Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
1.
Food Chem ; 452: 139533, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705119

ABSTRACT

Encapsulating enzymes in metal-organic frameworks is a common practice to improve enzyme stability against harsh conditions. However, the synthesis of enzyme@MOFs has been primarily limited to small-scale laboratory settings, hampering their industrial applications. Spray drying is a scalable and cost-effective technology, which has been frequently used in industry for large-scale productions. Despite these advantages, its potential for encapsulating enzymes in MOFs remains largely unexplored, due to challenges such as nozzle clogging from MOF particle formation, utilization of toxic organic solvents, controlled release of encapsulated enzymes, and high temperatures that could compromise enzyme activity. Herein, we present a novel approach for preparing phytase@MIL-88 A using solvent-free spray drying. This involves atomizing two MOF precursor solutions separately using a three-fluid nozzle, with enzyme release controlled by manipulating defects within the MOFs. The physicochemical properties of the spray dried particles are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Leveraging the efficiency and scalability of spray drying in industrial production, this scalable encapsulation technique holds considerable promise for broad industrial applications.


Subject(s)
6-Phytase , Delayed-Action Preparations , Enzyme Stability , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , 6-Phytase/chemistry , 6-Phytase/metabolism , Delayed-Action Preparations/chemistry , Spray Drying , Enzymes, Immobilized/chemistry , Desiccation , Particle Size , Drug Compounding/methods , Drug Compounding/instrumentation
2.
Protein Expr Purif ; 220: 106489, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38685535

ABSTRACT

Phytate (inositol hexaphosphate) is the major storage form of phosphorus (P) in nature, and phytases catalyze the hydrolysis of P from phytate and the formation of inositol phosphate isomers. In this study, a bacterium that produces phytase was isolated in a phytase screening medium. The bacterium was identified as Klebsiella sp. using phenotypic and molecular techniques. The PhyK phytase gene was successfully amplified from the genome, inserted into the pET-21a (+) vector, and expressed as a recombinant protein in E. Coli BL21. The efficiency of a laboratory phytase (Lab-Ph, PhyK phytase) was determined and compared with a commercial phytase (Com-Ph, Quantum Blue 40P phytase, AB Vista) under an in vitro digestion assay. The native signal peptide effectively facilitated the translocation of the protein to the periplasmic space of E. Coli BL21, resulting in the proper folding of the protein and the manifestation of desirable enzyme activity. The Lab-Ph displayed the temperature and pH optima at 50 °C and 5 respectively. In addition, the Lab-Ph was inactivated at 80 °C. Under an in vitro digestion assay condition, Lab-Ph improved the P solubility coefficient in broiler diets. In comparison, the Com-Ph significantly increased the P solubility coefficient even when compared with the Lab-Ph. In summary, this study has shown that Lab-Ph possesses the necessary biochemical properties to be used in various industrial applications. However, Lab-Ph is extremely sensitive to heat treatment. The Lab-Ph and Com-Ph under an in vitro digestion assay improved the solubility coefficient of P in the broiler diet.


Subject(s)
6-Phytase , Chickens , Escherichia coli , Klebsiella , Recombinant Proteins , Solubility , Animals , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , 6-Phytase/genetics , 6-Phytase/chemistry , 6-Phytase/metabolism , Klebsiella/genetics , Klebsiella/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Animal Feed , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Minerals/metabolism , Minerals/chemistry , Phytic Acid/metabolism , Phytic Acid/chemistry
3.
J Microbiol Biotechnol ; 34(5): 1119-1125, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38563103

ABSTRACT

Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70°C. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60°C. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80°C heat treatment without significant loss of or with increased activity.


Subject(s)
6-Phytase , Enzyme Stability , Hot Temperature , 6-Phytase/genetics , 6-Phytase/metabolism , 6-Phytase/chemistry , Hydrogen-Ion Concentration , Mutation , Pichia/genetics , Pichia/metabolism , Temperature , Animal Feed/analysis , Kinetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry
4.
Bioprocess Biosyst Eng ; 47(1): 39-55, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37962643

