Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
J Korean Med Sci ; 39(21): e174, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38832478

ABSTRACT

BACKGROUND: Although guidelines recommend vaccination for individuals who have recovered from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to prevent reinfection, comprehensive evaluation studies are limited. We aimed to evaluate vaccine effectiveness against SARS-CoV-2 reinfection according to the primary vaccination status, booster vaccination status, and vaccination methods used. METHODS: This population-based case-control study enrolled all SARS-CoV-2-infected patients in Seoul between January 2020 and February 2022. Individuals were categorized into case (reinfection) and control (no reinfection) groups. Data were analyzed using conditional logistic regression after adjusting for underlying comorbidities using multiple regression. RESULTS: The case group included 7,678 participants (average age: 32.26 years). In all vaccinated individuals, patients who received the first and second booster doses showed reduced reinfection rates compared with individuals who received basic vaccination (odds ratio [OR] = 0.605, P < 0.001 and OR = 0.002, P < 0.001). Patients who received BNT162b2 or mRNA-1273, NVX-CoV2373 and heterologous vaccination showed reduced reinfection rates compared with unvaccinated individuals (OR = 0.546, P < 0.001; OR = 0.356, P < 0.001; and OR = 0.472, P < 0.001). However, the ChAdOx1-S or Ad26.COV2.S vaccination group showed a higher reinfection rate than the BNT162b2 or mRNA-1273 vaccination group (OR = 4.419, P < 0.001). CONCLUSION: In SARS-CoV-2-infected individuals, completion of the basic vaccination series showed significant protection against reinfection compared with no vaccination. If the first or second booster vaccination was received, the protective effect against reinfection was higher than that of basic vaccination; when vaccinated with BNT162b2 or mRNA-1273 only or heterologous vaccination, the protective effect was higher than that of ChAdOx1-S or Ad26.COV2.S vaccination only.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Reinfection , SARS-CoV-2 , Vaccine Efficacy , Humans , Male , Female , Case-Control Studies , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Adult , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , BNT162 Vaccine/immunology , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Reinfection/prevention & control , Reinfection/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Young Adult , Vaccination , ChAdOx1 nCoV-19 , Aged
2.
Virulence ; 15(1): 2351266, 2024 12.
Article in English | MEDLINE | ID: mdl-38717195

ABSTRACT

Background: The COVID-19 pandemic has led to millions of fatalities globally. Kidney transplant (KT) patients, given their comorbidities and under immunosuppressant drugs, are identified as a high-risk group. Though vaccination remains pivotal for pandemic control, some studies indicate that KT exhibits diminished immune reactions to SARS-CoV-2 vaccines. Therefore, evaluating the vaccine responses in KT, especially the humoral responses against emergent variants is crucial.Methods: We developed a multiplexed SARS-CoV-2 variant protein microarray, incorporating the extracellular domain (ECD) and the receptor binding domain (RBD) of the spike proteins from the variants. This was employed to investigate the collective humoral responses after administering two doses of mRNA-1273 and AZD1222 vaccines in KT under immunosuppressive drugs and in healthy controls.Results: After two doses of either mRNA-1273 or AZD1222, the KT generally showed lower surrogate neutralizing and total antibodies against spike ECD in multiple variants compared to healthy controls. Although two doses of mRNA-1273 induced 1.5-2 fold more surrogate neutralizing and total antibodies than AZD1222 in healthy controls, the KT subjects with two doses of mRNA-1273 generally exhibited higher surrogate neutralizing but similar total antibodies against spike ECD in multiple variants. There were moderate to high correlations between the surrogate neutralizing and total antibodies against spike ECDs.Conclusion: This study offers pivotal insights into the relative vulnerability of KT concerning humoral immunity and the evolving mutations of SARS-CoV-2. Such findings are useful for evaluating vaccine responses and recommending vaccine episodes for KT.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Kidney Transplantation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , Male , Middle Aged , Female , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Immunosuppressive Agents/administration & dosage , Vaccination , Aged , Transplant Recipients
3.
Influenza Other Respir Viruses ; 18(5): e13290, 2024 May.
Article in English | MEDLINE | ID: mdl-38706402

