologic/drug effects , GPI-Linked Proteins/metabolism , Humans , Inflammation Mediators/metabolism , K562 Cells , Killer Cells, Natural/cytology , Lymphocyte Activation , Purines/metabolism , Receptors, Natural Killer Cell/drug effects , Receptors, Natural Killer Cell/metabolism , Signal Transduction
10.
Chem Biodivers ; 16(3): e1800497, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30614625

ABSTRACT

2-Chloro-2'-deoxyadenosine (cladribine, 1) was acylated with valproic acid (2) under various reaction conditions yielding 2-chloro-2'-deoxy-3',5'-O-divalproyladenosine (3) as well as the 3'-O- and 5'-O-monovalproylated derivatives, 2-chloro-2'-deoxy-3'-O-valproyladenosine (4) and 2-chloro-2'-deoxy-5'-O-valproyladenosine (5), as new co-drugs. In addition, 6-azauridine-2',3'-O-(ethyl levulinate) (8) was valproylated at the 5'-OH group (→9). All products were characterized by 1 H- and 13 C-NMR spectroscopy and ESI mass spectrometry. The structure of the by-product 6 (N-cyclohexyl-N-(cyclohexylcarbamoyl)-2-propylpentanamide), formed upon valproylation of cladribine in the presence of N,N-dimethylaminopyridine and dicyclohexylcarbodiimide, was analyzed by X-ray crystallography. Cladribine as well as its valproylated co-drugs were tested upon their cancerostatic/cancerotoxic activity in human astrocytoma/oligodendroglioma GOS-3 cells, in rat malignant neuro ectodermal BT4Ca cells, as well as in phorbol-12-myristate 13-acetate (PMA)-differentiated human THP-1 macrophages. The most important result of these experiments is the finding that only the 3'-O-valproylated derivative 4 exhibits a significant antitumor activity while the 5'-O- as well as the 3',5'-O-divalproylated cladribine derivatives 3 and 5 proved to be inactive.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Antineoplastic Agents/pharmacology , Azauridine/pharmacology , Deoxyadenosines/pharmacology , Valproic Acid/pharmacology , 2-Chloroadenosine/chemical synthesis , 2-Chloroadenosine/chemistry , 2-Chloroadenosine/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Azauridine/chemical synthesis , Azauridine/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Deoxyadenosines/chemical synthesis , Deoxyadenosines/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Rats , Structure-Activity Relationship , Tumor Cells, Cultured , Valproic Acid/chemical synthesis , Valproic Acid/chemistry
11.
Int J Mol Sci ; 19(6)2018 May 28.
Article in English | MEDLINE | ID: mdl-29843366

ABSTRACT

Human lung cancer H1299 (p53-null) cells often display enhanced susceptibility to chemotherapeutics comparing to A549 (p53-wt) cells. However, little is known regarding to the association of DNA damage-response (DDR) pathway heterogeneity with drug sensitivity in these two cells. We investigated the DDR pathway differences between A549 and H1299 cells exposed to 8-chloro-adenosine (8-Cl-Ado), a potential anticancer drug that can induce DNA double-strand breaks (DSBs), and found that the hypersensitivity of H1299 cells to 8-Cl-Ado is associated with its DSB overaccumulation. The major causes of excessive DSBs in H1299 cells are as follows: First, defect of p53-p21 signal and phosphorylation of SMC1 increase S phase cells, where replication of DNA containing single-strand DNA break (SSB) produces more DSBs in H1299 cells. Second, p53 defect and no available induction of DNA repair protein p53R2 impair DNA repair activity in H1299 cells more severely than A549 cells. Third, cleavage of PARP-1 inhibits topoisomerase I and/or topoisomerase I-like activity of PARP-1, aggravates DNA DSBs and DNA repair mechanism impairment in H1299 cells. Together, DDR pathway heterogeneity of cancer cells is linked to cancer susceptibility to DNA damage-based chemotherapeutics, which may provide aid in design of chemotherapy strategy to improve treatment outcomes.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Antineoplastic Agents/pharmacology , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , 2-Chloroadenosine/pharmacology , A549 Cells , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Replication , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA, Neoplasm/metabolism , Humans , Organ Specificity , Phosphorylation , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
Hypertension ; 66(6): 1207-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26416848