ABSTRACT

Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads. The immobilization yield, efficiency, and activation energy were found to be 47.8%, 71.5%, and 15.78 J/mol, respectively. The bound enzyme displayed a shift in pH optima from 5.5 to 4.5, which is more beneficial to increase digestibility in comparison with the free enzyme. Immobilized phytase retained 42.60% of its activity after 1.0 h incubation at 80 °C, whereas free enzyme retained only 4.20% of its activity. Thermodynami increase in half-lives, D-values, enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized phytase could be reused for five consecutive cycles retaining 51% of its initial activity with sodium phytate. The immobilized phytase was also found effective to hydrolyze the soybean meal, thus increasing the digestibility of poultry feed. The hydrolyzing reaction of soybean meal was carried out for six consecutive cycles and immobilized phytase retained nearly 50% of activity till the fifth cycle. The amount of phosphorus released after treatment with immobilized phytase was far higher than that from free phytase. Immobilization on this support is significant, as this support can sustain high mechanical resistance at high pH and temperature. This considerable stability and reusability of the bound enzyme may be advantageous for its industrial application.


Subject(s)
6-Phytase , Aspergillus oryzae , 6-Phytase/chemistry , Aspergillus oryzae/metabolism , Cells, Immobilized/metabolism , Flour , Glycine max , Phosphates , Phytic Acid/metabolism
5.
World J Microbiol Biotechnol ; 40(1): 22, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008864

ABSTRACT

Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.


Subject(s)
6-Phytase , Animals , 6-Phytase/chemistry , 6-Phytase/metabolism , Fermentation , Phytic Acid/metabolism , Phosphorus , Minerals
6.
Int. microbiol ; 26(4): 961-972, Nov. 2023. graf
Article in English | IBECS | ID: ibc-227484

ABSTRACT

Phytases are specialized enzymes meant for phytic acid degradation. They possess ability to prevent phytic acid indigestion, including its attendant environmental pollution. This study was aimed at investigating biochemical properties of purified phytase of B. cereus isolated from Achatina fulica. Phytase produced from Bacillus cereus that exhibited optimal phytate degrading-ability of all the bacteria isolated was purified in a three-step purification. The biochemical properties of the purified enzyme were also determined. The phytase homogeny of approximately 45 kDa exhibited 12.8-purification fold and 1.6% yield with optima phytate degrading efficiency and maximum stability at pH 7 and 50 °C. Remaining activity of 52 and 47% obtained between 60 and 70 °C after 2 h further established thermostability of the purified phytase. Mg2+ and Zn2+ enhanced phytate hydrolysis by the enzyme, while Na+ showed mild inhibition but Hg2+ severely inhibited the enzymatic activity. Km and Vmax were estimated to be 0.11 mM and 55.6 μmol/min/mL, displaying enzyme-high substrate affinity and catalytic efficiency, respectively. Phytase purified from Bacillus cereus, isolated from African giant snails, has shown excellent characteristics suitable for phytic acid hydrolysis and could be employed in industrial and biotechnological applications.(AU)


Subject(s)
Humans , Phytic Acid/chemistry , 6-Phytase/chemistry , Gastrointestinal Tract , Bacillus cereus/metabolism , Snails/metabolism , Protons , 6-Phytase/metabolism , Microbiology , Microbiological Techniques , Phytic Acid/metabolism
7.
BMC Microbiol ; 23(1): 296, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848818

ABSTRACT

BACKGROUND: Phytase catalyses the breakdown of complex organic forms of phosphorous into simpler forms by sequential hydrolysis of phosphate ester bonds to liberate the inorganic phosphate. Supplementation of feeds with bacterial phytase therefore could enhance the bioavailability of phosphorus and micronutrients. Hence, the aim of this study was to isolate and characterize phytase producing bacteria from rhizosphere soil, fresh poultry excreta, and cattle shed to evaluate their potential in improving poultry feeds. Phytase producing bacteria were isolated using wheat bran extract medium. RESULTS: A total of 169 bacterial isolates were purified and screened for phytase activity. Out of these, 36 were confirmed as positive for phytase enzyme activity. The bacterial isolates were identified by cultural, morphological, and biochemical features. The isolates were also identified by using 16 S rRNA gene sequencing. The bacterial isolates (RS1, RS8, RS10 and RS15) were provided with gene bank database accession numbers of MZ407562, MZ407563, MZ407564 and MZ407565 respectively. All isolates increased phytase production when cultured in wheat bran extract medium (pH 6) supplemented with 1% (wt/v) galactose and 1% (wt/v) ammonium sulphate incubated at 50oC for 72 h. Proximate composition analysis after supplementation of phytase showed that phytase supplementation improved bioavailability of phosphorus, calcium, potassium and sodium in poultry feed. CONCLUSIONS: Overall, this study showed that the nutritional value of poultry feed can be improved using microbial phytase enzyme which reduces the cost of supplementation with inorganic phosphate.