ABSTRACT

BACKGROUND: Priming with ChAdOx1 followed by heterologous boosting is considered in several countries. Nevertheless, analyses comparing the immunogenicity of heterologous booster to homologous primary vaccination regimens and natural infection are lacking. In this study, we aimed to conduct a comparative assessment of the immunogenicity between homologous primary vaccination regimens and heterologous prime-boost vaccination using BNT162b2 or mRNA-1273. METHODS: We matched vaccinated naïve (VN) individuals (n = 673) with partial vaccination (n = 64), primary vaccination (n = 590), and primary series plus mRNA vaccine heterologous booster (n = 19) with unvaccinated naturally infected (NI) individuals with a documented primary SARS-CoV-2 infection (n = 206). We measured the levels of neutralizing total antibodies (NTAbs), total antibodies (TAbs), anti-S-RBD IgG, and anti-S1 IgA titers. RESULTS: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA immune responses compared to primary BNT162b2 or mRNA-1273 vaccination regimens (p < 0.05) but also showed ~3-fold less anti-S1 IgA response compared to infection-induced immunity (p < 0.001). Nevertheless, a heterologous booster led to an increase of ~12 times in the immune response when compared to two consecutive homologous ChAdOx1 immunizations. Furthermore, correlation analyses revealed that both anti-S-RBD IgG and anti-S1 IgA significantly contributed to virus neutralization among NI individuals, particularly in symptomatic and pauci-symptomatic individuals, whereas among VN individuals, anti-S-RBD IgG was the main contributor to virus neutralization. CONCLUSION: The results emphasize the potential benefit of using heterologous mRNA boosters to increase antibody levels and neutralizing capacity particularly in patients who received primary vaccination with ChAdOx1.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , SARS-CoV-2/immunology , Adult , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , Immunoglobulin A/blood , Immunoglobulin A/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Young Adult , Follow-Up Studies , Vaccination , Aged , Immunogenicity, Vaccine , Antibody Formation/immunology , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
4.
Front Immunol ; 15: 1392477, 2024.
Article in English | MEDLINE | ID: mdl-38774878

ABSTRACT

Introduction: Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods: Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNÉ£ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results: Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion: Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.


Subject(s)
COVID-19 , Cross Reactions , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Humans , Cross Reactions/immunology , SARS-CoV-2/immunology , Middle Aged , Adult , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Aged , Male , T-Lymphocytes/immunology , Female , Spike Glycoprotein, Coronavirus/immunology , Age Factors , Young Adult , COVID-19 Vaccines/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Immunization, Secondary , Cytomegalovirus/immunology , BNT162 Vaccine/immunology , Vaccination , 2019-nCoV Vaccine mRNA-1273/immunology , ChAdOx1 nCoV-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Aged, 80 and over
5.
Lancet Rheumatol ; 6(6): e339-e351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734019

ABSTRACT

BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunocompromised Host , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Female , Male , COVID-19/prevention & control , COVID-19/immunology , Middle Aged , Immunocompromised Host/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Viral/blood , Prospective Studies , Immunization, Secondary , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , T-Lymphocytes/immunology , United Kingdom , ChAdOx1 nCoV-19/immunology
6.
Front Immunol ; 15: 1390022, 2024.
Article in English | MEDLINE | ID: mdl-38698851

