Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Int J Nanomedicine ; 19: 5297-5316, 2024.
Article in English | MEDLINE | ID: mdl-38859955

ABSTRACT

Propose: Oxyberberine (OBB), one of the main metabolites of berberine derived from intestinal and erythrocyte metabolism, exhibits appreciable anti-hyperuricemic activity. However, the low water solubility and poor plasma concentration-effect relationship of OBB hamper its development and utilization. Therefore, an OBB-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) supersaturated drug delivery system (SDDS) was prepared and characterized in this work. Methods: OBB-HP-ß-CD SDDS was prepared using the ultrasonic-solvent evaporation method and characterized. Additionally, the in vitro and in vivo release experiments were conducted to assess the release kinetics of OBB-HP-ß-CD SDDS. Subsequently, the therapeutic efficacy of OBB-HP-ß-CD SDDS on hyperuricemia (HUA) was investigated by means of histopathological examination and evaluation of relevant biomarkers. Results: The results of FT-IR, DSC, PXRD, NMR and molecular modeling showed that the crystallized form of OBB was transformed into an amorphous OBB-HP-ß-CD complex. Dynamic light scattering indicated that this system was relatively stable and maintained by formation of nanoaggregates with an average diameter of 23 nm. The dissolution rate of OBB-HP-ß-CD SDDS was about 5 times higher than that of OBB raw material. Furthermore, the AUC0-t of OBB-HP-ß-CD SDDS (10.882 µg/mL*h) was significantly higher than that of the raw OBB counterpart (0.701 µg/mL*h). The oral relative bioavailability of OBB-HP-ß-CD SDDS was also enhanced by 16 times compared to that of the raw material. Finally, in vivo pharmacodynamic assay showed the anti-hyperuricemic potency of OBB-HP-ß-CD SDDS was approximately 5-10 times higher than that of OBB raw material. Conclusion: Based on our findings above, OBB-HP-ß-CD SDDS proved to be an excellent drug delivery system for increasing the solubility, dissolution, bioavailability, and anti-hyperuricemic potency of OBB.


Subject(s)
Berberine , Animals , Berberine/pharmacokinetics , Berberine/chemistry , Berberine/administration & dosage , Berberine/pharmacology , Male , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/pharmacokinetics , Hyperuricemia/drug therapy , Hyperuricemia/blood , Drug Delivery Systems/methods , Solubility , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley , Drug Liberation , Particle Size , Biological Availability , Uric Acid/chemistry , Uric Acid/blood
2.
Carbohydr Polym ; 338: 122167, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763706

ABSTRACT

2-Hydroxypropyl-ß-cyclodextrin (HPBCD) is one of the most important cyclodextrin derivatives, finding extensive applications in the pharmaceutical sector. Beyond its role as an excipient, HPBCD achieved orphan drug status in 2015 for Niemann-Pick type C disease treatment, prompting research into its therapeutic potential for various disorders. However, the acceptance of HPBCD as an active pharmaceutical ingredient may be impeded by its complex nature. Indeed, HPBCD is not a single entity with a well-defined structure, instead, it is a complex mixture of isomers varying in substituent positions and the degree of hydroxypropylation, posing several challenges for unambiguous characterization. Pharmacopoeias' methods only address the average hydroxypropylation extent, lacking a rapid approach to characterize the substituent positions on the CD scaffold. Recognizing that the distribution of substituents significantly influences the complexation ability and overall activity of the derivative, primarily by altering cavity dimensions, we present a straightforward and non-destructive method based on liquid state NMR spectroscopy to analyze the positions of the hydroxypropyl sidechains. This method relies on a single set of routine experiments to establish quantitative assignment and it provides a simple yet effective tool to disclose the substitution pattern of this complex material, utilizing easily accessible (400 MHz NMR) instrumentation.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Magnetic Resonance Spectroscopy , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Magnetic Resonance Spectroscopy/methods , Excipients/chemistry
3.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747276

