Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 44(13): 2080-93, 2001 Jun 21.
Article in English | MEDLINE | ID: mdl-11405646

ABSTRACT

In our continuation of the structure-based design of anti-trypanosomatid drugs, parasite-selective adenosine analogues were identified as low micromolar inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Crystal structures of Trypanosoma brucei, Trypanosoma cruzi, Leishmania mexicana, and human GAPDH's provided details of how the adenosyl moiety of NAD(+) interacts with the proteins, and this facilitated the understanding of the relative affinities of a series of adenosine analogues for the various GAPDH's. From exploration of modifications of the naphthalenemethyl and benzamide substituents of a lead compound, N(6)-(1-naphthalenemethyl)-2'-deoxy-2'-(3-methoxybenzamido)adenosine (6e), N(6)-(substituted-naphthalenemethyl)-2'-deoxy-2'-(substituted-benzamido)adenosine analogues were investigated. N(6)-(1-Naphthalenemethyl)-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (6m), N(6)-[1-(3-hydroxynaphthalene)methyl]-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (7m), N(6)-[1-(3-methoxynaphthalene)methyl]-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (9m), N(6)-(2-naphthalenemethyl)-2'-deoxy-2'-(3-methoxybenzamido)adenosine (11e), and N(6)-(2-naphthalenemethyl)-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (11m) demonstrated a 2- to 3-fold improvement over 6e and a 7100- to 25000-fold improvement over the adenosine template. IC(50)'s of these compounds were in the range 2-12 microM for T. brucei, T. cruzi, and L. mexicana GAPDH's, and these compounds did not inhibit mammalian GAPDH when tested at their solubility limit. To explore more thoroughly the structure-activity relationships of this class of compounds, a library of 240 N(6)-(substituted)-2'-deoxy-2'-(amido)adenosine analogues was generated using parallel solution-phase synthesis with N(6) and C2' substituents chosen on the basis of computational docking scores. This resulted in the identification of 40 additional compounds that inhibit parasite GAPDH's in the low micromolar range. We also explored adenosine analogues containing 5'-amido substituents and found that 2',5'-dideoxy-2'-(3,5-dimethoxybenzamido)-5'-(diphenylacetamido)adenosine (49) displays an IC(50) of 60-100 microM against the three parasite GAPDH's.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosomatina/enzymology , 3T3 Cells/parasitology , Adenosine/chemical synthesis , Animals , Combinatorial Chemistry Techniques , Drug Design , Enzyme Inhibitors/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Leishmania mexicana/drug effects , Leishmania mexicana/growth & development , Mice , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/growth & development , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development
2.
Infect Immun ; 69(6): 3916-23, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11349059

ABSTRACT

Trypanosoma cruzi invasion of host cells involves several discrete steps: attachment, parasite internalization mediated by recruitment and fusion of host cell lysosomes, and escape from the parasitophorous vacuole to liberate amastigotes to multiply freely in the cytosol. This report describes the initial characterization of the LYT1 gene and the demonstration that the gene product is involved in cell lysis and infectivity. Mutational analysis demonstrated that deletion of LYT1 resulted in attenuation of infection, which was associated with diminished hemolytic activity. Reintroduction of LYT1 restored infectivity in null mutants, confirming the critical role of LYT1 in infection. Additionally, in vitro stage transition experiments with LYT1-deficient lines showed that these parasites converted to extracellular amastigote-like cells and metacyclic trypomastigotes more rapidly than wild-type parasites, suggesting that the diminished infectivity was not a result of the LYT1 deficiency that affected the parasite's ability to complete the life cycle.


Subject(s)
Antigens, Ly/metabolism , Chagas Disease/parasitology , Trypanosoma cruzi/physiology , Trypanosoma cruzi/pathogenicity , 3T3 Cells/parasitology , Animals , Antigens, Ly/genetics , Antigens, Ly/immunology , Base Sequence , Cell Line , Cloning, Molecular , Erythrocytes/parasitology , Fibroblasts/parasitology , Gene Deletion , Hemolysis , Mice , Molecular Sequence Data , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...