Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Clin Pharmacol ; 85(6): 1095-1102, 2019 06.
Article in English | MEDLINE | ID: mdl-30308088

ABSTRACT

Pharmacologists have been interested in vitamin D since its metabolism was elucidated in the early 1970s. Despite the synthesis of thousands of vitamin D analogues in the hope of separating its calcemic and anti-proliferative properties, few molecules have reached the market for use in the treatment of clinical conditions from psoriasis to chronic kidney disease. This review discusses vitamin D drugs, recently developed or still under development, for use in various diseases, but in particular bone disease. In the process we explore the mechanisms postulated to explain the action of these vitamin D analogues including action through the vitamin D receptor, action through other receptors e.g. FAM57B2 and dual action on transcriptional processes.


Subject(s)
24,25-Dihydroxyvitamin D 3/therapeutic use , Bone Density Conservation Agents/therapeutic use , Bone Diseases, Metabolic/drug therapy , Bone Remodeling/drug effects , Calcifediol/therapeutic use , Calcitriol/therapeutic use , Vitamins/therapeutic use , 24,25-Dihydroxyvitamin D 3/adverse effects , 24,25-Dihydroxyvitamin D 3/pharmacokinetics , Animals , Bone Density Conservation Agents/adverse effects , Bone Density Conservation Agents/pharmacokinetics , Bone Diseases, Metabolic/diagnosis , Bone Diseases, Metabolic/physiopathology , Calcifediol/adverse effects , Calcifediol/pharmacokinetics , Calcitriol/adverse effects , Calcitriol/pharmacokinetics , Humans , Receptors, Calcitriol/agonists , Receptors, Calcitriol/metabolism , Signal Transduction , Treatment Outcome , Vitamins/adverse effects , Vitamins/pharmacokinetics
2.
J Obstet Gynaecol ; 37(4): 503-509, 2017 May.
Article in English | MEDLINE | ID: mdl-28421904

ABSTRACT

This study investigated the effects of 1α, 25-dihydroxyvitamin D3-induced cell death and its underlying molecular mechanisms in Ishikawa endometrial carcinoma cells. The effects of 1α, 25-dihydroxyvitamin D3 on Ishikawa cells were examined by 3-[4,5-dimethylthiazol-2-yl]-2.5-diphenyl-tetrazolium bromide, thiazolyl blue (MTT) assay. 1α, 25-dihydroxyvitamin D3 was shown to induce programmed cell death in Ishikawa endometrial carcinoma cells by activation of caspase-3 and caspase-9, along with elevation of Bcl-2 and Bcl-xL. Cell viability was reduced by 1α, 25-dihydroxyvitamin D3 in a concentration-dependent manner up to 2.5 µM. In addition, ezrin phosphorylation increased with the 1α, 25-dihydroxyvitamin D3 concentration (0-0.5 µM). The protein level of caspase-9 was increased by 1α, 25-dihydroxyvitamin D3 up to 0.5 µM. This is the first report regarding the efficacy and molecular mechanisms underlying the effects of 1α, 25-dihydroxyvitamin D3 in endometrial cancer cells. Our findings indicate that 1α, 25-dihydroxyvitamin D3 induces endometrial cancer cell death in a concentration-dependent manner. Impact statement Up to date, there is no report about the efficacy and molecular underlying mechanisms on the effect of vitamin D3 in endometrial cancer cells. Our findings indicate that 1α, 25-dihydroxyvitamin D3. which is an active metabolite of vitamin D3, induces Ishikawa endometrial cancer cell death in a concentration-dependent manner by activation of caspase-3 and -9, along with elevation of Bcl-2 and Bcl-xL. In addition, the same concentration of 1α, 25-dihydroxyvitamin D3 that provoked apoptotic signals caused phosphorylation of ezrin at threonine 567 in a VDR-dependent manner. This study suggests that 1α, 25-dihydroxyvitamin D3 within the optimal range (0.5 uM) would induce apoptosis through Fas-ezrin-caspase-3, -8, -9 signalling axis which may be a critical cell death regulator in Ishikawa endometrial cancer cell. Further study will be more interesting to address molecular connections or prove this critical optimal concentration range of vitamin D.