ABSTRACT

The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N(6)-cyclopentyladenosine, CGS21680, or N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B receptor profile). 2-Chloroadenosine increased cAMP, reduced phosphorylation (activation) of ERK and Akt (protein kinases known to increase cyclin D expression and activity, respectively), and reduced levels of cyclin D1 (cyclin that promotes cell-cycle progression in G1). Moreover, 2-chloroadenosine inhibited expression of S-phase kinase-associated protein-2 (Skp2; promotes proteolysis of p27(Kip1)) and upregulated levels of p27(Kip1) (cell-cycle regulator that impairs cyclin D function). 2-Chloroadenosine also inhibited signaling downstream of cyclin D, including hyperphosphorylation of retinoblastoma protein and expression of cyclin A (S phase cyclin). Knockdown of A2B receptors prevented the effects of 2-chloroadenosine on ERK1/2, Akt, Skp2, p27(Kip1), cyclin D1, cyclin A, and proliferation. Likewise, inhibition of adenylyl cyclase and protein kinase A abrogated 2-chloroadenosine's inhibitory effects on Skp2 and stimulatory effects on p27(Kip1) and rescued HCASMCs from 2-chloroadenosine-mediated inhibition. Knockdown of p27(Kip1) also reversed the inhibitory effects of 2-chloroadenosine on HCASMC proliferation. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 µmol/L for 7 days) downregulated vascular expression of Skp2, upregulated vascular expression of p27(Kip1), and reduced neointima hyperplasia by 71% (P<0.05; neointimal thickness: control, 37 424±18 371 pixels; treated, 10 352±2824 pixels). In conclusion, the adenosine/A2B receptor/cAMP/protein kinase A axis inhibits HCASMC proliferation by blocking multiple signaling pathways (ERK1/2, Akt, and Skp2) that converge at cyclin D, a key G1 cyclin that controls cell-cycle progression.


Subject(s)
Adenosine/pharmacology , Cell Proliferation/drug effects , Cyclin D/metabolism , Myocytes, Smooth Muscle/drug effects , Signal Transduction/drug effects , 2-Chloroadenosine/pharmacology , Animals , Blotting, Western , Cell Proliferation/genetics , Cells, Cultured , Coronary Vessels/cytology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin D/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression/drug effects , Humans , Male , Myocytes, Smooth Muscle/metabolism , RNA Interference , Rats, Inbred WKY , Receptor, Adenosine A1/genetics , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2B/genetics , Receptor, Adenosine A2B/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Signal Transduction/genetics
13.
PLoS One ; 10(8): e0135962, 2015.
Article in English | MEDLINE | ID: mdl-26313261

ABSTRACT

The adenosine analog 8-chloroadenosine has been shown to deplete ATP and inhibit tumor growth in hematological malignancies as well as in lung and breast cancer cell lines. We investigated effects of 8-chloroadenosine on clear cell (cc) renal cell carcinoma (RCC) cell lines. 8-chloroadenosine was effective against ccRCC cell viability in vitro, with IC50 ranging from 2 µM in the most sensitive CAKI-1 to 36 µM in the most resistant RXF-393. Proteomic analysis by reverse-phase protein array revealed that 8-chloroadenosine treatment leads to inhibition of the mTOR pathway. In time-course experiments, 8-chloroadenosine treatment rapidly activated AMPK, measured by AMPK and ACC phosphorylation, and subsequently caused dephosphorylation of p70S6K and ribosomal protein RPS6 in the sensitive cell lines. However, in the resistant cell lines, AMPK activity and the mTOR pathway were unaffected by the treatment. We also noted that the resistant cell lines had elevated basal levels of phospho RPS6 and AKT. Inhibition of PI3K pathway enhanced the efficacy of 8-chloroadenosine across all cell lines. Our observations indicate that 8-chloroadenosine activity is associated with inhibition of the mTOR pathway, and that phospho RPS6 and PI3K pathway activation status may determine resistance. Among solid tumors, RCC is one of the few susceptible to mTOR inhibition. We thus infer that 8-chloroadenosine may be effective in RCC by activating AMPK and inhibiting the mTOR pathway.


Subject(s)
2-Chloroadenosine/analogs & derivatives , AMP-Activated Protein Kinases/metabolism , Carcinoma, Renal Cell/metabolism , Drug Resistance, Neoplasm/drug effects , Kidney Neoplasms/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , 2-Chloroadenosine/pharmacology , Blotting, Western , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Protein Array Analysis , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
14.
Eur J Neurosci ; 42(2): 1775-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25892551

ABSTRACT

Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with µ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway.


