Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.937
Filter
1.
J Biochem Mol Toxicol ; 38(6): e23749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800929

ABSTRACT

Colon adenocarcinoma (COAD) is a common and fatal malignant tumor of digestive system with complex etiology. 5-Methylcytosine (m5C) modification of RNA by the NSUN gene family (NSUN1-NSUN7) and DNMT2 reshape cell biology and regulate tumor development. However, the expression profile, prognostic significance and function of these m5C modifiers in COAD remain largely unclear. By mining multiple integrated tumor databases, we found that NSUN1, NSUN2, NSUN5, and NSUN6 were overexpressed in COAD tumor samples relative to normal samples. Clinically, high expression of NSUN6 was significantly associated with shorter survival (including both disease-free survival and overall survival) in COAD patients. NSUN6 was further confirmed to be upregulated at both tissue and cellular levels of COAD, suggesting that NSUN6 plays a critical role in disease progression. Through comprehensive gene enrichment analysis and cell-based functional validation, it was revealed that NSUN6 promoted the cell cycle progression and cell proliferation of COAD. Mechanistically, NSUN6 upregulates the expression of oncogenic METTL3 and catalyzes its m5C modification in COAD cells. Overexpression of METTL3 significantly relieved the cell cycle inhibition of COAD caused by NSUN6 deficiency. Furthermore, NSUN6 was negatively associated with the abundance of infiltrating immune cells in COAD tumors, such as activated B cells, natural killer cells, effector memory CD8 T cells, and regulatory T cells. Importantly, pan-cancer analysis further uncovered that NSUN6 was dysregulated and heterogeneous in various tumors. Thus our findings extend the role of m5C transferase in COAD and suggest that NSUN6 is a potential biomarker and target for this malignancy.


Subject(s)
5-Methylcytosine , Adenocarcinoma , Colonic Neoplasms , Disease Progression , Methyltransferases , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Front Immunol ; 15: 1362159, 2024.
Article in English | MEDLINE | ID: mdl-38807595

ABSTRACT

RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Immunity, Innate , Liver Neoplasms , Signal Transduction , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Methylation , Animals , 5-Methylcytosine/metabolism , RNA/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology
3.
Nat Commun ; 15(1): 3899, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724548

ABSTRACT

The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI's capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome.


Subject(s)
5-Methylcytosine , Adenosine , Sequence Analysis, RNA , Transcriptome , Adenosine/analogs & derivatives , Adenosine/metabolism , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Humans , Methylation , Sequence Analysis, RNA/methods , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA/metabolism , RNA/genetics
4.
Front Immunol ; 15: 1380697, 2024.
Article in English | MEDLINE | ID: mdl-38715608

ABSTRACT

The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.


Subject(s)
COVID-19 , Myocarditis , SARS-CoV-2 , Myocarditis/virology , Myocarditis/immunology , Myocarditis/therapy , Myocarditis/genetics , Humans , COVID-19/immunology , COVID-19/genetics , COVID-19/therapy , SARS-CoV-2/physiology , Methylation , 5-Methylcytosine/metabolism , Immunity, Innate , COVID-19 Drug Treatment , Animals , RNA, Viral/genetics , RNA, Viral/metabolism , RNA Processing, Post-Transcriptional
5.
J Clin Immunol ; 44(6): 133, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780872

ABSTRACT

PURPOSE: A large proportion of Common variable immunodeficiency (CVID) patients has duodenal inflammation with increased intraepithelial lymphocytes (IEL) of unknown aetiology. The histologic similarities to celiac disease, lead to confusion regarding treatment (gluten-free diet) of these patients. We aimed to elucidate the role of epigenetic DNA methylation in the aetiology of duodenal inflammation in CVID and differentiate it from true celiac disease. METHODS: DNA was isolated from snap-frozen pieces of duodenal biopsies and analysed for differences in genome-wide epigenetic DNA methylation between CVID patients with increased IEL (CVID_IEL; n = 5) without IEL (CVID_N; n = 3), celiac disease (n = 3) and healthy controls (n = 3). RESULTS: The DNA methylation data of 5-methylcytosine in CpG sites separated CVID and celiac diseases from healthy controls. Differential methylation in promoters of genes were identified as potential novel mediators in CVID and celiac disease. There was limited overlap of methylation associated genes between CVID_IEL and Celiac disease. High frequency of differentially methylated CpG sites was detected in over 100 genes nearby transcription start site (TSS) in both CVID_IEL and celiac disease, compared to healthy controls. Differential methylation of genes involved in regulation of TNF/cytokine production were enriched in CVID_IEL, compared to healthy controls. CONCLUSION: This is the first study to reveal a role of epigenetic DNA methylation in the etiology of duodenal inflammation of CVID patients, distinguishing CVID_IEL from celiac disease. We identified potential biomarkers and therapeutic targets within gene promotors and in high-frequency differentially methylated CpG regions proximal to TSS in both CVID_IEL and celiac disease.