Subject(s)
24,25-Dihydroxyvitamin D 3/pharmacokinetics , Adenocarcinoma/metabolism , Apoptosis/drug effects , Endometrial Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Adenocarcinoma/pathology , Caspase 3/metabolism , Caspase 9/metabolism , Cells, Cultured , Cytoskeletal Proteins , Endometrial Neoplasms/pathology , Female , Humans , Phosphorylation
3.
Curr Eye Res ; 37(10): 871-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22632164

ABSTRACT

PURPOSE: This study was designed to measure vitamin D metabolites in the aqueous and vitreous humor and in tear fluid, and to determine if dietary vitamin D3 supplementation affects these levels. We also determined if the corneal epithelium can synthesize vitamin D following UV-B exposure. METHODS: Rabbits were fed a control or vitamin D3 supplemented diet. Pilocarpine-stimulated tear fluid was collected and aqueous and vitreous humor were drawn from enucleated eyes. Plasma vitamin D was also measured. To test for epithelial vitamin D synthesis, a human corneal limbal epithelial cell line was irradiated with two doses of UV-B (10 and 20 mJ/cm(2)/day for 3 days) and vitamin D was measured in control or 7-dehydrocholesterol treated culture medium. Measurements were made using mass spectroscopy. RESULTS: 25(OH)-vitamin D3 and 24,25(OH)(2)-vitamin D3 increased significantly following D3 supplementation in all samples except vitreous humor. Tear fluid and aqueous humor had small but detectable 1,25(OH)(2)-vitamin D3 levels. Vitamin D2 metabolites were observed in all samples. Vitamin D3 levels were below the detection limit for all samples. Minimal vitamin D3 metabolites were observed in control and UV-B-irradiated epithelial culture medium except following 7-dehydrocholesterol treatment, which resulted in a UV-B-dose dependent increase in vitamin D3, 25(OH)-vitamin D3 and 24,25(OH)(2)-vitamin D3. CONCLUSIONS: There are measurable concentrations of vitamin D metabolites in tear fluid and aqueous and vitreous humor, and oral vitamin D supplementation affects vitamin D metabolite concentrations in the anterior segment of the eye. In addition, the UV exposure results lead us to conclude that corneal epithelial cells are likely capable of synthesizing vitamin D3 metabolites in the presence of 7-dehydrocholesterol following UV-B exposure.


Subject(s)
24,25-Dihydroxyvitamin D 3/pharmacokinetics , Calcifediol/pharmacokinetics , Ultraviolet Rays , 24,25-Dihydroxyvitamin D 3/metabolism , Animals , Aqueous Humor/drug effects , Aqueous Humor/metabolism , Aqueous Humor/radiation effects , Calcifediol/metabolism , Cell Line , Epithelium, Corneal/cytology , Epithelium, Corneal/metabolism , Epithelium, Corneal/radiation effects , Humans , Limbus Corneae/cytology , Limbus Corneae/metabolism , Limbus Corneae/radiation effects , Miotics/pharmacology , Pilocarpine/pharmacology , Rabbits , Tears/drug effects , Tears/metabolism , Vitreous Body/drug effects , Vitreous Body/metabolism , Vitreous Body/radiation effects
4.
Biochim Biophys Acta ; 1346(2): 147-57, 1997 Jun 02.
Article in English | MEDLINE | ID: mdl-9219897