Subject(s)
Acetylcholine/metabolism , Neuromuscular Junction/metabolism , Receptors, Muscarinic/metabolism , Receptors, Purinergic P1/metabolism , 2-Chloroadenosine/pharmacology , Animals , Conotoxins/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Drug Interactions , Electric Stimulation , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Male , Mice , Muscarinic Antagonists/pharmacology , Neuromuscular Junction/drug effects , Protein Kinase C/metabolism , Purinergic Agents/pharmacology
15.
Eur J Neurosci ; 41(7): 878-88, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25704806

ABSTRACT

Adenosine is a neuromodulator mostly acting through A1 (inhibitory) and A2A (excitatory) receptors in the brain. A2B receptors (A(2B)R) are G(s/q)--protein-coupled receptors with low expression in the brain. As A(2B)R function is largely unknown, we have now explored their role in the mouse hippocampus. We performed electrophysiological extracellular recordings in mouse hippocampal slices, and immunological analysis of nerve terminals and glutamate release in hippocampal slices and synaptosomes. Additionally, A(2B)R-knockout (A(2B)R-KO) and C57/BL6 mice were submitted to a behavioural test battery (open field, elevated plus-maze, Y-maze). The A(2B)R agonist BAY60-6583 (300 nM) decreased the paired-pulse stimulation ratio, an effect prevented by the A(2B)R antagonist MRS 1754 (200 nM) and abrogated in A(2B)R-KO mice. Accordingly, A(2B)R immunoreactivity was present in 73 ± 5% of glutamatergic nerve terminals, i.e. those immunopositive for vesicular glutamate transporters. Furthermore, BAY 60-6583 attenuated the A(1)R control of synaptic transmission, both the A(1)R inhibition caused by 2-chloroadenosine (0.1-1 µM) and the disinhibition caused by the A(1)R antagonist DPCPX (100 nM), both effects prevented by MRS 1754 and abrogated in A(2B)R-KO mice. BAY 60-6583 decreased glutamate release in slices and also attenuated the A(1)R inhibition (CPA 100 nM). A(2B)R-KO mice displayed a modified exploratory behaviour with an increased time in the central areas of the open field, elevated plus-maze and the Y-maze and no alteration of locomotion, anxiety or working memory. We conclude that A(2B)R are present in hippocampal glutamatergic terminals where they counteract the predominant A(1)R-mediated inhibition of synaptic transmission, impacting on exploratory behaviour.


Subject(s)
Hippocampus/physiology , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2B/metabolism , Synaptic Transmission/physiology , 2-Chloroadenosine/pharmacology , Acetamides/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Aminopyridines/pharmacology , Animals , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Glutamic Acid/metabolism , Hippocampus/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice, Inbred C57BL , Mice, Knockout , Purines/pharmacology , Receptor, Adenosine A2B/genetics , Synaptic Transmission/drug effects , Vesicular Glutamate Transport Proteins/metabolism , Xanthines/pharmacology
16.
J Hematol Oncol ; 7: 23, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24628795

ABSTRACT

BACKGROUND: 8-chloro-adenosine (8-Cl-Ado) is a unique ribonucleoside analog which is currently in a phase I clinical trial for hematological malignancies. Previously, we demonstrated in breast cancer cells that a 3-day treatment with 10 µM 8-Cl-Ado causes a 90% loss of clonogenic survival. In contrast, there was only a modest induction of apoptosis under these conditions, suggesting an alternative mechanism for the tumoricidal activity of 8-Cl-Ado. METHODS: Cellular metabolism, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) pathway signaling, as well as autophagy induction was evaluated in breast cancer cell lines treated with 8-Cl-Ado. The effects of knocking down essential autophagy factors with small interfering RNA on 8-Cl-Ado-inhibited cell survival was assessed in breast cancer cells by examining apoptosis induction and clonogenic survival. In vivo efficacy of 8-Cl-Ado was measured in two breast cancer orthotopic model systems. RESULTS: We demonstrate that in breast cancer cell lines, the metabolism of 8-Cl-Ado results in depletion of endogenous ATP that subsequently induces the phosphorylation and activation of the energy sensor, AMPK. This was associated with an attenuation of mTOR signaling and an induction of the phosphorylation of the autophagy factor, Unc51-like kinase 1 on Ser555. 8-Cl-Ado-mediated induction of autophagy was evident by increased aggregates of microtubule-associated protein 1 light chain 3B (LC3B) which was associated with its conversion to its lipidated form, LC3B-II, p62 degradative flux, and increased formation of acidic vesicular organelles. Additionally, transfection of MCF-7 cells with siRNA to ATG7 or beclin 1 provided partial protection of the cells to 8-Cl-Ado cytotoxicity as measured by clonogenicity. In vivo, 8-Cl-Ado inhibited growth of both MCF-7 and BT-474 xenograft tumors. Moreover, in 9 of 22 BT-474 tumors treated with 100 mg/kg/day 3 times a week, there was an absence of macroscopically detectable tumor after 3 weeks of treatment. CONCLUSIONS: Our data demonstrates that 8-Cl-Ado treatment activates the AMPK pathway leading to autophagy induction of in breast cancer cells, eliciting, in part, its tumoricidal effects. Additionally, 8-Cl-Ado effectively inhibited in vivo tumor growth in mice. Based on this biological activity, we are planning to test 8-Cl-Ado in the clinic for patients with breast cancer.