Subject(s)
Celiac Disease , Common Variable Immunodeficiency , CpG Islands , DNA Methylation , Duodenum , Epigenesis, Genetic , Humans , Common Variable Immunodeficiency/genetics , Duodenum/metabolism , Duodenum/pathology , Celiac Disease/genetics , Female , Male , Adult , Middle Aged , CpG Islands/genetics , Promoter Regions, Genetic/genetics , Intraepithelial Lymphocytes/immunology , Young Adult , Genome-Wide Association Study , 5-Methylcytosine/metabolism
6.
Genes (Basel) ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38790164

ABSTRACT

Cell-free DNA (cfDNA) has recently emerged as a promising minimally invasive diagnostic biomarker for various cancers. In this study, our aim was to identify cfDNA biomarkers by investigating genes that displayed significant differences between glioma patients and their corresponding controls. To accomplish this, we utilized publicly available data from the Gene Expression Omnibus, focusing on 5-hydroxymethylcytosine (5hmC) profiles in both cfDNA and genomic DNA (gDNA) from glioma patients and healthy individuals. The intersection of gene lists derived from these comparative analyses unveiled LRIG1 and ZNF703 as the two genes with elevated 5hmC levels in both the cfDNA of glioma patients and gDNA of glioma tissue compared to their respective controls. The gene expression data revealed both genes were upregulated in glioma tissue compared to normal brain tissue. Integration of 5hmC data revealed a strong positive correlation in the glioma tissue group between 5hmC and the gene expression of the LRIG1 gene. Furthermore, exploration using the AmiCa web tool indicated that LRIG1 gene expression was elevated compared to 17 other cancers included in the database, emphasizing its potential as a distinctive biomarker across multiple cancer types.


Subject(s)
5-Methylcytosine , Biomarkers, Tumor , Brain Neoplasms , Cell-Free Nucleic Acids , Glioma , Membrane Glycoproteins , Humans , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Gene Expression Regulation, Neoplastic , DNA Methylation
7.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38743016

ABSTRACT

Varicose vein disease (VVD) is a common health problem worldwide. Microfibril-associated protein 5 (MFAP5) is one of the potential key players in its pathogenesis. Our previous microarray analysis revealed the cg06256735 and cg15815843 loci in the regulatory regions of the MFAP5 gene as hypomethylated in varicose veins which correlated with its up-regulation. The aim of this work was to validate preliminary microarray data, estimate the level of 5-hydroxymethylcytosine (5hmC) at these loci, and determine the methylation status of one of them in different layers of the venous wall. For this, methyl- and hydroxymethyl-sensitive restriction techniques were used followed by real-time PCR and droplet digital PCR, correspondingly, as well as bisulfite pyrosequencing of +/- oxidized DNA. Our microarray data on hypomethylation at the cg06256735 and cg15815843 loci in whole varicose vein segments were confirmed and it was also demonstrated that the level of 5hmC at these loci is increased in VVD. Specifically, among other layers of the venous wall, tunica (t.) intima is the main contributor to hypomethylation at the cg06256735 locus in varicose veins. Thus, it was shown that hypomethylation at the cg06256735 and cg15815843 loci takes place in VVD, with evidence to suggest that it happens through their active demethylation leading to up-regulation of the MFAP5 gene, and t. intima is most involved in this biochemical process.


Subject(s)
5-Methylcytosine , DNA Methylation , Varicose Veins , Varicose Veins/genetics , Varicose Veins/metabolism , Humans , Male , Female , Middle Aged , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult , Aged , Regulatory Sequences, Nucleic Acid/genetics , Genetic Loci
8.
Methods ; 227: 37-47, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729455

ABSTRACT

RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.


