Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 7945, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846444

ABSTRACT

Some Gram-negative bacteria harbor lipids with aryl polyene (APE) moieties. Biosynthesis gene clusters (BGCs) for APE biosynthesis exhibit striking similarities with fatty acid synthase (FAS) genes. Despite their broad distribution among pathogenic and symbiotic bacteria, the detailed roles of the metabolic products of APE gene clusters are unclear. Here, we determined the crystal structures of the ß-ketoacyl-acyl carrier protein (ACP) reductase ApeQ produced by an APE gene cluster from clinically isolated virulent Acinetobacter baumannii in two states (bound and unbound to NADPH). An in vitro visible absorption spectrum assay of the APE polyene moiety revealed that the ß-ketoacyl-ACP reductase FabG from the A. baumannii FAS gene cluster cannot be substituted for ApeQ in APE biosynthesis. Comparison with the FabG structure exhibited distinct surface electrostatic potential profiles for ApeQ, suggesting a positively charged arginine patch as the cognate ACP-binding site. Binding modeling for the aryl group predicted that Leu185 (Phe183 in FabG) in ApeQ is responsible for 4-benzoyl moiety recognition. Isothermal titration and arginine patch mutagenesis experiments corroborated these results. These structure-function insights of a unique reductase in the APE BGC in comparison with FAS provide new directions for elucidating host-pathogen interaction mechanisms and novel antibiotics discovery.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Acinetobacter baumannii/enzymology , Fatty Acids/metabolism , Polyenes/metabolism , Amino Acid Sequence , Arginine/metabolism , Biosynthetic Pathways , Crystallography, X-Ray , Leucine/metabolism , Models, Molecular , NADP/metabolism , Protein Conformation , Static Electricity , Structural Homology, Protein , Substrate Specificity
2.
J Microbiol Biotechnol ; 29(11): 1769-1776, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-30111070

ABSTRACT

Ethyl (S)-3-hydroxy-3-(2-thienyl)propanoate((S)-HEES)acts as a key chiral intermediate for the blockbuster antidepressant drug duloxetine, which canbe achieved viathe stereoselective bioreduction ofethyl 3-oxo-3-(2-thienyl) propanoate (KEES) that containsa 3-oxoacyl structure.The sequences of the short-chain dehydrogenase/reductases from Chryseobacterium sp. CA49 were analyzed, and the putative3-oxoacyl-acyl-carrier-protein reductase, ChKRED12, was able to stereoselectivelycatalyze theNADPH-dependent reduction to produce (S)-HEES.The reductase activity of ChKRED12 towardsothersubstrates with 3-oxoacyl structure were confirmed with excellent stereoselectivity (>99% enantiomeric excess) in most cases. When coupled with a cofactor recycling system using glucose dehydrogenase, the ChKRED12 was able to catalyze the complete conversion of 100 g/l KEES within 12h, yielding the enantiopure product with >99% ee, showing a remarkable potential to produce (S)-HEES.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Bacterial Proteins/metabolism , Propionates/metabolism , Short Chain Dehydrogenase-Reductases/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Chryseobacterium/enzymology , Chryseobacterium/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Glucose 1-Dehydrogenase/metabolism , Kinetics , Oxidation-Reduction , Propionates/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Short Chain Dehydrogenase-Reductases/chemistry , Short Chain Dehydrogenase-Reductases/genetics , Stereoisomerism , Substrate Specificity
3.
Acta Crystallogr D Struct Biol ; 74(Pt 5): 383-393, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717709

ABSTRACT

In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of ß-ketoacyl-ACP substrates to ß-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP+-bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP+-bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , Mycobacterium smegmatis/chemistry , NADP/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Crystallization , Crystallography, X-Ray , Fatty Acid Synthase, Type II , Mycobacterium smegmatis/enzymology , NADP/metabolism , Protein Binding , Protein Conformation
4.
Phys Chem Chem Phys ; 19(1): 347-355, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27905606

