Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Iran J Kidney Dis ; 18(2): 118-123, 2024 03.
Article in English | MEDLINE | ID: mdl-38660699

ABSTRACT

INTRODUCTION: Peritoneal dialysis (PD) is an effective treatment  modality for advanced kidney failure, offering patients a significant  degree of independence. However, the long-term use of PD is  limited due to the degeneration of the peritoneal membrane,  resulting in reduced dialysis adequacy. Evaluating the peritoneal  membrane condition in patients with advanced kidney failure  who are undergoing PD is challenging with existing methods.  Therefore, this study aimed to investigate the correlation between  8-hydroxy-2'-deoxyguanosine (8OHDG) levels in the peritoneal  solution of patients undergoing PD and various factors, such  as peritoneal equilibration test (PET), dialysis adequacy (Kt/V),  underlying diseases, serum ferritin, and albumin levels. 8OHDG  is a sensitive marker of oxidative stress caused by DNA damage. METHODS: A total of 56 patients were included in this cross-sectional  study. Five milliliters of PD fluid were collected from the patients,  and 8-OHdG levels were measured using ELISA method. Then, they  were compared with PET, Kt/V, albumin, and ferritin markers in  the patients' files, and the results were analyzed by statistical tests. RESULTS: The study examined the correlation between 8OHDG  and other markers. It was found that this index had significant  associations with PET and underlying HTN (P < .05), whereas no  significant associations were identified with the other markers. CONCLUSION: The results of the present study demonstrate that  the level of 8OHDG, as one of the oxidative stress markers, could  be used to evaluate the function of the peritoneum in patients  undergoing PD. DOI: 10.52547/ijkd.7654.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Oxidative Stress , Peritoneal Dialysis , Female , Humans , Male , 8-Hydroxy-2'-Deoxyguanosine/analysis , Biomarkers/blood , Biomarkers/metabolism , Cross-Sectional Studies , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Deoxyguanosine/blood , Ferritins/blood , Ferritins/analysis , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/blood , Peritoneal Dialysis/adverse effects , Peritoneum/chemistry , Peritoneum/metabolism , Peritoneum/pathology , Serum Albumin/analysis , Serum Albumin/metabolism
2.
Environ Pollut ; 342: 123068, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38042471

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) exposure has been associated with adverse health effects, and accumulating evidence suggests that PAH exposure may impair liver function. However, the underlying mechanisms linking PAH exposure and liver function impairment remain unclear. This study aimed to explore the association between PAH exposure and liver function biomarkers, and the mediating effects of inflammation and oxidative stress. The cross-sectional study included 155 adults and their urinary PAH metabolites (OH-PAHs) were determined, and eight liver function biomarkers were measured in paired serum samples. A comprehensive statistical analysis investigated the linear, non-linear, individual, and joint effects of the association between urinary OH-PAHs and liver function biomarkers. The results indicated significant positive associations between urinary OH-PAH concentrations and liver function biomarker levels, suggesting that PAH exposure may adversely affect liver function. 2-hydroxyfluorene was identified as the individual metabolite contributing significantly to elevated gamma-glutamyl transferase levels. Further stratification by gender revealed that this association is more pronounced in males. Moreover, we observed significant mediation effects of the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine and the inflammatory biomarkers C-reactive protein and white blood cell count on this association. The physiological responses triggered by PAH exposure are mediated by inflammation, which serves as a link between oxidative stress, cellular injury, and elevated liver enzyme levels. The results demonstrated that increased inflammation and oxidative stress mediated the association between increased urinary OH-PAHs and elevated liver function biomarkers. The results contribute to a better understanding of the potential mechanisms underlying PAH exposure's hepatotoxic effects.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Polycyclic Aromatic Hydrocarbons , Adult , Male , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Exposure/analysis , Cross-Sectional Studies , 8-Hydroxy-2'-Deoxyguanosine/analysis , Inflammation/chemically induced , Biomarkers/urine , Oxidative Stress , Liver/chemistry
3.
Sci Total Environ ; 912: 169513, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38154630