ABSTRACT

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Arginine , Aripiprazole , Calorimetry, Differential Scanning , Lysine , Solubility , beta-Cyclodextrins , Aripiprazole/chemistry , Arginine/chemistry , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Lysine/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Freeze Drying , Antipsychotic Agents/chemistry , Drug Stability , Microscopy, Electron, Scanning , Drug Compounding , Chemistry, Pharmaceutical/methods
4.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731538

ABSTRACT

Adenosine, as a water-soluble active substance, has various pharmacological effects. This study proposes a layer-by-layer assembly method of composite wall materials, using hydroxypropyl-ß-cyclodextrin as the inner wall and whey protein isolate as the outer wall, to encapsulate adenosine within the core material, aiming to enhance adenosine microcapsules' stability through intermolecular interactions. By combining isothermal titration calorimetry with molecular modeling analysis, it was determined that the core material and the inner wall and the inner wall and the outer wall interact through intermolecular forces. Adenosine and hydroxypropyl-ß-cyclodextrin form an optimal 1:1 complex through hydrophobic interactions, while hydroxypropyl-ß-cyclodextrin and whey protein isolate interact through hydrogen bonds. The embedding rate of AD/Hp-ß-CD/WPI microcapsules was 36.80%, and the 24 h retention rate under the release behavior test was 76.09%. The method of preparing adenosine microcapsules using composite wall materials is environmentally friendly and shows broad application prospects in storage and delivery systems with sustained release properties.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Adenosine , Capsules , Whey Proteins , Whey Proteins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Capsules/chemistry , Adenosine/chemistry , Drug Compounding/methods , Hydrophobic and Hydrophilic Interactions , Drug Liberation , Models, Molecular , Hydrogen Bonding , Layer-by-Layer Nanoparticles
5.
Int J Pharm ; 657: 124187, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38697585

ABSTRACT

Drug repositioning is a high-priority and feasible strategy in the field of oncology research, where the unmet medical needs are continuously unbalanced. Disulfiram is a potential non-chemotherapeutic, adjuvant anticancer agent. However, the clinical translation is limited by the drug's poor bioavailability. Therefore, the molecular encapsulation of disulfiram with cyclodextrins is evaluated to enhance the solubility and stability of the drug. The present work describes for the first time the complexation of disulfiram with randomly methylated-ß-cyclodextrin. A parallel analytical andin vitrobiological comparison of disulfiram inclusion complexes with hydroxypropyl-ß-cyclodextrin, randomly methylated-ß-cyclodextrin and sulfobutylether-ß-cyclodextrin is conducted. A significant drug solubility enhancement by about 1000-folds and fast dissolution in 1 min is demonstrated. Thein vitrodissolution-permeation studies and proliferation assays demonstrate the solubility-dependent efficacy of the drug. Throughout the different cancer cell lines' characteristics and disulfiram unspecific antitumoral activity, the inhibitory efficacy of the cyclodextrin encapsulated drug on melanoma (IC50 about 100 nM) and on glioblastoma (IC50 about 7000 nM) cell lines differ by a magnitude. This pre-formulation screening experiment serves as a proof of concept of using cyclodextrin encapsulation as a platform tool for further drug delivery development in repositioning areas.


Subject(s)
Antineoplastic Agents , Disulfiram , Drug Repositioning , Solubility , beta-Cyclodextrins , Disulfiram/pharmacology , Disulfiram/chemistry , Disulfiram/administration & dosage , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Cell Proliferation/drug effects , Drug Compounding/methods , Glioblastoma/drug therapy
6.
Anal Bioanal Chem ; 416(15): 3533-3542, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691170