Subject(s)
6-Phytase , Poultry , Animals , Cattle , 6-Phytase/genetics , 6-Phytase/analysis , 6-Phytase/chemistry , Phosphorus , Phosphates , Dietary Fiber , Animal Feed/analysis , Diet/veterinary
8.
Int Microbiol ; 26(4): 961-972, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37020067

ABSTRACT

Phytases are specialized enzymes meant for phytic acid degradation. They possess ability to prevent phytic acid indigestion, including its attendant environmental pollution. This study was aimed at investigating biochemical properties of purified phytase of B. cereus isolated from Achatina fulica. Phytase produced from Bacillus cereus that exhibited optimal phytate degrading-ability of all the bacteria isolated was purified in a three-step purification. The biochemical properties of the purified enzyme were also determined. The phytase homogeny of approximately 45 kDa exhibited 12.8-purification fold and 1.6% yield with optima phytate degrading efficiency and maximum stability at pH 7 and 50 °C. Remaining activity of 52 and 47% obtained between 60 and 70 °C after 2 h further established thermostability of the purified phytase. Mg2+ and Zn2+ enhanced phytate hydrolysis by the enzyme, while Na+ showed mild inhibition but Hg2+ severely inhibited the enzymatic activity. Km and Vmax were estimated to be 0.11 mM and 55.6 µmol/min/mL, displaying enzyme-high substrate affinity and catalytic efficiency, respectively. Phytase purified from Bacillus cereus, isolated from African giant snails, has shown excellent characteristics suitable for phytic acid hydrolysis and could be employed in industrial and biotechnological applications.


Subject(s)
6-Phytase , Bacillus cereus , Animals , Bacillus cereus/metabolism , 6-Phytase/chemistry , 6-Phytase/metabolism , Phytic Acid/chemistry , Phytic Acid/metabolism , Snails/metabolism , Gastrointestinal Tract , Hydrogen-Ion Concentration
9.
Chemosphere ; 330: 138761, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37088210

ABSTRACT

With the increasing demand for P fertilizer for world food production, the use of soil organic P fraction via mineralization could become an important P resource in agricultural soils. However, the predominant organic P species, phytic acid, has been considered rather recalcitrant to mineralization due to its active interaction with dissolved metals like Ca2+ in soil pore water. Calcium ions can be an inhibitor to many phytases, yet the mechanism was not clear. The objective of this study was to understand the effects of Ca2+(aq) on the phytase activity and inhibitory mechanisms using batch degradation kinetic experiments, Nuclear Magnetic Resonance (NMR) spectroscopy, Saturation Transfer Difference (STD) NMR, and Circular dichroism (CD) spectroscopy. The phytase activity followed Michaelis-Menten kinetics and increased Michaelis constant Km and decreased Vmax with Ca2+ addition were observed at pH 6. Therefore, mixed inhibition was the inhibition mechanism which was likely a result of the allosteric effect of Ca2+. The near-UV CD spectra supported phytase secondary conformational change upon the interaction between Ca2+ and the enzyme. It was found that phytase initially reacted with the D/L-3 phosphate of phytic acid at pH 6. At pH 8, the overall phytase activity decreased, yet the effect of Ca2+ on phytase activity was the opposite of that of pH 6. Enhanced phytase activity with Ca2+ addition was attributed to the structural change of phytic acid upon the Ca2+ complexation, which was confirmed by NOE spectra. The Ca2+-phytic acid complex might be a more favorable substrate than the free phytic acid. Unlike the findings from pH 6, Ca2+ didn't induce significant changes in either the near- or far-UV region of the CD spectra at pH 8. Furthermore, P5 was found to be the target of phytase at pH 8. The study revealed the pH-specific effects of Ca2+ on the mineralization of phytic acid.