ABSTRACT

Exposure to multiple environmental pollutants is ubiquitous and inevitable, but studies investigating their exposure effects on oxidative stress or inflammation have mainly been restricted to single-pollutant models. This study investigated the association of co-exposure to polycyclic aromatic hydrocarbons and phthalates with oxidative stress and inflammation. Using a cross-sectional study in adults, we measured urinary concentrations of metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) and phthalates (mPAEs), urinary oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine, and 9 inflammatory biomarkers in paired blood samples. The associations of urinary OH-PAHs and mPAEs with oxidative stress and inflammation biomarkers were evaluated by different statistical models. The Bayesian kernel machine regression and quantile g-computation was used to examine the joint effects, and increased levels of urinary concentrations of OH-PAHs and mPAEs were associated with elevated 8-hydroxy-2'-deoxyguanosine level and white blood cell counts. Exposure to polycyclic aromatic hydrocarbons contributed more significantly to inflammation, while exposure to phthalates contributed more to oxidative stress. Monoisobutyl phthalate was identified as the most significant metabolite contributing to elevated oxidative stress levels. 1-Hydroxypyrene was negatively associated with platelet, and monomethyl phthalate was significantly positively associated with interleukin 6 in multivariate linear regression. The restricted cubic spline analysis revealed non-linear patterns of 3-hydroxyfluorene with white blood cell, lymphocyte, neutrophil, and C-reactive protein. The results indicated significant associations between increased co-exposure to polycyclic aromatic hydrocarbons and phthalates with elevated oxidative stress and inflammation. Further investigation is needed to elucidate the underlying biological mechanisms and to determine the potential public health implications.


Subject(s)
Environmental Pollutants , Phthalic Acids , Polycyclic Aromatic Hydrocarbons , Adult , Humans , Polycyclic Aromatic Hydrocarbons/analysis , 8-Hydroxy-2'-Deoxyguanosine/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Cross-Sectional Studies , Bayes Theorem , Environmental Pollutants/analysis , Inflammation/chemically induced , Biomarkers/urine , Oxidative Stress
4.
Sci Total Environ ; 905: 167433, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37774881

ABSTRACT

Children are highly vulnerable to environmental pollutants, especially endocrine-disrupting chemicals (EDCs). Previous research has linked both organic UV filters and phthalates exposure to adiposity and pubertal development in children. Nevertheless, the individual and collective effects of these chemicals on this population remain poorly understood. In this study, twelve organic UV filters and metabolites, six phthalate metabolites and two oxidative stress biomarkers were analyzed in a prospective follow-up study in Shanghai, China after a baseline study conducted 1.5 years earlier. Results revealed a positive association between exposure to individual organic UV filters or their mixture and levels of 8-OHdG (ß ranging from 0.242 to 0.588, P < 0.05), a marker of oxidative DNA damage. BP-3 and OD-PABA made a greater contribution to oxidative DNA damage than other UV filters. Levels of 8-OHdG were also positively correlated with single phthalate metabolites and their mixture, with MnBP and MMP contributing the most. Stratified analysis found that these associations were mainly observed in girls. Our mixture analysis revealed cumulative risks of oxidative DNA damage when there was co-exposure to these two kinds of EDCs. These results underscore the importance of considering the risks associated with organic UV filters and the necessity of evaluating the effects of all these pollutants, both individually and in mixtures.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Phthalic Acids , Female , Humans , Child , Follow-Up Studies , Prospective Studies , China , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Environmental Pollutants/analysis , Oxidative Stress , 8-Hydroxy-2'-Deoxyguanosine/analysis , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Environmental Exposure/analysis
5.
Environ Pollut ; 326: 121462, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36958664

ABSTRACT

Epidemiological studies have suggested that phthalate exposures are associated with increased risks of thyroid cancer and benign nodule, while the underlying mechanisms are largely unknown. Here, we explored the mediation effects of oxidative stress (OS) biomarkers in the associations between phthalate exposures and the risks of thyroid cancer and benign nodule. Urine samples collected from 143 thyroid cancer, 136 nodule patients, and 141 healthy controls were analyzed for 8 phthalate metabolites and 3 OS biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), and 8-iso-prostaglandin F2α (8-isoPGF2α)]. Multivariable linear or logistic regression models were used to explore the associations of OS biomarkers with phthalate metabolite concentrations and the risks of thyroid cancer and nodule. The mediation role of OS biomarkers was also investigated. Urinary monoethyl phthalate (MEP), monomethyl phthalate (MMP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), mono (2-ethylhexyl) phthalate (MEHP), and mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) were positively associated with at least 2 OS biomarkers (all P-values<0.01), and part of these positive associations varied in different subgroups. All 3 OS biomarkers were positively associated with the risks of thyroid nodule and cancer (P-values<0.001). The mediation analysis showed that OS biomarkers significantly mediated the associations between urinary MEHOP concentration and nodule, as well as between urinary MMP, MEHP, and MEHHP concentrations and cancer and nodule, with the estimated proportions of mediation ranging from 15.8% to 85.6%. Our results suggest that OS is a potential mediating mechanism through which phthalate exposures induce thyroid carcinogenesis and nodular formation.