ABSTRACT

The utilization of supramolecular deep eutectic solvent eddy-assisted liquid-liquid microextraction utilizing 2-hydroxypropyl ß-cyclodextrin (SUPRADES) has been identified as a successful method for pre-enriching Cu, Zn, and Mn in vegetable oil samples. Determination of each element was conducted by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion of metal-enriched phases. Various parameters were examined, including the composition of SUPRADES species [2HP-ß-CD: DL-lactic acid], a cyclodextrin mass ratio of 20 wt%, a water bath temperature of 75 °C, an extractor volume of 800 µL, a dispersant volume of 50 µL, and an eddy current time of 5 min. Optimal conditions resulted in extraction rates of 99.6% for Cu, 105.2% for Zn, and 101.5% for Mn. The method exhibits a broad linear range spanning from 10 to 20,000 µg L-1, with determination coefficients exceeding 0.99 for all analytes. Enrichment coefficients of 24, 21, and 35 were observed. Limits of detection ranged from 0.89 to 1.30 µg L-1, while limits of quantification ranged from 3.23 to 4.29 µg L-1. The unique structural characteristics of the method enable the successful determination of trace elements in a variety of edible vegetable oils.


Subject(s)
Plant Oils , Solvents , Trace Elements , Plant Oils/chemistry , Trace Elements/analysis , Solvents/chemistry , Liquid Phase Microextraction/methods , Limit of Detection , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Food Contamination/analysis , Metals/chemistry , Metals/analysis
7.
Int J Biol Macromol ; 270(Pt 2): 132268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734336

ABSTRACT

Paclitaxel (PTX) is a potent anticancer drug. However, PTX exhibits extremely poor solubility in aqueous solution along with severe side effects. Therefore, in this study, an inclusion complex was prepared between PTX and hydroxypropyl-ß-cyclodextrin (HPßCD) by solvent evaporation to enhance the drug's solubility. The HPßCD-PTX inclusion complex was then encapsulated in poly-3-hydroxybutyrate (PHB) to fabricate drug-loaded nanoparticles (HPßCD-PTX/PHB NPs) by nanoprecipitation. The HPßCD-PTX/PHB NPs depicted a higher release of PTX at pH 5.5 thus demonstrating a pH-dependent release profile. The cytotoxic properties of HPßCD-PTX/PHB NPs were tested against MCF-7, MDA-MB-231 and SW-620 cell lines. The cytotoxic potential of HPßCD-PTX/PHB NPs was 2.59-fold improved in MCF-7 cells in comparison to free PTX. Additionally, the HPßCD-PTX/PHB NPs improved the antimitotic (1.68-fold) and apoptotic (8.45-fold) effects of PTX in MCF-7 cells in comparison to PTX alone. In summary, these pH-responsive nanoparticles could be prospective carriers for enhancing the cytotoxic properties of PTX for the treatment of breast cancer.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Apoptosis , Drug Carriers , Nanoparticles , Paclitaxel , Polyesters , Prohibitins , Humans , Nanoparticles/chemistry , Paclitaxel/pharmacology , Paclitaxel/chemistry , Hydrogen-Ion Concentration , Apoptosis/drug effects , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Drug Carriers/chemistry , Polyesters/chemistry , MCF-7 Cells , Hydroxybutyrates/chemistry , Hydroxybutyrates/pharmacology , Cell Line, Tumor , Drug Liberation , Solubility , Cell Survival/drug effects , Polyhydroxybutyrates
8.
Int J Biol Macromol ; 270(Pt 2): 132388, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754685

ABSTRACT

Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-ß-cyclodextrin (HPßCD) was used as an effective carrier of resveratrol (RSV) to obtain the RSV/HPßCD inclusion complex (HPIC), which was then incorporated into pullulan nanofibers. For enhancement of RSV release toward colon target, multilayer structure with a pullulan/HPIC film sandwiched between two layers of hydrophobic Eudragit S100 (ES100) nanofibers was employed. The relationship between the superiority of the ES100-pullulan/HPIC-ES100 film and its multilayer structure was verified. The intimate interactions of hydrogen bonds between two adjacent layers enhanced thermal stability, and the hydrophobic outer layers improved water contact resistance. According to release results, multilayer films also showed excellent colon-targeted delivery property and approximately 78.58 % of RSV was observed to release in colon stage. In terms of release mechanism, complex mechanism best described RSV colonic release. Additionally, ES100-pullulan/HPIC-ES100 multilayer films performed higher encapsulation efficiency when compared to the structures without HPIC, which further increased the antioxidant activity and total release amount of RSV. These results suggest a promising strategy for designing safe colonic delivery systems based on multilayer and HPIC structures with superior preservation for RSV.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Colon , Glucans , Nanofibers , Resveratrol , Nanofibers/chemistry , Glucans/chemistry , Resveratrol/chemistry , Resveratrol/pharmacology , Resveratrol/administration & dosage , Resveratrol/pharmacokinetics , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Colon/metabolism , Colon/drug effects , Polymethacrylic Acids/chemistry , Drug Carriers/chemistry , Drug Liberation , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Drug Delivery Systems
9.
Int J Nanomedicine ; 19: 3589-3605, 2024.
Article in English | MEDLINE | ID: mdl-38645464