ABSTRACT

In vivo metabolism of 24R,25-dihydroxyvitamin D3 (24,25-(OH)2D3) in female dogs has been studied thoroughly, and its major bile metabolite identified. After single oral administration of 24,25-(OH)2 [6,19,19-3H]D3 the plasma concentrations of radioactive metabolites were monitored for 504 h, and the metabolites in the bile collected and analyzed. The concentration of 24,25-(OH)2D3 in plasma reached a maximum after 6 h and decayed in two distinct phases; a fast-phase with a half-life of 17 h, followed by a slow-phase with a 17-day half-life. The area under the concentration/time curve (AUC) was 78-84% (0-504 h). The only detectable metabolite in the plasma was 25-hydroxy-24-oxovitamin D3 whose AUC was less than 5%. At 504 h, about 50% of administered radioactivity has been excreted, of which about 90% was found in the feces, indicating most of the administered 24,25-(OH)2D3 to be excreted in bile. A major metabolite, which constituted 23% of the total bile radioactivity at 504 h, was found in the bile. This metabolite was efficiently deconjugated by beta-glucuronidase to afford an aglycone which was identified as 23S,25-dihydroxy-24-oxovitamin D3 (23S,25-(OH)2-24-oxo-D3), by co-chromatography on HPLC with synthetic standards. The glucuronide was isolated from the bile of dogs given large doses of 24,25-(OH)2D3, and the structure determined being 23-(beta-glucuronide) of 23S,25-(OH)2-24-oxo-D3, by analyzing its negative ion mass spectrum and the positive ion mass spectrum of its derivatives. Thus it was concluded that, in dogs, 24,25-(OH)2D3 is a long lasting vitamin D metabolite, is mainly excreted in bile when metabolized to 23S,25-(OH)2-24-oxo-D3 and is conjugated at 23-OH as glucuronide.


Subject(s)
24,25-Dihydroxyvitamin D 3/metabolism , Bile/chemistry , Dihydroxycholecalciferols/metabolism , 24,25-Dihydroxyvitamin D 3/pharmacokinetics , Animals , Arylsulfatases/metabolism , Chromatography, High Pressure Liquid , Dihydroxycholecalciferols/chemistry , Dihydroxycholecalciferols/isolation & purification , Dogs , Ergocalciferols/chemistry , Ergocalciferols/metabolism , Female , Glucuronates/chemistry , Glucuronates/metabolism , Glucuronidase/metabolism , Mass Spectrometry , Molecular Structure
5.
Horm Metab Res ; 21(10): 577-80, 1989 Oct.
Article in English | MEDLINE | ID: mdl-2807147

ABSTRACT

Pharmacokinetic properties of pharmacological doses of 24,25-dihydroxyvitamin-D3 [24,25(OH)2D3] were determined in healthy volunteers. Four male subjects received 25 micrograms of 24,25(OH)2D3 as an intravenous bolus injection. Plasma concentrations of 24,25(OH)2D3, 25-hydroxyvitamin D and 1,25-dihydroxy-vitamin D were monitored during 14 days. In addition, serum ionized calcium, total calcium, inorganic phosphate, albumin, creatinine and intact hPTH(1-84) were measured during 14 days. The concentration-time curve of 24,25(OH)2D3 could be described by a two-exponential curve with half-lives of 3.0 +/- 0.9 hrs and 8.2 +/- 2.9 days (mean +/- SD). The volume of distribution was 0.19 +/- 0.02 liters/kg. None of the mentioned biochemical parameters, except serum 24,25(OH)2D3, changed markedly. In 18 subjects suffering from primary hyperparathyroidism, taking 25 micrograms of 24,25(OH)2D3 daily during three months, an average plateau level of 39 +/- 12 nmol/l of serum was observed. Bioavailability as estimated from this plateau level was approximately 70%.


Subject(s)
24,25-Dihydroxyvitamin D 3/pharmacokinetics , Hyperparathyroidism/drug therapy , 24,25-Dihydroxyvitamin D 3/administration & dosage , 24,25-Dihydroxyvitamin D 3/therapeutic use , Administration, Oral , Biological Availability , Double-Blind Method , Drug Evaluation , Humans , Hyperparathyroidism/blood , Injections, Intravenous , Male , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...