Subject(s)
6-Phytase , Phosphorus , Phytic Acid , 6-Phytase/chemistry , 6-Phytase/metabolism , Magnetic Resonance Spectroscopy , Phosphates/metabolism , Animal Feed/analysis
10.
Crit Rev Food Sci Nutr ; 63(22): 5465-5487, 2023.
Article in English | MEDLINE | ID: mdl-34965785

ABSTRACT

Phytases are the most widely used food and feed enzymes, which aid in nutritional improvement by reducing anti-nutritional factor. Despite the benefits, enzymes usage in the industry is restricted by several factors such as their short life-span and poor reusability, which result in high costs for large-scale utilization at commercial scale. Furthermore, under pelleting conditions such as high temperatures, pH, and other factors, the enzyme becomes inactive due to lesser stability. Immobilization of phytases has been suggested as a way to overcome these limitations with improved performance. Matrices used to immobilize phytases include inorganic (Hydroxypatite, zeolite, and silica), organic (Polyacrylamide, epoxy resins, alginate, chitosan, and starch agar), soluble matrix (Polyvinyl alcohol), and nanomaterials including nanoparticles, nanofibers, nanotubes. Several surface analysis methods, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR analysis, have been used to characterize immobilized phytase. Immobilized phytases have been used in a broad range of biotechnological applications such as animal feed, biodegradation of food phytates, preparations of myo-inositol phosphates, and sulfoxidation by vanadate-substituted peroxidase. This article provides information on different matrices used for phytase immobilization from the last two decades, including the process of immobilization and support material, surface analysis techniques, and multifarious biotechnological applications of the immobilized phytases.


Subject(s)
6-Phytase , Animals , 6-Phytase/chemistry , 6-Phytase/metabolism , Biotechnology , Animal Feed , Hot Temperature , Inositol Phosphates
11.
Biochem Biophys Res Commun ; 634: 55-61, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36228545

ABSTRACT

Aspergillus niger ATCC 10864 phytase A was produced in Penicillium verruculosum. The enzyme was found to have two pH optima of 2.5 and 5.0, as well as a T-optimum of 50-55 °C. Two amino acid substitutions, A76M and S265P, were designed for improvement in thermostability, and two more, N300K and D363N, were designed for improvement in enzyme activity. The most thermostable variant, S265P, was characterized by a 3.8-fold increase in time of half-life at 55 °C and a 1.2-fold increase in residual activity at 90 °C compared to the wild-type. The most active variant, D363N, was 1.7-times more active at 40 °C and retained 1.3-times higher residual activity at 90 °C compared to the wild-type. The obtained results revealed the importance of substitutions with proline in α-helixes for the thermostability improvement of phytases. Also, the importance of sequence motif 361HDN363 was demonstrated with relevance to values of catalytic parameters.


Subject(s)
6-Phytase , 6-Phytase/genetics , 6-Phytase/chemistry , 6-Phytase/metabolism , Aspergillus niger , Enzyme Stability , Hydrogen-Ion Concentration
12.
Environ Sci Technol ; 56(22): 16441-16452, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36283689

ABSTRACT

Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from Aspergillus niger. Trends of δ18O values in released orthophosphate during each enzyme-catalyzed reaction in 18O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that A. niger phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than A. niger phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and 31P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.


Subject(s)
6-Phytase , 6-Phytase/chemistry , 6-Phytase/genetics , 6-Phytase/metabolism , Phosphorus , Phosphoric Monoester Hydrolases/metabolism , Kinetics , Molecular Docking Simulation , Acid Phosphatase/chemistry , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Polyphosphates , Isotopes , Biopolymers , RNA
13.
PLoS One ; 17(8): e0272015, 2022.
Article in English | MEDLINE | ID: mdl-36044476

ABSTRACT

Phylogenetic analysis, homology modelling and biochemical methods have been employed to characterize a phytase from a Gram-negative soil bacterium. Acinetobacter sp. AC1-2 phytase belongs to clade 2 of the histidine (acid) phytases, to the Multiple Inositol Polyphosphate Phosphatase (MINPP) subclass. The enzyme was extraordinarily stable in solution both at room temperature and 4°C, retaining near 100% activity over 755 days. It showed a broad pH activity profile from 2-8.5 with maxima at 3, 4.5-5 and 6. The enzyme showed Michaelis-Menten kinetics and substrate inhibition (Vmax, Km, and Ki, 228 U/mg, 0.65 mM and 2.23 mM, respectively). Homology modelling using the crystal structure of a homologous MINPP from a human gut commensal bacterium indicated the presence of a potentially stabilising polypeptide loop (a U-loop) straddling the active site. By employ of the enantiospecificity of Arabidopsis inositol tris/tetrakisphosphate kinase 1 for inositol pentakisphosphates, we show AC1-2 MINPP to possess D6-phytase activity, which allowed modelling of active site specificity pockets for InsP6 substrate. While phytase gene transcription was unaltered in rich media, it was repressed in minimal media with phytic acid and orthophosphate as phosphate sources. The results of this study reveal AC1-2 MINPP to possess desirable attributes relevant to biotechnological use.