ABSTRACT

Purpose: This study aimed to develop a novel and feasible modification strategy to improve the solubility and antitumor activity of resiquimod (R848) by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-ß-CD). Methods: R848-loaded PLGA nanoparticles modified with 2-HP-ß-CD (CD@R848@NPs) were synthesized using an enhanced emulsification solvent-evaporation technique. The nanoparticles were then characterized in vitro by several methods, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, particle size analysis, and zeta potential analysis. Then, the nanoparticles were loaded with IR-780 dye and imaged using an in vivo imaging device to evaluate their biodistribution. Additionally, the antitumor efficacy and underlying mechanism of CD@R848@NPs in combination with an anti-TNFR2 antibody were investigated using an MC-38 colon adenocarcinoma model in vivo. Results: The average size of the CD@R848@NPs was 376 ± 30 nm, and the surface charge was 21 ± 1 mV. Through this design, the targeting ability of 2-HP-ß-CD can be leveraged and R848 is delivered to tumor-supporting M2-like macrophages in an efficient and specific manner. Moreover, we used an anti-TNFR2 antibody to reduce the proportion of Tregs. Compared with plain PLGA nanoparticles or R848, CD@R848@NPs increased penetration in tumor tissues, dramatically reprogrammed M1-like macrophages, removed tumors and prolonged patient survival. Conclusion: The new nanocapsule system is a promising strategy for targeting tumor, reprogramming tumor -associated macrophages, and enhancement immunotherapy.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Colonic Neoplasms , Imidazoles , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Tumor-Associated Macrophages , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/pharmacokinetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Animals , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Tumor-Associated Macrophages/drug effects , Cell Line, Tumor , Mice , Humans , Tissue Distribution , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Particle Size , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
10.
Talanta ; 274: 126016, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599118

ABSTRACT

The present study investigates the use of dextrins (maltodextrin, ß-cyclodextrin, and hydroxypropyl-ß-cyclodextrin) to improve the efficiency of the agarose-based gel electromembrane extraction technique for extracting chiral basic drugs (citalopram, hydroxyzine, and cetirizine). Additionally, it examines the enantioselectivity of the extraction process for these drugs. To achieve these, dextrins were incorporated into either the sample solution, the membrane, or the acceptor solution, and then the extraction procedure was performed. Enantiomers were separated and analyzed using a capillary electrophoresis device equipped with a UV detector. The results obtained under the optimal extraction conditions (sample solution pH: 4.0, acceptor solution pH: 2.0, gel membrane pH: 3.0, agarose concentration: 3 % w/v, stirring rate: 1000 rpm, gel thickness: 4.4 mm, extraction voltage: 62.3 V, and extraction time: 32.1 min) indicated that incorporating dextrins into either the sample solution, membrane or the acceptor solution enhances extraction efficiency by 17.3-23.1 %. The most significant increase was observed when hydroxypropyl-ß-cyclodextrin was added to the acceptor solution. The findings indicated that the inclusion of hydroxypropyl-ß-cyclodextrin in the sample solution resulted in an enantioselective extraction, yielding an enantiomeric excess of 6.42-7.14 %. The proposed method showed a linear range of 5.0-2000 ng/mL for enantiomers of model drugs. The limit of detection and limit of quantification for all enantiomers were found to be < 4.5 ng/mL and <15.0 ng/mL, respectively. Intra- and inter-day RSDs (n = 4) were less than 10.8 %, and the relative errors were less than 3.2 % for all the enantiomers. Finally, the developed method was successfully applied to determine concentrations of enantiomers in a urine sample with relative recoveries of 96.8-99.2 %, indicating good reliability of the developed method.