Subject(s)
Environmental Pollutants , Phthalic Acids , Thyroid Nodule , Humans , Thyroid Nodule/chemically induced , Thyroid Nodule/epidemiology , Phthalic Acids/metabolism , 8-Hydroxy-2'-Deoxyguanosine/analysis , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Oxidative Stress , Biomarkers/metabolism , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollutants/analysis
6.
BMC Public Health ; 23(1): 330, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788529

ABSTRACT

BACKGROUND: Frequent heavy air pollution occurred during the winter heating season of northern China. Particulate air pollution is a serious concern in Urumqi during heating season. Exposure to air pollution is known to increase adverse health outcomes, particularly oxidative damage. This study aimed to evaluate the impact of air pollution on oxidative damage around pregnant women and newborns in Urumqi. METHODS: This prospective observational study enrolled pregnant women in the Fifth Affiliated Hospital of Xinjiang Medical University between January 2019 and October 2019. Pregnant women and newborns were allocated into a heating season group (January - end of April 2019, October 2019) or non-heating season group (June 2019 - end of September) according to the specific delivery time. Venous blood, urine from the women and cord blood from their newborns were collected to measure the levels of PAHs and 8-deoxyguanosine (8-OHdG), a measure of oxidative stress. RESULTS: A total of 200 pregnant women and newborns were enrolled, with 100 pregnant women and newborns in the heating season group. Compared to the non-heating season group, the total contents of 8-OHdG in maternal urine, PAHs and 8-OHdG in maternal plasma and neonatal cord blood were higher in the heating season group (all P < 0.001). The average values for AQI, PM2.5, PM10, SO2, NO2, and CO were higher in the heating season group (all P < 0.001). Maternal and neonatal PAHs were correlated with 8-OHdG measurements in maternal urine (r = 0.288, P < 0.001 and r = 0.336, P < 0.001) and neonatal umbilical cord blood (r = 0.296, P < 0.001 and r = 0.252, P < 0.001). There was also a positive relationship between PAHs, 8-OHdG levels in pregnant women and their newborns and proximate air pollutant concentrations (all P < 0.05). Based on the results of multiple linear regression analysis, it was found that air pollutants(PM10, 03) had a great influence on the level of 8-OHdG in neonatal cord blood, and the contribution rate was high(R2 = 0.320). Based on the epidemiological questionnaire, a multiple linear regression model was established(R2 = 0.496). We found that 8-OHdG levels in neonatal umbilical cord blood were mainly affected by two aspects: (1) Biological samples collected during heating had higher levels of 8-OHdG in neonatal umbilical cord blood. (2) Study may suggest that in neonates, males are more sensitive to oxidative damage. CONCLUSION: Particulate air pollution may increase PAHs exposure and oxidative DNA damage in pregnant women and newborns.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Male , Female , Humans , Infant, Newborn , Pregnancy , Pregnant Women , Particulate Matter/adverse effects , Particulate Matter/analysis , Environmental Pollutants/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , 8-Hydroxy-2'-Deoxyguanosine/analysis , Polycyclic Aromatic Hydrocarbons/analysis , China/epidemiology , Dust/analysis , Oxidative Stress
7.
Sci Total Environ ; 868: 161516, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36646220