Subject(s)
5-Methylcytosine , Machine Learning , RNA , Humans , 5-Methylcytosine/metabolism , 5-Methylcytosine/chemistry , RNA/genetics , RNA/chemistry , RNA/metabolism , Computational Biology/methods , RNA Processing, Post-Transcriptional , Algorithms
9.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667328

ABSTRACT

Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03-0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02-0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8-94.5%) versus 0.0% (95% CI, 0.0-60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4-97.5%) versus 0.0% (95% CI, 0.0-36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.


Subject(s)
5-Methylcytosine , 5-Methylcytosine/analogs & derivatives , Cell-Free Nucleic Acids , Immunotherapy , Lung Neoplasms , Humans , 5-Methylcytosine/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Male , Female , Immunotherapy/methods , Aged , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Immune Checkpoint Inhibitors/therapeutic use , Treatment Outcome
10.
Dev Cell ; 59(8): 1010-1027.e8, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38569549

ABSTRACT

Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.


Subject(s)
5-Methylcytosine , 5-Methylcytosine/analogs & derivatives , DNA Methylation , DNA-Binding Proteins , Genomic Imprinting , Oxidation-Reduction , Proto-Oncogene Proteins , Spermatozoa , Animals , Male , Mice , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Spermatozoa/metabolism , 5-Methylcytosine/metabolism , Cellular Reprogramming/genetics , Mice, Knockout , Mice, Inbred C57BL
11.
Sci Rep ; 14(1): 9116, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643305

ABSTRACT

RNA modifications are pivotal in the development of newly synthesized structures, showcasing a vast array of alterations across various RNA classes. Among these, 5-hydroxymethylcytosine (5HMC) stands out, playing a crucial role in gene regulation and epigenetic changes, yet its detection through conventional methods proves cumbersome and costly. To address this, we propose Deep5HMC, a robust learning model leveraging machine learning algorithms and discriminative feature extraction techniques for accurate 5HMC sample identification. Our approach integrates seven feature extraction methods and various machine learning algorithms, including Random Forest, Naive Bayes, Decision Tree, and Support Vector Machine. Through K-fold cross-validation, our model achieved a notable 84.07% accuracy rate, surpassing previous models by 7.59%, signifying its potential in early cancer and cardiovascular disease diagnosis. This study underscores the promise of Deep5HMC in offering insights for improved medical assessment and treatment protocols, marking a significant advancement in RNA modification analysis.


Subject(s)
5-Methylcytosine/analogs & derivatives , Algorithms , Neural Networks, Computer , Bayes Theorem , Support Vector Machine , RNA
12.
Clin Transl Med ; 14(4): e1644, 2024 04.
Article in English | MEDLINE | ID: mdl-38572667

ABSTRACT

RNA methylation is widespread in nature. Abnormal expression of proteins associated with RNA methylation is strongly associated with a number of human diseases including cancer. Increasing evidence suggests that targeting RNA methylation holds promise for cancer treatment. This review specifically describes several common RNA modifications, such as the relatively well-studied N6-methyladenosine, as well as 5-methylcytosine and pseudouridine (Ψ). The regulatory factors involved in these modifications and their roles in RNA are also comprehensively discussed. We summarise the diverse regulatory functions of these modifications across different types of RNAs. Furthermore, we elucidate the structural characteristics of these modifications along with the development of specific inhibitors targeting them. Additionally, recent advancements in small molecule inhibitors targeting RNA modifications are presented to underscore their immense potential and clinical significance in enhancing therapeutic efficacy against cancer. KEY POINTS: In this paper, several important types of RNA modifications and their related regulatory factors are systematically summarised. Several regulatory factors related to RNA modification types were associated with cancer progression, and their relationships with cancer cell migration, invasion, drug resistance and immune environment were summarised. In this paper, the inhibitors targeting different regulators that have been proposed in recent studies are summarised in detail, which is of great significance for the development of RNA modification regulators and cancer treatment in the future.