Subject(s)
Dextrins , Gels , Membranes, Artificial , Stereoisomerism , Dextrins/chemistry , Gels/chemistry , Electrophoresis, Capillary/methods , Hydroxyzine/analysis , Hydroxyzine/isolation & purification , Hydroxyzine/chemistry , Hydroxyzine/urine , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Cetirizine/chemistry , Cetirizine/urine , Cetirizine/analysis , Cetirizine/isolation & purification , Hydrogen-Ion Concentration , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/isolation & purification , Pharmaceutical Preparations/urine , Sepharose/chemistry
11.
Drug Dev Ind Pharm ; 50(5): 470-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38625641

ABSTRACT

OBJECTIVE: Belonging to the class II drugs according to the biopharmaceutics classification system, silibinin (SLB) benefits from high permeability but suffers poor solubility that negatively affects the development of any delivery system. This research aimed to improve SLB solubility by combined use of co-solvency and complexation phenomena. METHODS: Solubility studies were performed using the phase solubility analysis according to the shake-flask method in the presence of ethanol and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as a co-solvent and inclusion complexing agent, respectively. SLB release studies from chitosan nanoparticles were carried out in double-wall, diffusion cells using the optimized drug release medium. RESULTS: SLB solubility was mathematically optimized constraining to using the lowest concentrations of ethanol and HP-ß-CD. SLB solubility increased linearly with the increase of HP-ß-CD concentration. The solubility in PBS-ethanol mixtures followed a log-linear model. SLB solubility in the presence of the ethanol co-solvent and HP-ß-CD complexing agent was optimized by adopting a genetic algorithm suggesting the phosphate buffer saline solution supplemented by 6%v/v ethanol and 8 mM HP-ß-CD as an optimized medium. The optimized solution was examined to study SLB release from chitosan nanoparticles (4.5 ± 0.2% drug loading) at 37 °C under static conditions. The sigmoidal release profile of SLB from the particles indicated a combination of erosion and diffusion mechanisms governing drug release from the nanoparticles. CONCLUSION: SLB solubility in a buffered solution supplemented by ethanol co-solvent and HP-ß-CD complexing agent is a function of free drug present in the semi-aqueous media, the drug-ligand binary complex, and the drug/ligand/co-solvent ternary complex.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Chitosan , Drug Liberation , Nanoparticles , Silybin , Solubility , Solvents , Silybin/chemistry , Silybin/administration & dosage , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , Solvents/chemistry , Ethanol/chemistry , Silymarin/chemistry , Silymarin/administration & dosage , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry
12.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672478

ABSTRACT

This scientific study employs the Taylor dispersion technique for diffusion measurements to investigate the interaction between sulfamerazine (NaSMR) and macromolecular cyclodextrins (ß-CD and HP-ß-CD). The results reveal that the presence of ß-CD influences the diffusion of the solution component, NaSMR, indicating a counterflow of this drug due to solute interaction. However, diffusion data indicate no inclusion of NaSMR within the sterically hindered HP-ß-CD cavity. Additionally, toxicity tests were conducted, including pollen germination (Actinidia deliciosa) and growth curve assays in BY-2 cells. The pollen germination tests demonstrate a reduction in sulfamerazine toxicity, suggesting potential applications for this antimicrobial agent with diminished adverse effects. This comprehensive investigation contributes to a deeper understanding of sulfamerazine-cyclodextrin interactions and their implications for pharmaceutical and biological systems.