ABSTRACT

Human fatty acid synthase (hFAS) is a multifunctional enzyme involved in a wide diversity of biological functions. For instance, it is a precursor of phospholipids and other complex processes such as the de novo synthesis of long chain fatty acid. Human FAS is also a component of biological membranes and it is implicated in the overexpression of several types of cancers. In this work, we describe the catalytic mechanism of ß-ketoreductase (KR), which is a catalytic domain of the hFAS enzyme that catalyzes the reduction of ß-ketoacyl to ß-hydroxyacyl with the concomitant oxidation of the NADPH cofactor. The catalysis by KR is an intermediate step in the cycle of reactions that elongate the substrate's carbon chain until the final product is obtained. We study and propose the catalytic mechanism of the KR domain determined using the hybrid QM/MM methodology, at the ONIOM(B3LYP/6-311+G(2d,2p):AMBER) level of theory. The results indicate that the reaction mechanism occurs in two stages: (i) nucleophilic attack by a NADPH hydride to the ß-carbon of the substrate, together with an asynchronous deprotonation of the Tyr2034 by the oxygen of the ß-alkoxide to hold the final alcohol product; and (ii) an asynchronous deprotonation of the hydroxyl in the NADP+'s ribose by Tyr2034, and of the Lys1995 by the resulting alkoxide in the former ribose to restore the protonation state of Tyr2034. The reduction step occurs with a Gibbs energy barrier of 11.7 kcal mol-1 and a Gibbs reaction energy of -10.6 kcal mol-1. These results have provided an understanding of the catalytic mechanism of the KR hFAS domain, a piece of the heavy hFAS biosynthetic machinery.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Alcohols/chemistry , NADP/chemistry , Catalysis , Catalytic Domain , Humans , Oxidation-Reduction , Quantum Theory
5.
PLoS One ; 10(11): e0141543, 2015.
Article in English | MEDLINE | ID: mdl-26539719

ABSTRACT

Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , Fatty Acids/biosynthesis , Yersinia pestis/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/isolation & purification , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Cloning, Molecular , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Molecular Structure , Protein Structure, Quaternary , Protein Structure, Tertiary , Structural Homology, Protein , Yersinia pestis/enzymology
6.
FEBS Lett ; 589(20 Pt B): 3052-7, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26358291

ABSTRACT

PhaB (acetoacetyl-CoA reductase) catalyzes the reduction of acetoacetyl-CoA to (R)-3-hydroxybutyryl-CoA in polyhydroxybutyrate (PHB) synthesis and FabG (3-ketoacyl-acyl-carrier-protein reductase) catalyzes the ß-ketoacyl-ACP to yield (R)-3-hydroxyacyl-ACP in fatty acid biosynthesis. Both of them have been classified into the same group EC 1.1.1. PhaB is limited with substrate specificities, while FabG was considered as a potential PhaB due to broad substrate selectivity despite of low activity. Here, X-ray crystal structures of FabG and PhaB from the photosynthetic microorganism Synechocystis sp. PCC 6803 were resolved. Based on them, a high-performance FabG on acyl-CoA directed by structural evolution was constructed that may serve as a critical enzyme to partition carbon flow from fatty acid synthesis to PHA.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Synechocystis/enzymology , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/genetics , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutation , Protein Conformation , Sequence Homology, Amino Acid , Substrate Specificity , Synechocystis/genetics , Synechocystis/metabolism
7.
Nat Chem Biol ; 10(9): 774-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086508

ABSTRACT

Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the ß-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Enzyme Inhibitors/metabolism , Fatty Acid Synthases/antagonists & inhibitors , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Triazoles/metabolism , Triazoles/pharmacology , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , Catalytic Domain , Cell Line, Tumor , Fatty Acid Synthases/chemistry , Humans , Models, Molecular , Protein Conformation , X-Ray Diffraction
8.
Genes Cells ; 18(9): 733-52, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23786411

ABSTRACT

Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus.


Subject(s)
Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Fungal Proteins/metabolism , Mitosis , Nuclear Envelope/metabolism , Schizosaccharomyces/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Amino Acid Motifs , Amino Acid Sequence , Anaphase , Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Fungal Proteins/genetics , Metaphase , Molecular Sequence Data , Mutation , Proteolysis , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...