ABSTRACT

Purpose: Previous studies have demonstrated that the majority of patients with an inborn error of immunity (IEI) develop a spike (S)-specific IgG antibody and T-cell response after two doses of the mRNA-1273 COVID-19 vaccine, but little is known about the response to a booster vaccination. We studied the immune responses 8 weeks after booster vaccination with mRNA-based COVID-19 vaccines in 171 IEI patients. Moreover, we evaluated the clinical outcomes in these patients one year after the start of the Dutch COVID-19 vaccination campaign. Methods: This study was embedded in a large prospective multicenter study investigating the immunogenicity of COVID-19 mRNA-based vaccines in IEI (VACOPID study). Blood samples were taken from 244 participants 8 weeks after booster vaccination. These participants included 171 IEI patients (X-linked agammaglobulinemia (XLA;N=11), combined immunodeficiency (CID;N=4), common variable immunodeficiency (CVID;N=45), isolated or undefined antibody deficiencies (N=108) and phagocyte defects (N=3)) and 73 controls. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T-cell responses were evaluated. One year after the start of the COVID-19 vaccination program, 334 study participants (239 IEI patients and 95 controls) completed a questionnaire to supplement their clinical data focusing on SARS-CoV-2 infections. Results: After booster vaccination, S-specific IgG titers increased in all COVID-19 naive IEI cohorts and controls, when compared to titers at 6 months after the priming regimen. The fold-increases did not differ between controls and IEI cohorts. SARS-CoV-2-specific T-cell responses also increased equally in all cohorts after booster vaccination compared to 6 months after the priming regimen. Most SARS-CoV-2 infections during the study period occurred in the period when the Omicron variant had become dominant. The clinical course of these infections was mild, although IEI patients experienced more frequent fever and dyspnea compared to controls and their symptoms persisted longer. Conclusion: Our study demonstrates that mRNA-based booster vaccination induces robust recall of memory B-cell and T-cell responses in most IEI patients. One-year clinical follow-up demonstrated that SARS-CoV-2 infections in IEI patients were mild. Given our results, we support booster campaigns with newer variant-specific COVID-19 booster vaccines to IEI patients with milder phenotypes.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , Male , Female , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Adult , Middle Aged , 2019-nCoV Vaccine mRNA-1273/immunology , Follow-Up Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Prospective Studies , T-Lymphocytes/immunology , Young Adult , Vaccination , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Immunologic Deficiency Syndromes/immunology , Adolescent
7.
Vaccine ; 42(14): 3307-3320, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38616439

ABSTRACT

BACKGROUND: Vaccines were developed and deployed to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to characterize patterns in the protection provided by the BNT162b2 and mRNA-1273 mRNA vaccines against a spectrum of SARS-CoV-2 infection symptoms and severities. METHODS: A national, matched, test-negative, case-control study was conducted in Qatar between January 1 and December 18, 2021, utilizing a sample of 238,896 PCR-positive tests and 6,533,739 PCR-negative tests. Vaccine effectiveness was estimated against asymptomatic, symptomatic, severe coronavirus disease 2019 (COVID-19), critical COVID-19, and fatal COVID-19 infections. Data sources included Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalization, and death. RESULTS: Effectiveness of two-dose BNT162b2 vaccination was 75.6% (95% CI: 73.6-77.5) against asymptomatic infection and 76.5% (95% CI: 75.1-77.9) against symptomatic infection. Effectiveness against each of severe, critical, and fatal COVID-19 infections surpassed 90%. Immediately after the second dose, all categories-namely, asymptomatic, symptomatic, severe, critical, and fatal COVID-19-exhibited similarly high effectiveness. However, from 181 to 270 days post-second dose, effectiveness against asymptomatic and symptomatic infections declined to below 40%, while effectiveness against each of severe, critical, and fatal COVID-19 infections remained consistently high. However, estimates against fatal COVID-19 often had wide 95% confidence intervals. Analogous patterns were observed in three-dose BNT162b2 vaccination and two- and three-dose mRNA-1273 vaccination. Sensitivity analyses confirmed the results. CONCLUSION: A gradient in vaccine effectiveness exists and is linked to the symptoms and severity of infection, providing higher protection against more symptomatic and severe cases. This gradient intensifies over time as vaccine immunity wanes after the last vaccine dose. These patterns appear consistent irrespective of the vaccine type or whether the vaccination involves the primary series or a booster.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Qatar/epidemiology , SARS-CoV-2/immunology , Male , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Adult , Case-Control Studies , Young Adult , Adolescent , Aged , Severity of Illness Index , Vaccination/methods
8.
Virology ; 595: 110082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636363