Subject(s)
Neoplasms , RNA Methylation , Humans , 5-Methylcytosine , Adenosine , Cell Movement , RNA/genetics , Neoplasms/drug therapy , Neoplasms/genetics
13.
PLoS One ; 19(4): e0297008, 2024.
Article in English | MEDLINE | ID: mdl-38635731

ABSTRACT

Methylation and hydroxymethylation of cytosine moieties in CpG islands of specific genes are epigenetic processes shown to be involved in the development of cervical (pre)neoplastic lesions. We studied global (hydroxy)methylation during the subsequent steps in the carcinogenic process of the uterine cervix by using immunohistochemical protocols for the detection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in paraffin-embedded tissues of the normal epithelia and (pre)malignant lesions. This approach allowed obtaining spatially resolved information of (epi)genetic alterations for individual cell populations in morphologically heterogeneous tissue samples. The normal ectocervical squamous epithelium showed a high degree of heterogeneity for both modifications, with a major positivity for 5-mC in the basal and parabasal layers in the ectocervical region, while 5-hmC immunostaining was even more restricted to the cells in the basal layer. Immature squamous metaplasia, characterized by expression of SOX17, surprisingly showed a decrease of 5-hmC in the basal compartments and an increase in the more superficial layers of the epithelium. The normal endocervical glandular epithelium showed a strong immunostaining reactivity for both modifications. At the squamocolumnar junctions, a specific 5-hmC pattern was observed in the squamous epithelium, resembling that of metaplasia, with the typical weak to negative reaction for 5-hmC in the basal cell compartment. The reserve cells underlying the glandular epithelium were also largely negative for 5-hmC but showed immunostaining for 5-mC. While the overall methylation status remained relatively constant, about 20% of the high-grade squamous lesions showed a very low immunostaining reactivity for 5-hmC. The (pre)malignant glandular lesions, including adenocarcinoma in situ (AIS) and adenocarcinoma showed a progressive decrease of hydroxymethylation with advancement of the lesion, resulting in cases with regions that were negative for 5-hmC immunostaining. These data indicate that inhibition of demethylation, which normally follows cytosine hydroxymethylation, is an important epigenetic switch in the development of cervical cancer.


Subject(s)
Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Cytosine/metabolism , Uterine Cervical Neoplasms/pathology , Cervix Uteri/pathology , 5-Methylcytosine/metabolism , DNA Methylation , Carcinoma, Squamous Cell/pathology , Metaplasia/pathology
14.
Methods Mol Biol ; 2757: 447-460, 2024.
Article in English | MEDLINE | ID: mdl-38668978

ABSTRACT

Epigenomic regulation and dynamic DNA methylation, in particular, are widespread mechanisms orchestrating the genome operation across time and species. Whole-genome bisulfite sequencing (WGBS) is currently the only method for unbiasedly capturing the presence of 5-methylcytosine (5-mC) DNA methylation patterns across an entire genome with single-nucleotide resolution. Bisulfite treatment converts unmethylated cytosines to uracils but leaves methylated cytosines intact, thereby creating a map of all methylated cytosines across a genome also known as a methylome. These epigenomic patterns of DNA methylation have been found to regulate gene expression and influence gene evolution rates between species. While protocols have been optimized for vertebrate methylome production, little adaptation has been done for invertebrates. Creating a methylome reference allows comparisons to be made between rates of transcription and epigenomic patterning in animals. Here we present a method of library construction for bisulfite sequencing optimized for non-bilateral metazoans such as the ctenophore, Mnemiopsis leidyi. We have improved upon our previously published method by including spike-in genomic DNA controls to measure methylation conversion rates. By pooling two bisulfite conversion reactions from the same individual, we also produced sequencing libraries that yielded a higher percentage of sequenced reads uniquely mapping to the reference genome. We successfully detected 5-mC in whole-animal methylomes at CpG, CHG, and CHH sites and visualized datasets using circos diagrams. The proof-of-concept tests were performed both under control conditions and following injury tests with changes in methylation patterns of genes encoding innexins, toxins and neuropeptides. Our approach can be easily adapted to produce epigenomes from other fragile marine animals.


Subject(s)
Ctenophora , DNA Methylation , Animals , Ctenophora/genetics , Sulfites/chemistry , Epigenomics/methods , Epigenesis, Genetic , Epigenome , 5-Methylcytosine/metabolism , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods , Genome
15.
Sci Rep ; 14(1): 6481, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499584

ABSTRACT

The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.