Subject(s)
6-Phytase , Acinetobacter , Phosphoric Monoester Hydrolases , 6-Phytase/chemistry , 6-Phytase/metabolism , Acinetobacter/chemistry , Acinetobacter/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Phosphates , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phylogeny , Phytic Acid , Soil Microbiology , Substrate Specificity
14.
J Agric Food Chem ; 70(23): 7139-7147, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35648591

ABSTRACT

Enzymes are important catalysts for biological processes due to their high catalytic activity and selectivity. However, their low thermal stability limited their industrial applications. The present work demonstrates a simple and effective method for enzyme immobilization via spray drying. Alginate was used as a support material. Phytase, an important enzyme in the animal feed industry, was selected to study the effect of enzyme immobilization using alginate particles on its thermal stability. The physicochemical properties of alginate particles such as size, surface morphology, and heat resistance were studied. Successful immobilization of phytase was confirmed by confocal microscopy, and the immobilized phytase retained 58% of its original activity upon heating at 95 °C, compared to 4% when the alginate support material was absent. Phytase was released promptly in a simulated gastrointestinal tract with >95% of its original activity recovered. The spray drying method for phytase immobilization is scalable and applicable to other enzymes for various applications.


Subject(s)
6-Phytase , Alginates , 6-Phytase/chemistry , Alginates/chemistry , Animals , Enzyme Stability , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Spray Drying
15.
Environ Sci Technol ; 56(13): 9196-9219, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35675210

ABSTRACT

Phytate (myo-inositol hexakisphosphate salts) can constitute a large fraction of the organic P in soils. As a more recalcitrant form of soil organic P, up to 51 million metric tons of phytate accumulate in soils annually, corresponding to ∼65% of the P fertilizer application. However, the availability of phytate is limited due to its strong binding to soils via its highly-phosphorylated inositol structure, with sorption capacity being ∼4 times that of orthophosphate in soils. Phosphorus (P) is one of the most limiting macronutrients for agricultural productivity. Given that phosphate rock is a finite resource, coupled with the increasing difficulty in its extraction and geopolitical fragility in supply, it is anticipated that both economic and environmental costs of P fertilizer will greatly increase. Therefore, optimizing the use of soil phytate-P can potentially enhance the economic and environmental sustainability of agriculture production. To increase phytate-P availability in the rhizosphere, plants and microbes have developed strategies to improve phytate solubility and mineralization by secreting mobilizing agents including organic acids and hydrolyzing enzymes including various phytases. Though we have some understanding of phytate availability and phytase activity in soils, the limiting steps for phytate-P acquisition by plants proposed two decades ago remain elusive. Besides, the relative contribution of plant- and microbe-derived phytases, including those from mycorrhizas, in improving phytate-P utilization is poorly understood. Hence, it is important to understand the processes that influence phytate-P acquisition by plants, thereby developing effective molecular biotechnologies to enhance the dynamics of phytate in soil. However, from a practical view, phytate-P acquisition by plants competes with soil P fixation, so the ability of plants to access stable phytate must be evaluated from both a plant and soil perspective. Here, we summarize information on phytate availability in soils and phytate-P acquisition by plants. In addition, agronomic approaches and biotechnological strategies to improve soil phytate-P utilization by plants are discussed, and questions that need further investigation are raised. The information helps to better improve phytate-P utilization by plants, thereby reducing P resource inputs and pollution risks to the wider environment.