ABSTRACT

Vaccines against SARS-CoV-2 were developed during the pandemic including the BNT162b2 and the mRNA-1273. We evaluated the levels of binding antibodies against the receptor binding domain and the levels of NAbs in individuals who developed a breakthrough infection after having received three doses of mRNA-1273. A total of 51 participants were included. The breakthrough group was compared to a 1:1 matched-control group. Among the 51 individuals, 18 (35%) developed a breakthrough infection. The GMT of NAbs against the BA.1 in the BK population was 278.1 (95%CI: 168.1-324.1). This titer was significantly lower compared to the matched-control group when considering all data (GMT = 477.4; 95%CI: 316.2-541.0; p = 0.0057). Results were similar for the BA.5 (GMT = 152.0 (95%CI: 76.9-172.9) for breakthrough and 262.0 (95%CI: 171.3-301.8) for control (p = 0.0043)). Our study found that individuals receiving the mRNA-1273 booster and who developed a breakthrough infection presented lower levels of binding antibodies and NAbs before the infection as compared to a matched-control group.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Health Personnel , Immunization, Secondary , SARS-CoV-2 , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , COVID-19/immunology , COVID-19/virology , COVID-19/prevention & control , Antibodies, Viral/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Male , Female , Adult , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Middle Aged , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Breakthrough Infections
9.
Pediatrics ; 153(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38548700

ABSTRACT

BACKGROUND AND OBJECTIVES: The messenger RNA (mRNA)-based coronavirus disease 2019 vaccines approved for use in children <5 years of age have different antigen doses and administration schedules that could affect vaccine immunogenicity and effectiveness. We sought to compare the strength and breadth of serum binding and neutralizing antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicited by monovalent mRNA-based coronavirus disease 2019 vaccines in young children. METHODS: We conducted a prospective cohort study of children 6 months to 4 years of age who completed primary series vaccination with monovalent mRNA-1273 or BNT162b2 vaccines. Serum was collected 1 month after primary vaccine series completion for the measurement of SARS-CoV-2-specific humoral immune responses, including antibody binding responses to Spike proteins from an ancestral strain (D614G) and major variants of SARS-CoV-2 and antibody neutralizing activity against D614G and Omicron subvariants (BA.1, BA.4/5). RESULTS: Of 75 participants, 40 (53%) received mRNA-1273 and 35 (47%) received BNT162b2. Children receiving either primary vaccine series developed robust and broad SARS-CoV-2-specific binding and neutralizing antibodies, including to Omicron subvariants. Children with a previous history of SARS-CoV-2 infection developed significantly higher antibody binding responses and neutralization titers to Omicron subvariants, which is consistent with the occurrence of identified infections during the circulation of Omicron subvariants in the region. CONCLUSIONS: Monovalent mRNA-1273 and BNT162b2 elicited similar antibody responses 1 month after vaccination in young children. In addition, previous infection significantly enhanced the strength of antibody responses to Omicron subvariants. The authors of future studies should evaluate incorporation of these vaccines into the standard childhood immunization schedule.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 , Immunogenicity, Vaccine , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Infant , 2019-nCoV Vaccine mRNA-1273/immunology , Child, Preschool , Male , Antibodies, Neutralizing/blood , Prospective Studies , Female , Immunogenicity, Vaccine/immunology , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cohort Studies , Spike Glycoprotein, Coronavirus/immunology
10.
Kaohsiung J Med Sci ; 40(5): 477-488, 2024 May.
Article in English | MEDLINE | ID: mdl-38363080