Subject(s)
Sulfamerazine , Sulfamerazine/chemistry , Diffusion , Cyclodextrins/chemistry , Toxicity Tests , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry
13.
Int J Pharm ; 653: 123914, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38373597

ABSTRACT

Drug-in-cyclodextrin-in-liposome (DCL) combines advantages of cyclodextrin and liposome. Here, DCL formulation was successfully prepared to encapsulate limonene (Lim), whose characterization revealed that particle size was 147.5 ± 1.3 nm and zeta potential was -48.7 ± 0.8 mV. And the complexation mechanism of Lim/HP-ß-CD inclusion complex (the intermediate of DCL) was analyzed by molecular dynamics simulation, showing that Lim was entrapped into the cavity of HP-ß-CD through electrostatic and hydrophobic interaction with a molar ratio of 1:1. Notably, DCL formulation not only reduced Lim volatilization in 25℃, but also enhanced the free radical (DPPH· and ABTS·+) scavenging ability of Lim. In summary, Lim-DCL formulation improved the stability and enhanced the antioxidant activity of Lim. DCL nanocarrier system is suitable to preserve volatile and hydrophobic compounds, enlarging their application in pharmaceutics industries.


Subject(s)
Antioxidants , Cyclodextrins , Antioxidants/chemistry , Liposomes/chemistry , Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Limonene , Solubility
14.
Int J Pharm ; 652: 123815, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38242260

ABSTRACT

Functionalizing cotton to induce biological activity is a viable approach for developing wound dressing. This study explores the development of cotton-based wound dressing through coating with biologically active nanofibers. Bioactive compounds like lawsone offer dual benefits of wound healing and infection prevention, however, their limited solubility and viability hinder their applications. To address this, Hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and Hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were employed. Inclusion complexations of CD/lawsone were achieved at 2:1 and 4:1 M ratios, followed by the fabrication of CD/lawsone nanofibrous systems via electrospinning. Phase solubility studies indicated a twofold increase in lawsone water-solubility with HP-ß-CD. Electrospinning yielded smooth and uniform nanofibers with an average diameter of ∼300-700 nm. The results showed that while specific crystalline peaks of lawsone are apparent in the samples with a 2:1 M ratio, they disappeared in 4:1, indicating complete complexation. The nanofibers exhibited ∼100 % loading efficiency of lawsone and its rapid release upon dissolution. Notably, antibacterial assays demonstrated the complete elimination of Escherichia coli and Staphylococcus aureus colonies. The CD/lawsone nanofibers also showed suitable antioxidant activity ranging from 50 % to 70 %. This integrated approach effectively enhances lawsone's solubility through CD complexation and offers promise for bilayer cotton-based wound dressings.


Subject(s)
Cyclodextrins , Nanofibers , Naphthoquinones , Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Solubility , Bandages
15.
Carbohydr Polym ; 328: 121698, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220321

ABSTRACT

Iodine is a vital microelement and a powerful antiseptic with a rapid and broad spectrum of action. The development of iodophor compounds to improve the solubility and stability of iodine is still challenging. Here, we report the synthesis of a novel cationic ß-cyclodextrin bearing a choline-like pendant (ß-CD-Chol) designed to complex and deliver iodine to bacterial cells. The characterization of ß-CD-Chol and the investigation of the inclusion complex with iodine were performed by NMR spectroscopy, mass spectrometry, UV-vis spectrophotometry, isothermal titration calorimetry, and dynamic light scattering. The functionalization with the positively charged unit conferred improved water-solubility, mucoadhesivity, and iodine complexation efficiency to the ß-CD scaffold. The water-soluble ß-CD-Chol/iodine complex efficiently formed both in solution and by solid-vapor reaction. The solid complex exhibited a significant stability for months. Iodine release from the inclusion complex was satisfactory and the bactericidal activity was proved against a Staphylococcus epidermidis strain. The absence of cytotoxicity tested on human keratinocytes and the improved mucoadhesivity make ß-CD-Chol a promising drug delivery system and an appealing iodophor candidate for iodine-based antisepsis including mucosa disinfection.