Subject(s)
6-Phytase , Phytic Acid , 6-Phytase/chemistry , 6-Phytase/metabolism , Fertilizers , Phosphates , Phosphorus , Phytic Acid/metabolism , Plants/metabolism , Soil/chemistry
16.
Environ Sci Process Impacts ; 24(7): 1082-1093, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35730733

ABSTRACT

As a potential phosphorus (P) pool, the enzymatic hydrolysis of organic phosphorus (Po) is of fundamental importance due to the release of bioavailable inorganic phosphate (Pi) for agronomic P sustainability. However, little is known about the role of soil organic matter (SOM) in the hydrolysis process of phytate by phytase and the subsequent chemical behaviors involving the hydrolysis product (Pi) at different soil interfaces. Here, by using liquid-cell atomic force microscopy (AFM), we present a model system to in situ quantify the nucleation kinetics of phytase-released Pi when precipitating with representative soil multivalent cations (Ca2+/Fe3+) on typical soil mineral/organic interfaces in the presence/absence of humic acid (HA), which involves complex phytase-interface-HA interactions. We observed that a higher HA concentration resulted in a faster nucleation rate of amorphous calcium/iron phosphate (ACP/AIP) on bare and organically-coated (-OH/-COOH) mica surfaces compared with the HA-free control. Besides, the nucleation rate of ACP/AIP induced by organic interfaces was much more significant than that induced by clay mineral interfaces. By combining enzyme activity/stability experiments and AFM-based PeakForce quantitative nanomechanical mapping (PF-QNM) measurements, we directly quantified the contribution of noncovalent phytase-HA interaction to the increase in enzymatic activity from complex phytase-interface-HA interactions. Furthermore, the direct complexation of phytase-HA resulted in the stabilization of a conserved active catalytic domain (ACD) in phytase through the enhanced formation of both an ordered, stereochemically-favored catalytic domain and an unordered non-catalytic domain, which was revealed by Raman secondary structure determination. The results provide direct insights into how HA regulates the catalytic activity of phytase controlling Po fates and how soil interfaces determine the behaviors of released Pi to affect its availability, and thereby contribute to P sustainability in soils.


Subject(s)
6-Phytase , 6-Phytase/chemistry , Humic Substances , Hydrolysis , Iron , Minerals , Phosphorus , Phytic Acid , Soil/chemistry
17.
Plant Commun ; 3(2): 100305, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35529950

ABSTRACT

Grain phytate, a mixed metal ion salt of inositol hexakisphosphate, accounts for 60%-80% of stored phosphorus in plants and is a potent antinutrient of non-ruminant animals including humans. Through neofunctionalization of purple acid phytases (PAPhy), some cereals such as wheat and rye have acquired particularly high mature grain phytase activity. As PAPhy activity supplies phosphate, liberates metal ions necessary for seedling emergence, and obviates antinutrient effects of phytate, its manipulation and control are targeted crop traits. Here we show the X-ray crystal structure of the b2 isoform of wheat PAPhy induced during germination. This high-resolution crystal structure suggests a model for phytate recognition that, validated by molecular dynamics simulations, implicates elements of two sequence inserts (termed PAPhy motifs) relative to a canonical metallophosphoesterase (MPE) domain in forming phytate-specific substrate specificity pockets. These motifs are well conserved in PAPhys from monocot cereals, enzymes which are characterized by high specificity for phytate. Tested by mutagenesis, residues His229 in PAPhy motif 4 and Lys410 in the MPE domain, both conserved in PAPhys, are found to strongly influence phytase activity. These results explain the observed phytase activity of cereal PAPhys and open the way to the rational engineering of phytase activity in planta.


Subject(s)
6-Phytase , 6-Phytase/chemistry , 6-Phytase/genetics , 6-Phytase/metabolism , Animals , Edible Grain/chemistry , Edible Grain/genetics , Germination , Phytic Acid/analysis , Phytic Acid/metabolism , Triticum/genetics
18.
Phys Chem Chem Phys ; 24(7): 4493-4503, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35113120