ABSTRACT

The immune response of patients with chronic liver disease tends to be lower after receiving their second coronavirus disease 2019 (COVID-19) vaccine dose, but the effect of a third vaccine dose on their immune response is currently unknown. We recruited 722 patients without previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from three hospitals. The patients received homologous (MMM) and heterologous (AZAZBNT, AZAZM) boosters, where AZ, BNT, and M denoted the AZD1222, BNT162b2, and mRNA-1273 vaccines, respectively. Serum IgG spike antibody levels were measured at a mean 1.5 ± 0.7 (visit 1) and 5.0 ± 0.5 (visit 2) months after the third vaccine booster. A threshold of 4160 AU/mL was considered significant antibody activity. In both visits, the patients who received the MMM booster had higher anti-S-IgG levels than those who received the AZAZBNT and AZAZM boosters. Patients with active hepatocellular carcinoma (HCC) had lower anti-S-IgG levels than the control group (761.6 vs. 1498.2 BAU/mL; p = 0.019) at visit 1. The anti-S-IgG levels decreased significantly at visit 2. The patients with significant antibody activity had a lower rate of liver cirrhosis with decompensation (0.7% decompensation vs. 8.0% non-decompensation and 91.3% non-liver cirrhosis, p = 0.015), and active HCC (1.5% active HCC vs. 3.7% non-active HCC and 94.7% non-HCC, p < 0.001). Receiving the MMM booster regimen (OR = 10.67, 95% CI 5.20-21.91, p < 0.001) increased the odds of having significant antibody activity compared with the AZAZBNT booster regimen. Patients with active HCC had a reduced immune response to the third COVID-19 vaccine booster. These findings underscore the importance of booster vaccinations, especially in immunocompromised patients, with superior efficacy observed with the homologous mRNA-1273 regimen.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Carcinoma, Hepatocellular , Immunization, Secondary , Immunoglobulin G , Liver Neoplasms , SARS-CoV-2 , Humans , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Male , Female , Middle Aged , Immunoglobulin G/blood , Immunoglobulin G/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Aged , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Immunogenicity, Vaccine
11.
Immunol Med ; 47(2): 76-84, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38189429

ABSTRACT

This study aims to elucidate the effectiveness and safety of SARS-CoV-2 mRNA vaccination in patients with systemic lupus erythematosus (SLE). We enrolled uninfected SLE patients who received two vaccine doses (BNT162b2 or mRNA-1273) and historical unvaccinated patients. Neutralizing antibodies, adverse reactions, and disease flares were evaluated 4 weeks after the second vaccination. Ninety patients were enrolled in each group. Among the vaccinated patients, SLE Disease Activity Index (SLEDAI), and prednisolone doses before vaccination were 2, and 5 mg/d, respectively. After the second vaccination, 19 (21.1%) had no neutralizing antibodies. Adverse reactions occurred in 88.9% within 3 d. Negative antibodies were associated with anemia and mycophenolate mofetil administration. SLEDAI increased modestly but significantly after vaccination, with 13 (14.4%) experiencing flares and 4 (4.4%) severe flares (nephritis in three and vasculitis in one). The flare rate was higher in vaccinated patients than unvaccinated controls. The mean duration between the second vaccination and flares was 35 d, and flares occurred at least 8 days after vaccination. Multivariable analysis showed that high SLEDAI and anti-dsDNA antibodies were associated with flares. The vaccine type, neutralizing antibody titer, and adverse reaction frequency did not affect flares. Therefore, residual disease activity before vaccination increases flare risk.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19 , Lupus Erythematosus, Systemic , SARS-CoV-2 , Humans , Lupus Erythematosus, Systemic/immunology , Female , Male , COVID-19/prevention & control , COVID-19/immunology , Adult , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , Antibodies, Neutralizing/blood , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Symptom Flare Up , Vaccination/adverse effects , Antibodies, Viral/blood , Severity of Illness Index , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology
12.
Virus Res ; 334: 199175, 2023 09.
Article in English | MEDLINE | ID: mdl-37473964