Subject(s)
2-Chloroadenosine/analogs & derivatives , AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Breast Neoplasms/drug therapy , 2-Chloroadenosine/pharmacology , Animals , Autophagy/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , MCF-7 Cells , Mice , Phosphorylation/drug effects , Random Allocation , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
17.
Mol Pain ; 9: 58, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24228737

ABSTRACT

Voltage gated calcium channels (VGCCs) are well known for its importance in synaptic transmission in the peripheral and central nervous system. However, the role of different VGCCs in the anterior cingulate cortex (ACC) has not been studied. Here, we use a multi-electrode array recording system (MED64) to study the contribution of different types of calcium channels in glutamatergic excitatory synaptic transmission in the ACC. We found that only the N-type calcium channel blocker ω-conotoxin-GVIA (ω-Ctx-GVIA) produced a great inhibition of basal synaptic transmission, especially in the superficial layer. Other calcium channel blockers that act on L-, P/Q-, R-, and T-type had no effect. We also tested the effects of several neuromodulators with or without ω-Ctx-GVIA. We found that N-type VGCC contributed partially to (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid- and (R)-Baclofen-induced synaptic inhibition. By contrast, the inhibitory effects of 2-Chloroadenosine and carbamoylcholine chloride did not differ with or without ω-Ctx-GVIA, indicating that they may act through other mechanisms. Our results provide strong evidence that N-type VGCCs mediate fast synaptic transmission in the ACC.


Subject(s)
Calcium Channels, N-Type/metabolism , Gyrus Cinguli/metabolism , Synaptic Transmission/drug effects , 2-Chloroadenosine/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Carbachol/pharmacology , Gyrus Cinguli/drug effects , Male , Mice , Mice, Inbred C57BL , omega-Conotoxin GVIA/pharmacology
18.
Mol Cell Biochem ; 384(1-2): 187-96, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24037421

ABSTRACT

Although E2F1-mediated DNA double-stranded breaks (DSBs) and tetraploid have been extensively studied, the role of E2F1 in mitotic catastrophe is still unknown. We have previously shown that 8-chloro-adenosine (8-Cl-Ado) induces DNA DSBs and aberrant mitosis in human lung cancer cells, followed by delayed apoptosis. Here, we demonstrate that E2F1-mediated DNA damage is implicated in 8-Cl-Ado-induced chromosome missegregation and apoptosis in lung cancer H1299 cells. We showed that E2F1 was accumulated upon 8-Cl-Ado-induced DNA DSBs. Induction of E2F1 by 8-Cl-Ado caused DNA damage in cycling cells including M cells. In contrast, silencing of E2F1 expression decreased 8-Cl-Ado-induced DNA DSBs, particularly eliminated E2F1-mediated mitotic DNA damage. Over-expression of E2F1 and/or 8-Cl-Ado exposure resulted in aberrant mitotic spindles and chromosome segregation errors. Furthermore, over-expression of E2F1 expression enhanced 8-Cl-Ado-induced apoptosis. Together, our data indicate that E2F1-mediated DNA damage, in particular mitotic DNA damage, is an important fraction of 8-Cl-Ado-induced DNA damage, which is implicated in 8-Cl-Ado-induced mitotic catastrophe and delayed apoptosis. Induction of E2F1 by 8-Cl-Ado may contribute at least partly to the drug-inhibited proliferation of cancer cells.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Apoptosis/drug effects , Chromosome Segregation/genetics , E2F1 Transcription Factor/metabolism , Lung Neoplasms/genetics , 2-Chloroadenosine/pharmacology , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Chromosome Aberrations , Chromosome Segregation/drug effects , Chromosomes/genetics , DNA Breaks, Double-Stranded , Down-Regulation , Histones/metabolism , Humans , Lung Neoplasms/pathology , Mitosis/drug effects , Mitosis/genetics , RNA Interference , RNA, Small Interfering , Tetraploidy , Tumor Suppressor Protein p14ARF/metabolism
19.
FASEB J ; 27(5): 2013-26, 2013 May.
Article in English | MEDLINE | ID: mdl-23392349

