Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 24(4): 1080-4, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24468412

ABSTRACT

Trichomonas vaginalis continues to be a major health problem with drug-resistant strains increasing in prevalence. Novel antitrichomonal agents that are mechanistically distinct from current therapies are needed. The NIH Clinical Compound Collection was screened to find inhibitors of the uridine ribohydrolase enzyme required by the parasite to scavenge uracil for its growth. The proton-pump inhibitors omeprazole, pantoprazole, and rabeprazole were identified as inhibitors of this enzyme, with IC50 values ranging from 0.3 to 14.5 µM. This suggests a molecular mechanism for the in vitro antitrichomonal activity of these proton-pump inhibitors, and may provide important insights toward structure-based drug design.


Subject(s)
2-Pyridinylmethylsulfinylbenzimidazoles/pharmacology , N-Glycosyl Hydrolases/antagonists & inhibitors , Omeprazole/pharmacology , Proton Pump Inhibitors/pharmacology , Rabeprazole/pharmacology , Trichomonas vaginalis/enzymology , 2-Pyridinylmethylsulfinylbenzimidazoles/chemical synthesis , 2-Pyridinylmethylsulfinylbenzimidazoles/chemistry , Dose-Response Relationship, Drug , Molecular Structure , N-Glycosyl Hydrolases/metabolism , Omeprazole/chemical synthesis , Omeprazole/chemistry , Pantoprazole , Proton Pump Inhibitors/chemical synthesis , Proton Pump Inhibitors/chemistry , Rabeprazole/chemical synthesis , Rabeprazole/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...