ABSTRACT

OBJECTIVES: To investigate determinants of oxidative stress in an indigenous population, we examined associations of trace element exposures and dietary patterns with three oxidative stress-related biomarkers among indigenous populations in Northern Laos. METHODS: This cross-sectional study included 341 adults from three villages with different levels of modernization. We used three oxidative stress-related biomarkers: urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane concentrations, which were measured using liquid chromatography-tandem mass spectrometry, and blood telomere lengths, which were measured using a quantitative polymerase chain reaction method. We used multilevel analysis to examine associations of urinary arsenic, cadmium, and selenium concentrations, their interaction terms, and wild-plant-food scores (principal component scores calculated from food consumption frequencies) with oxidative stress-related biomarkers. RESULTS: Urinary arsenic and cadmium concentrations were positively associated with urinary 8-isoprostane concentrations. Urinary selenium concentrations were positively associated with urinary 8-OHdG concentrations. Interaction terms ([arsenic or cadmium] × selenium) showed negative associations with urinary 8-OHdG and 8-isoprostane concentrations, respectively. Urinary cadmium concentrations were negatively associated with telomere lengths. Wild-plant-food scores did not exhibit associations with oxidative stress-related biomarkers. CONCLUSION: Our findings imply that exposure to arsenic and cadmium is associated with greater oxidative lipid damage, whereas selenium may attenuate arsenic-induced oxidative DNA damage and cadmium-induced oxidative lipid damage. Cadmium exposure may accelerate telomere attrition. Trace element exposure may be a determinant of oxidative stress among indigenous populations in Northern Laos.


Subject(s)
Arsenic , Selenium , Trace Elements , Adult , Humans , Trace Elements/analysis , Arsenic/analysis , Selenium/analysis , Environmental Exposure/analysis , Cadmium/analysis , Cross-Sectional Studies , Laos , 8-Hydroxy-2'-Deoxyguanosine/analysis , Oxidative Stress , Biomarkers/metabolism , Indigenous Peoples , Lipids
8.
J Occup Environ Med ; 65(1): 60-66, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35973041

ABSTRACT

OBJECTIVES: The aims of the study are to measure the prevalence and level of occupational stress (OS) and to explore its association with oxidative stress among some brickfield workers. METHODS: Eighty-six brickfield workers and 90 administrative controls were assessed using the Arabic validated version of the Occupational Stress Index. The urinary levels of oxidative biomarkers; 8-hydroxy-2'-deoxyguanosine and biopyrrins were also measured. RESULTS: The prevalence of moderate and severe OS in addition to the urinary levels of both oxidative biomarkers was significantly higher among the brickfield workers compared with their controls. Both biomarkers levels were significantly and positively correlated with scores of Occupational Stress Index, duration of employment, and with each other. The receiver operating characteristic analysis showed significant specificity and sensitivity of both biomarkers for determining the level of OS. CONCLUSIONS: A significant association between occupational and oxidative stresses was detected in brickfield workers.


Subject(s)
Occupational Exposure , Occupational Stress , Humans , 8-Hydroxy-2'-Deoxyguanosine/analysis , Deoxyguanosine/urine , Oxidative Stress , Biomarkers/urine , Occupational Exposure/adverse effects , Occupational Exposure/analysis
9.
Article in English | MEDLINE | ID: mdl-35151426

ABSTRACT

Adverse health effects driven by airborne particulate matter (PM) are mainly associated with reactive oxygen species formation, pro-inflammatory effects, and genome instability. Therefore, a better understanding of the underlying mechanisms is needed to evaluate health risks caused by exposure to PM. The aim of this study was to compare the genotoxic effects of two oxidizing agents (menadione and 3-chloro-1,2-propanediol) with three different reference PM (fine dust ERM-CZ100, urban dust SRM1649, and diesel PM SRM2975) on monocytic THP-1 and alveolar epithelial A549 cells. We assessed DNA oxidation by measuring the oxidized derivative 8-hydroxy-2'-deoxyguanosine (8-OHdG) following short and long exposure times to evaluate the persistency of oxidative DNA damage. Cytokinesis-block micronucleus cytome assay was performed to assess chromosomal instability, cytostasis, and cytotoxicity. Particles were characterized by inductively coupled plasma mass spectrometry in terms of selected elemental content, the release of ions in cell medium and the cellular uptake of metals. PM deposition and cellular dose were investigated by a spectrophotometric method on adherent A549 cells. The level of lipid peroxidation was evaluated via malondialdehyde concentration measurement. Despite differences in the tested concentrations, deposition efficiency, and lipid peroxidation levels, all reference PM samples caused oxidative DNA damage to a similar extent as the two oxidizers in terms of magnitude but with different oxidative DNA damage persistence. Diesel SRM2975 were more effective in inducing chromosomal instability with respect to fine and urban dust highlighting the role of polycyclic aromatic hydrocarbons derivatives on chromosomal instability. The persistence of 8-OHdG lesions strongly correlated with different types of chromosomal damage and revealed distinguishing sensitivity of cell types as well as specific features of particles versus oxidizing agent effects. In conclusion, this study revealed that an interplay between DNA oxidation persistence and chromosomal damage is driving particulate matter-induced genome instability.