ABSTRACT

INTRODUCTION: Nanoporous microneedle arrays (npMNA) are being developed as skin patches for vaccine delivery. As alternative for needle-based immunisation, they may potentially result in higher vaccine acceptance, which is important for future mass vaccination campaigns to control outbreaks, such as COVID-19, and for public vaccination in general. In this study we investigated the safety and immunogenicity of needle-free intradermal delivery of a fractional third or fourth dose of mRNA-1273 vaccine by npMNA. METHODS: This study was an open-label, randomised-controlled, proof-of-concept study. Healthy adults were eligible if they had received a primary immunisation series against SARS-CoV-2 with two doses of mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) mRNA vaccine. A history of a COVID-19 infection or booster vaccination with mRNA-1273 or BNT162b2 was allowed if it occurred at least three months before inclusion. Participants were randomised in a 1:1 ratio to receive 20 µg mRNA-1273 vaccine, either through npMNA patch applied on the skin (ID-patch group), or through intramuscular (IM) injection (IM-control group). Primary outcomes were reactogenicity up to two weeks after vaccination, and fold-increase of SARS-CoV-2 spike S1-specific IgG antibodies 14 days post-vaccination. RESULTS: In April 2022, 20 participants were enroled. The geometric mean concentration (GMC) did not increase in the ID-patch group after vaccination, in contrast to the IM-control group (GMC was 1,006 BAU/mL (95% CI 599-1,689), 3,855 (2,800-5,306), and 3,513 (2,554-4,833) at day 1, 15 and 29, respectively). In addition, SARS-CoV-2-specific T cell responses were lower after ID vaccination through npMNA. CONCLUSION: Needle-free delivery of 20 µg mRNA-1273 vaccine by npMNA failed to induce antibody and T cell responses. As this is a potentially very useful vaccination method, it is important to determine which adjustments are needed to make this npMNA successful. CLINICAL TRIAL REGISTRY (ON CLINICALTRIAL.GOV): NCT05315362.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/chemistry , 2019-nCoV Vaccine mRNA-1273/immunology , Humans , Young Adult , Adult , Middle Aged , Administration, Cutaneous , COVID-19/immunology , COVID-19/prevention & control , Male , Female , Antibody Formation
13.
Int J Cancer ; 152(4): 705-712, 2023 02 15.
Article in English | MEDLINE | ID: mdl-35830214

ABSTRACT

Multiple myeloma (MM) and chronic lymphocytic leukemia (CLL) patients have increased morbidity and mortality rates of COVID-19 due to immunosuppression associated with the disease and ongoing therapy. The same immune impairment accompanying CLL and MM also affects suboptimal vaccine response. The study assessed the effectiveness of the humoral and T cell-mediated immunity following mRNA COVID-19 vaccination (using either BNT162b2 or mRNA-1273) in short-term (2-5 weeks after second dose) and long-term follow-up (12 weeks after vaccination). Between March and August 2021, blood samples were obtained from 62 CLL and 60 MM patients from eight different hematology departments in Poland. Total anti-RBD antibodies were detected in 37% MM patients before vaccination, increased to 91% and 94% in short- and long-term follow-up, respectively. In CLL, serological responses were detectable in 21% of patients before vaccination and increased to 45% in the short-term and 71% in long-term observation. We detected a tendency to higher frequencies of specific CD8+ T cells against SARS-CoV-2 after vaccination compared to samples before vaccination in MM patients and no changes in frequencies of specific T cells in CLL patients. Our study provides novel insights into mRNA vaccination efficacy in immunocompromised MM and CLL patients, and our findings highlight that specific CD8+ T cells against SARS-CoV-2 might be induced by vaccination but do not correlate positively with serological responses.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Immunocompromised Host , Leukemia, Lymphocytic, Chronic, B-Cell , Multiple Myeloma , Humans , BNT162 Vaccine/immunology , COVID-19/prevention & control , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Multiple Myeloma/immunology , SARS-CoV-2 , Immunocompromised Host/immunology , 2019-nCoV Vaccine mRNA-1273/immunology
14.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36260859

ABSTRACT

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Immunogenicity, Vaccine , Child , Child, Preschool , Humans , Infant , Young Adult , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine/immunology , Vaccine Efficacy , Treatment Outcome , Adolescent , Adult
16.
N Engl J Med ; 387(14): 1279-1291, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36112399