Subject(s)
Iodine , beta-Cyclodextrins , Humans , Choline , beta-Cyclodextrins/chemistry , Iodine/pharmacology , Iodine/chemistry , Solubility , Anti-Bacterial Agents/pharmacology , Iodophors , Water/chemistry , Calorimetry, Differential Scanning , 2-Hydroxypropyl-beta-cyclodextrin/chemistry
16.
Eur J Pharm Sci ; 194: 106691, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38181869

ABSTRACT

Altrenogest (ALT), a synthetic progestogen, serves a critical role in estrus synchronization among animals like gilts and mares. However, its practical application in animal husbandry is hampered due to its poor solubility and limited oral bioavailability. To address this challenge, a solvent evaporation method was employed to create an inclusion complex of ALT with hydroxypropyl-ß-cyclodextrin (ALT/HP-ß-CD). The formation of this inclusion complex was confirmed by scanning electron microscopy, power X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and docking calculations. In addition, we further conducted pharmacokinetic investigation involving gilts, comparing ALT/HP-ß-CD inclusion complex to an ALT oral solution. The physicochemical characterization results unveiled a transformation of ALT's crystal morphology into an amorphous state, with ALT effectively entering the cavity of HP-ß-CD. Compared with ALT, the solubility of ALT/HP-ß-CD inclusion complex increased by 1026.51-fold, and its dissolution rate demonstrated significant improvement. Pharmacokinetic assessments further revealed that the oral bioavailability of ALT/HP-ß-CD inclusion complex surpassed that of the ALT oral solution, with a relative bioavailability of 114.08 %. In conclusion, complexation with HP-ß-CD represents a highly effective approach to improve both the solubility and oral bioavailability of ALT.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Trenbolone Acetate/analogs & derivatives , Animals , Female , Horses , Swine , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Solubility , Biological Availability , Spectroscopy, Fourier Transform Infrared , Calorimetry, Differential Scanning , X-Ray Diffraction
17.
Food Chem ; 438: 138031, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37995588

ABSTRACT

In this study, Polycaprolactone (PCL)/Yam Polysaccharide (YP) fiber membranes loaded the ultrasound-mediated assembly of 2-Hydroxypropyl-ß-cyclodextrin (HP-ß-CD)/Epicatechin gallate (ECG) inclusion complexes were prepared by electrospinning technology for food packaging. Morphology, infrared spectroscopy and X-ray diffraction results showed that the inclusion complexes were successfully assembled. With the addition of inclusion complexes, the average diameter of the fibers increased from 2480.96 to 10179.12 nm, the crystallinity decreased, the thermal stability improved, the hydrophilicity enhanced, and the water vapor permeability enhanced. Meanwhile, thermogravimetry and differential scanning calorimetry results showed that the inclusion complexes formed hydrogen bonds between the fibers, which improved the thermal stability, but the mechanical behavior suffered a certain loss. In addition, the fiber membrane could continuously release ECG within 240 h, which showed excellent antibacterial effects both in vitro and in vivo. These results indicated that the fiber film developed based on electrospinning had a broad application prospect in food packaging.


Subject(s)
Dioscorea , Nanofibers , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Nanofibers/chemistry , Food Packaging , X-Ray Diffraction , Electrocardiography , Solubility , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared
18.
J Biomol Struct Dyn ; 42(6): 3223-3232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37286382

ABSTRACT

α-Mangostin is the most abundant compound contained in the mangostin (Garcinia mangostana L.) plant which have been developed and proven to have many promising pharmacological effects. However, the low water solubility of α-mangostin causes limitations in its development in clinical purpose. To increase the solubility of a compound, a method currently being developed is to make drug inclusion complexes using cyclodextrins. This research aimed to use in silico techniques namely molecular docking study and molecular dynamics simulation to explore the molecular mechanism and stability of the encapsulation of α-mangostin using cyclodextrins. Two types of cyclodextrins were used including ß-cyclodextrin and 2-hydroxypropyl-ß-cyclodextrin docked against α-mangostin. From the molecular docking results, it shows that the α-mangostin complex with 2-hydroxypropyl-ß-cyclodextrin provides the lowest binding energy value of -7.99 Kcal/mol compared to ß-cyclodextrin value of -6.14 Kcal/mol. The α-mangostin complex with 2-hydroxypropyl-ß-cyclodextrin also showed good stability based on molecular dynamics simulation during 100 ns. From molecular motion, RDF, Rg, SASA, density, total energy analyzes, this complex shows increased solubility in water and provided good stability. This indicates that the encapsulation of α-mangostin with 2-hydroxypropyl-ß-cyclodextrin can increase the solubility of the α-mangostin.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cyclodextrins , Xanthones , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Solubility , Molecular Docking Simulation , beta-Cyclodextrins/chemistry , Cyclodextrins/chemistry , Water/chemistry
19.
Molecules ; 28(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959779