Subject(s)
Breast Neoplasms , Dioxygenases , Humans , Female , DNA Demethylation , Breast Neoplasms/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , 5-Methylcytosine/metabolism , DNA Methylation , Biomarkers/metabolism , DNA/metabolism , Epigenesis, Genetic , Leukocytes/metabolism , Carcinogenesis/genetics , Dioxygenases/genetics
16.
Proc Natl Acad Sci U S A ; 121(11): e2312596121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437555

ABSTRACT

Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.


Subject(s)
5-Methylcytosine , DNA , Crystallization , Catalysis , Crystallography
17.
Anal Chem ; 96(11): 4726-4735, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38450632

ABSTRACT

DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.


Subject(s)
Cytidine Deaminase , Cytosine , Cytosine/analogs & derivatives , Epigenesis, Genetic , Proteins , Animals , Mice , Deamination , Cytosine/metabolism , 5-Methylcytosine/metabolism , Chromosome Mapping , DNA/genetics , DNA/metabolism , DNA Methylation , Mammals/metabolism
18.
BMB Rep ; 57(3): 135-142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38449301

ABSTRACT

DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].


Subject(s)
DNA Methylation , Epigenesis, Genetic , DNA Methylation/genetics , Epigenesis, Genetic/genetics , 5-Methylcytosine/metabolism , Genome , Cell Differentiation , DNA/genetics , DNA/metabolism
19.
RNA ; 30(5): 560-569, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531644

ABSTRACT

The potential presence of 5-methylcytosine as a sparse internal modification of mRNA was first raised in 1975, and a first map of the modification was also part of the epitranscriptomics "big bang" in 2012. Since then, the evidence for its presence in mRNA has firmed up, and initial insights have been gained into the molecular function and broader biological relevance of 5-methylcytosine when present in mRNA. Here, we summarize the status quo of the field, outline some of its current challenges, and suggest how to address them in future work.


Subject(s)
5-Methylcytosine , RNA , RNA, Messenger/genetics
20.
Cancer Sci ; 115(5): 1706-1717, 2024 May.
Article in English | MEDLINE | ID: mdl-38433527

ABSTRACT

The majority of low-grade isocitrate dehydrogenase-mutant (IDHmt) gliomas undergo malignant progression (MP), but their underlying mechanism remains unclear. IDHmt gliomas exhibit global DNA methylation, and our previous report suggested that MP could be partly attributed to passive demethylation caused by accelerated cell cycles. However, during MP, there is also active demethylation mediated by ten-eleven translocation, such as DNA hydroxymethylation. Hydroxymethylation is reported to potentially contribute to gene expression regulation, but its role in MP remains under investigation. Therefore, we conducted a comprehensive analysis of hydroxymethylation during MP of IDHmt astrocytoma. Five primary/malignantly progressed IDHmt astrocytoma pairs were analyzed with oxidative bisulfite and the Infinium EPIC methylation array, detecting 5-hydroxymethyl cytosine at over 850,000 locations for region-specific hydroxymethylation assessment. Notably, we observed significant sharing of hydroxymethylated genomic regions during MP across the samples. Hydroxymethylated CpGs were enriched in open sea and intergenic regions (p < 0.001), and genes undergoing hydroxymethylation were significantly associated with cancer-related signaling pathways. RNA sequencing data integration identified 91 genes with significant positive/negative hydroxymethylation-expression correlations. Functional analysis suggested that positively correlated genes are involved in cell-cycle promotion, while negatively correlated ones are associated with antineoplastic functions. Analyses of The Cancer Genome Atlas clinical data on glioma were in line with these findings. Motif-enrichment analysis suggested the potential involvement of the transcription factor KLF4 in hydroxymethylation-based gene regulation. Our findings shed light on the significance of region-specific DNA hydroxymethylation in glioma MP and suggest its potential role in cancer-related gene expression and IDHmt glioma malignancy.


Subject(s)
Brain Neoplasms , DNA Methylation , Disease Progression , Gene Expression Regulation, Neoplastic , Glioma , Isocitrate Dehydrogenase , Kruppel-Like Factor 4 , Mutation , Humans , Isocitrate Dehydrogenase/genetics , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , CpG Islands/genetics , Female , Male , Astrocytoma/genetics , Astrocytoma/pathology , Astrocytoma/metabolism , Middle Aged , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...