ABSTRACT

BACKGROUND: The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. METHODS: In this ongoing, phase 2-3 study, we compared the 50-µg bivalent vaccine mRNA-1273.214 (25 µg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-µg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-µg) primary series and first booster (50-µg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. RESULTS: Interim results are presented. Sequential groups of participants received 50 µg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-µg mRNA-1273.214 and 50-µg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. CONCLUSIONS: The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Vaccines, Combined , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunogenicity, Vaccine/immunology , SARS-CoV-2 , Vaccines, Combined/immunology , Vaccines, Combined/therapeutic use , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
17.
Sci Rep ; 12(1): 16294, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175506

ABSTRACT

Several factors related to anti-spike(S) IgG antibody titers after mRNA COVID-19 vaccination have been elucidated, but the magnitude of the effects of each factor has not been fully understood. This cross-sectional study assessed anti-S and anti-nucleocapsid (N) antibody titers on 3744 healthy volunteers (median age, 36 years; IQR, 24-49 years; females, 59.0%) who received two doses of mRNA-1273 or BNT162b2 vaccine and completed a survey questionnaire. Multiple regression was conducted to identify factors associated with antibody titers. All but one participant tested positive for anti-S antibodies (99.97%). The following factors were independently and significantly associated with high antibody titer: < 3 months from vaccination (ratio of means 4.41); mRNA-1273 vaccine (1.90, vs BNT162b2); anti-N antibody positivity (1.62); age (10's: 1.50, 20's: 1.37, 30's: 1.26, 40's: 1.16, 50's: 1.15, vs ≧60's); female (1.07); immunosuppressive therapy (0.54); current smoking (0.85); and current drinking (0.96). The largest impact on anti-S IgG antibody titers was found in elapsed time after vaccination, followed by vaccine brand, immunosuppressants, previous SARS-CoV-2 infection (anti-N antibody positive), and age. Although the influence of adverse reactions after the vaccine, gender, smoking, and drinking was relatively small, they were independently related factors.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin G , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Immunization Schedule , Immunoglobulin G/blood , Immunosuppressive Agents , Japan/epidemiology , Male , Middle Aged , Seroepidemiologic Studies , Vaccination , Young Adult
18.
Nat Commun ; 13(1): 4710, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953492

ABSTRACT

Comparative analyses of the immunogenicity and reactogenicity of homologous and heterologous SARS-CoV-2 vaccine-regimens will inform optimized vaccine strategies. Here we analyze the humoral and cellular immune response following heterologous and homologous vaccination strategies in a convenience cohort of 331 healthy individuals. All regimens induce immunity to the vaccine antigen. Immunity after vaccination with ChAdOx1-nCoV-19 followed by either BNT162b2 (n = 66) or mRNA-1273 (n = 101) is equivalent to or more pronounced than homologous mRNA-regimens (n = 43 BNT162b2, n = 59 mRNA-1273) or homologous ChAdOx1-nCoV-19 vaccination (n = 62). We note highest levels of spike-specific CD8 T-cells following both heterologous regimens. Among mRNA-containing combinations, spike-specific CD4 T-cell levels in regimens including mRNA-1273 are higher than respective combinations with BNT162b2. Polyfunctional T-cell levels are highest in regimens based on ChAdOx1-nCoV-19-priming. All five regimens are well tolerated with most pronounced reactogenicity upon ChAdOx1-nCoV-19-priming, and ChAdOx1-nCoV-19/mRNA-1273-boosting. In conclusion, we present comparative analyses of immunogenicity and reactogenicity for heterologous vector/mRNA-boosting and homologous mRNA-regimens.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Immunogenicity, Vaccine , 2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , Humans , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2/genetics , T-Lymphocytes/immunology , Vaccination
19.
Medicina (Kaunas) ; 58(7)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35888612