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterized by persistent inflammation and tissue remodeling and is a leading cause of death in the United States. Increased apoptosis of pulmonary epithelial cells is thought to play a role in COPD development and progression. Identification of signaling pathways resulting in increased apoptosis in COPD can be used in the development of novel therapeutic interventions. Deoxyadenosine (dAdo) is a DNA breakdown product that amplifies lymphocyte apoptosis by being phosphorylated to deoxyadenosine triphosphate (dATP). dAdo is maintained at low levels by adenosine deaminase (ADA). This study demonstrated that mice lacking ADA developed COPD manifestations in association with elevated dAdo and dATP levels and increased apoptosis in the lung. Deoxycitidine kinase (DCK), a major enzyme for dAdo phosphorylation, was up-regulated in mouse and human airway epithelial cells in association with air-space enlargement. Hypoxia was identified as a novel regulator of DCK, and inhibition of DCK resulted in diminished dAdo-mediated apoptosis in the lungs. Our results suggest that activating the dAdo-DCK-dATP pathway directly results in increased apoptosis in the lungs of mice with air-space enlargement and suggests a novel therapeutic target for the treatment of COPD.


Subject(s)
Apoptosis/drug effects , Deoxyadenine Nucleotides/metabolism , Deoxyadenosines/metabolism , Deoxycytidine Kinase/metabolism , Hypoxia/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , 2-Chloroadenosine/analogs & derivatives , 2-Chloroadenosine/pharmacology , Adenosine Deaminase/deficiency , Animals , Cells, Cultured , Deoxyadenosines/pharmacology , Humans , Mice , Up-Regulation
20.
Immunology ; 139(2): 205-18, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23323935

ABSTRACT

Allergen-specific IgE has long been regarded as a major molecular component of allergic asthma. Additionally, there is increasing evidence of the important roles of interleukin-33 (IL-33) in the disease. Here, we show that IL-33 and alveolar macrophages play essential roles in the exacerbation of IgE-mediated airway inflammation and remodelling. BALB/c mice passively sensitized with ovalbumin (OVA)-specific IgE monoclonal antibody (mAb) were challenged with OVA seven times intratracheally. The seventh challenge exacerbated airway inflammation and remodelling compared with the fourth challenge; furthermore, markedly increased expression of IL-33 in the lungs was observed at the fourth and seventh challenges. When anti-IL-33 or anti-ST2 antibody was administered during the fourth to seventh challenge, airway inflammation and remodelling were significantly inhibited at the seventh challenge. Because increases of IL-33(+) and ST2(+) alveolar macrophages and ST2(+)  CD4(+) T cells in the lungs were observed at the fourth challenge, the roles of macrophages and CD4(+) cells were investigated. Depletion of macrophages by 2-chloroadenosine during the fourth to seventh challenge suppressed airway inflammation and remodelling, and IL-33 production in the lung at the seventh challenge; additionally, anti-CD4 mAb inhibited airway inflammation, but not airway remodelling and IL-33 production. Meanwhile, treatment with 2-chloroadenosine or anti-CD4 mAb decreased IL-33-induced airway inflammation in normal mice; airway remodelling was repressed only by 2-chloroadenosine. These results illustrate that macrophage-derived IL-33 contributes to the exacerbation of IgE-mediated airway inflammation by mechanisms associated with macrophages and CD4(+) cells, and airway remodelling through the activation of macrophages.


Subject(s)
Immunoglobulin E/immunology , Inflammation/immunology , Interleukins/immunology , Macrophages, Alveolar/immunology , 2-Chloroadenosine/immunology , 2-Chloroadenosine/pharmacology , Airway Remodeling/drug effects , Airway Remodeling/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Asthma/immunology , Asthma/metabolism , CD4 Antigens/immunology , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Flow Cytometry , Immunohistochemistry , Inflammation/metabolism , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Interleukins/metabolism , Interleukins/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Receptors, Interleukin/immunology , Receptors, Interleukin/metabolism , Respiratory System/immunology , Respiratory System/metabolism , Respiratory System/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...