ABSTRACT

Since griseofulvin was marketed as a non-polyene antifungal antibiotic drug in 1958, its poor water solubility has been an issue for its wide applications, and over the last sixty years, many attempts have been made to increase its water solubility; however, a significant result has yet to be achieved. Through supercritical carbon dioxide-assisted cyclodextrin complexation with the addition of a trace amount of water-soluble polymer surfactant, the griseofulvin inclusion complex with HP-γ-cyclodextrin was prepared and confirmed. The 1:2 ratio of griseofulvin and HP-γ-cyclodextrin in the complex was determined based on its NMR study. After complexation with HP-γ-cyclodextrin, griseofulvin's water solubility was increased 477 times compared with that of griseofulvin alone, which is the best result thus far. The complex showed 90% of griseofulvin release in vitro in 10 min, in an in vivo dog pharmacokinetic study; the Cmax was increased from 0.52 µg/mL to 0.72 µg/mL, AUC0-12 was increased from 1.55 µg·h/mL to 2.75 µg·h/mL, the clearance was changed from 51.78 L/kg/h to 24.16 L/kg/h, and the half-life time was changed from 0.81 h to 1.56 h, indicating the obtained griseofulvin complex can be a more effective drug than griseofulvin alone.


Subject(s)
Griseofulvin , gamma-Cyclodextrins , Animals , Dogs , Solubility , Carbon Dioxide , Water , 2-Hydroxypropyl-beta-cyclodextrin/chemistry
20.
AAPS PharmSciTech ; 24(8): 230, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964017

ABSTRACT

The main components of Caesalpinia sappan L. (CS) are brazilin and brazilein, which show high potential in pharmacologic applications. However, these have been drastically limited by the poor water solubility and stability. The present study investigates the formation of inclusion complexes F1, F2, and F3 between CS and ß-cyclodextrin (ßCD), hydroxypropyl-ß-cyclodextrin (HPßCD), and methyl-ß-cyclodextrin (MßCD), respectively. These complexes were characterized by Fourier transform infrared spectroscopy (FT-IR). The results showed that the highest encapsulation efficiency and loading capacity of CS extract were 44.24% and 9.67%, respectively. The solubility and stability of CS extract were significantly increased through complexation in phase solubility and stability studies. The complexes F1-F3 showed mainly significant antibacterial activities on gram-positive bacteria pathogens causing mastitis. Moreover, the expression levels of COX-2 and iNOS were significantly decreased in LPS-induced inflammatory cells at concentrations of 50 and 100 µg/mL. In addition, treatment of complex F3 (CS/MßCD) in bovine endothelial cells remarkably increased the chemokine gene expression of CXCL3 and CXCL8, which were responsible for immune cell recruitment (9.92 to 11.17 and 8.23 to 9.51-fold relative to that of the LPS-treated group, respectively). This study provides a complete characterization of inclusion complexes between CS extract and ßCD, HPßCD, and MßCD for the first time, highlighting the impact of complex formation on the pharmacologic activities of bovine mastitis.


Subject(s)
Caesalpinia , Cyclodextrins , Mastitis, Bovine , Animals , Cattle , Female , Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Spectroscopy, Fourier Transform Infrared , Mastitis, Bovine/drug therapy , Endothelial Cells , Lipopolysaccharides , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...