ABSTRACT

Changes in the secondary structure of phytase, particularly the conserved active catalytic domain (ACD, SRHGVRAPHD) are extremely important for the varied catalytic activity during hydrolyzing phytate in the presence of humic acid (HA). However, little is known about the molecular-scale mechanisms of how HA influences the secondary structure of ACD found in phytase. First, in situ surface-enhanced Raman spectroscopy (SERS) results show the secondary structure transformation of ACD from the unordered random coil to the ordered ß-sheet structure after treatment with HA. Then, we use an atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) technique that can in situ directly probe the single-molecule interaction of ACD with HA and underlying changes in ACD secondary structure in the approach-retraction cycles in real time. Based on the SMFS results, we further detect the HA-enhanced formation of H-bonding between amide groups in the ACD backbone after noncovalently interacting with HA in the absence of phytate. Following the addition of phytate, the calculated contour length (Lc) and the free energies (ΔGb) of functional groups within ACD(-1/2) binding to mica/HA collectively demonstrate the formation of the organized intermediate structural state of ACD following its covalent binding to phytate. These spectroscopic and single-molecule determinations provide the molecular-scale understanding regarding the detailed mechanisms of HA-enhancement of the ordered ß-sheet secondary structure of ACD through chemical functionalities in ACD noncovalently interacting with HA. Therefore, we suggest that similar studies of the interactions of other soil enzymes and plant nutrients may reveal predominant roles of dissolved organic matter (DOM) in controlling elemental cycling and fate for sustainable agriculture development.


Subject(s)
6-Phytase , Humic Substances , 6-Phytase/chemistry , Catalytic Domain , Protein Structure, Secondary
19.
Environ Sci Pollut Res Int ; 29(22): 33713-33724, 2022 May.
Article in English | MEDLINE | ID: mdl-35029822

ABSTRACT

Heat- and pH-stable phytase efficiently hydrolyzes phytic acid. In this research, heat- and pH-stable mutant phytases, T83R, L287R, and T83R/L287R were generated by site-directed mutagenesis from Yersinia intermedia. After the induction and expression of recombinant wild-type and mutant phytases in E. coli BL21, the enzymes were purified using nickel sepharose affinity chromatography, and characterized kinetically and thermodynamically using spectroscopy methods. The mutants showed optimum activity at pH 5.15 and 55-61 °C. The catalytic efficiencies of T83R, L287R, T83R/L287R, and wild-type phytases were calculated to be 2941, 29346, 4906, and 6917 mmol/L-1s-1, respectively. Moreover, after the incubation of T83R, L287R, wild-type, and T83R/ L287R phytases at 100 °C for 1 h, the enzymes retained 22, 5, 4, and 2% of their initial activities, respectively. In addition, T83R, T83R/L287R, L287R, and wild-type phytases retained 82, 44, 16 as well as 11% of their initial activities after 1 h at pH 5.15, respectively. Among these mutants, T83R mutant showed 18% increase in thermal stability, 71% increase in pH stability, and +0.103 KJ/mole increase in ΔΔG, while the catalytic efficiency and ΔΔG value of L287R mutant increased by 4 times and +0.0903 KJ/mole, respectively. Thus, the mutants have the potential to be used in feed industries to increase the bioavailability of minerals while decreasing soil and water pollution.


Subject(s)
6-Phytase , 6-Phytase/chemistry , Enzyme Stability , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Yersinia/chemistry
20.
J Sci Food Agric ; 102(3): 931-939, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34265087

ABSTRACT

BACKGROUND: Reducing anti-nutritional factors like phytates in seed protein products requires an ongoing effort. This study was the first to investigate the phytic acid content in seabuckthorn seed protein (SSP) and its reduction by an exogenous phytase during protein isolation from seabuckthorn seed meal through the common alkaline solubilization-isoelectric precipitation process. RESULTS: The additional phytase treatment could reduce the content of phytic acid from 22.46 to 13.27 g kg-1 , leading to SSP products with lighter color (lower ΔE* ), higher protein solubility, higher in vitro digestibility, but lower phenolic antioxidant content (including flavonoids and procyanidins) and some beneficial ions like Ca, Fe, Mg, and Zn. The Fourier transform infrared (FTIR) results indicated that the secondary structure of protein changed under the treatment with phytase. Correlation analysis showed that L* was significantly negatively correlated with TP, TPC and TF (P < 0.001), while a* and b* were significantly positively correlated with them (P < 0.001). CONCLUSIONS: There may be a trade-off between protein functionalities and other health-promoting components when a phytase treatment is included in SSP isolation. © 2021 Society of Chemical Industry.


Subject(s)
6-Phytase/chemistry , Food Handling/methods , Hippophae/chemistry , Plant Proteins/chemistry , Alkalies/chemistry , Biocatalysis , Chemical Precipitation , Color , Phytic Acid/chemistry , Seeds/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...