ABSTRACT

Background and Objectives: Hemodialysis patients (HD) and kidney transplant recipients (KTRs) have been heavily impacted by COVID-19, showing increased risk of infection, worse clinical outcomes, and higher mortality rates than the general population. Although mass vaccination remains the most successful measure in counteracting the pandemic, less evidence is available on vaccine effectiveness in immunodepressed subjects previously infected and recovered from COVID-19. Materials and Methods: This study aimed at investigating the ability to develop an adequate antibody response after vaccination in a 2-dose series against SARS-CoV-2 in HD patients and KTR that was administered after laboratory and clinical recovery from COVID-19. Results: Comparing SARS-CoV-2 S1/S2 IgG levels measured before and after 2 doses of mRNA vaccine (BNT162b2 vaccine, Comirnaty, Pfizer-BioNTech or mRNA-1273 vaccine, Spikevax, Moderna), highly significant increases of antibody titers were observed. The antibody peak level was reached at 3 months following second dose administration, regardless of the underlying cause of immune depression and the time of pre-vaccine serology assessment after negativization. Conclusions: Our data indicate that HD patients and KTR exhibit a satisfying antibody response to a 2-dose series of mRNA vaccine, even in cases when infection-induced humoral immunity was poor or rapidly fading. Further studies are needed to evaluate the role of booster doses in conferring effective and durable protection in weak patient categories.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Kidney Transplantation , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral , Antibody Formation , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , Immunoglobulin G , Renal Dialysis , SARS-CoV-2 , Vaccines, Inactivated
20.
Atlanta; Centers for Disease Control and Prevention; rev; July 28, 2022. 8 p. tab.
Non-conventional in English | BIGG - GRADE guidelines | ID: biblio-1396389

ABSTRACT

A Grading of Recommendations, Assessment, Development and Evaluation (GRADE) review of the evidence for benefits and harms for Moderna coronavirus disease 2019 (COVID-19) vaccine for children aged 6­11 years was presented to the Advisory Committee for Immunization Practices (ACIP) on June 23, 2022. GRADE evidence type indicates the certainty in estimates from the available body of evidence. Evidence certainty ranges from type 1 (high certainty) to type 4 (very low certainty) [1]. The policy question was, "Should vaccination with Moderna COVID-19 vaccine (2 doses, 50 µg) be recommended for children 6­11 years of age during an Emergency Use Authorization?" The potential benefits pre-specified by the ACIP COVID-19 Vaccines Work Group included prevention of symptomatic laboratory-confirmed COVID-19 (critical), hospitalization due to COVID-19 (important), multisystem inflammatory syndrome in children (MIS-C) (important), and asymptomatic SARS-CoV-2 infection (important). The two pre-specified harms were serious adverse events (SAEs) (critical) and reactogenicity grade ≥3 (important). A systematic review of evidence on the efficacy and safety of a two-dose regimen of Moderna COVID-19 vaccine among children aged 6­11 years was conducted. The quality of evidence from one Phase II/III randomized controlled trial was assessed using a modified GRADE approach [2]. Symptomatic COVID-19 was less common among the vaccine group compared with the placebo group (RR: 0.19; 95% CI: 0.05, 0.81; evidence type 2). A non-inferior geometric mean ratio (GMR) for antibodies in the 6­11-year-olds was observed with vaccination compared to the 18­25-year-olds (GMR 1.2, 95% confidence interval [CI]: 1.1, 1.4; evidence type 2). A lower risk of asymptomatic SARS-CoV-2 infection also seen in the vaccine group compared with the placebo group (Relative Risk [RR]: 0.29; 95% CI: 0.12, 0.71; evidence type 3). The available data indicated that SAEs were balanced between the vaccine and placebo arms, but certainty in the estimate was very low (RR 0.99; 95% CI: 0.20, 4.91; evidence type 4); none of these SAEs were assessed by the Food and Drug Administration (FDA) as related to study intervention. Reactogenicity grade ≥3 was associated with vaccination (RR 5.2; 95% CI: 3.6, 7.3; evidence type 1). About 17% of vaccine recipients and 3% of placebo recipients reported any grade ≥3 local or systemic reactions following either dose 1 or dose 2.


Subject(s)
Humans , Child, Preschool , Child , Immunization Programs/standards , COVID-19/prevention & control , 2019-nCoV Vaccine mRNA-1273/therapeutic use , 2019-nCoV Vaccine mRNA-1273/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...