Subject(s)
Air Pollutants , Chromosomal Instability , DNA Damage , Particulate Matter , 8-Hydroxy-2'-Deoxyguanosine/analysis , A549 Cells , Air Pollutants/toxicity , Dust , Humans , Particulate Matter/toxicity
10.
Nanotoxicology ; 16(9-10): 913-934, 2022.
Article in English | MEDLINE | ID: mdl-36774544

ABSTRACT

Inhalation of nanoparticles emitted from toner-based printing equipment (TPE), such as laser printers and photocopiers, also known as PEPs, has been associated with systemic inflammation, hypertension, cardiovascular disease, respiratory disorders, and genotoxicity. Global serum metabolomics analysis in 19 healthy TPE operators found 52 dysregulated biomolecules involved in upregulation of inflammation, immune, and antioxidant responses and downregulation of cellular energetics and cell proliferation. Here, we build on the metabolomics study by investigating the association of a panel of nine urinary OS biomarkers reflecting DNA/RNA damage (8OHdG, 8OHG, and 5OHMeU), protein/amino acid oxidation (o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine), and lipid oxidation (8-isoprostane, 4-hydroxy nonenal, and malondialdehyde [MDA]), as well as plasma total MDA and total protein carbonyl (TPC), with several nanoparticle exposure metrics in the same 19 healthy TPE operators. Plasma total MDA, urinary 5OHMeU, 3-chlorotyrosine, and 3-nitrotyrosine were positively, whereas o-tyrosine inversely and statistically significantly associated with PEPs exposure in multivariate models, after adjusting for age and urinary creatinine. Urinary 8OHdG, 8OHG, 5OHMeU, and total MDA in urine and plasma had group mean values higher than expected in healthy controls without PEPs exposure and comparable to those of workers experiencing low to moderate levels of oxidative stress (OS). The highest exposure group had OS biomarker values, most notably 8OHdG, 8OHG, and total MDA, that compared to workers exposed to welding fumes and titanium dioxide. Particle number concentration was the most sensitive and robust exposure metric. A combination of nanoparticle number concentration and OS potential of fresh aerosols is recommended for larger scale future studies.


Subject(s)
Air Pollutants , Nanoparticles , Humans , Air Pollutants/toxicity , 8-Hydroxy-2'-Deoxyguanosine/analysis , Singapore , Nanoparticles/toxicity , Oxidative Stress , Biomarkers/analysis , Tyrosine/analysis , Inflammation , Printing, Three-Dimensional
11.
Nucleic Acids Res ; 49(21): 12252-12267, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34788860

ABSTRACT

8-Oxo-7,8-dihydro-2'-deoxyguanosine (OG), one of the most common oxidative DNA damages, causes genome instability and is associated with cancer, neurological diseases and aging. In addition, OG and its repair intermediates can regulate gene transcription, and thus play a role in sensing cellular oxidative stress. However, the lack of methods to precisely map OG has hindered the study of its biological roles. Here, we developed a single-nucleotide resolution OG-sequencing method, named CLAPS-seq (Chemical Labeling And Polymerase Stalling Sequencing), to measure the genome-wide distribution of both exogenous and endogenous OGs with high specificity. Our data identified decreased OG occurrence at G-quadruplexes (G4s), in association with underrepresentation of OGs in promoters which have high GC content. Furthermore, we discovered that potential quadruplex sequences (PQSs) were hotspots of OGs, implying a role of non-G4-PQSs in OG-mediated oxidative stress response.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , DNA Damage , G-Quadruplexes , Genome, Human/genetics , Genome-Wide Association Study/methods , Nucleotides/genetics , Algorithms , DNA/chemistry , DNA/genetics , DNA/metabolism , Feasibility Studies , HeLa Cells , Humans , Nucleotides/metabolism , Oxidative Stress , Promoter Regions, Genetic/genetics , Reproducibility of Results , Sequence Analysis, DNA/methods
12.
J Radiat Res ; 62(5): 861-867, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34370027

ABSTRACT

Radon inhalation decreases the level of lipid peroxide (LPO); this is attributed to the activation of antioxidative functions. This activation contributes to the beneficial effects of radon therapy, but there are no studies on the risks of radon therapy, such as DNA damage. We evaluated the effect of radon inhalation on DNA damage caused by oxidative stress and explored the underlying mechanisms. Mice were exposed to radon inhalation at concentrations of 2 or 20 kBq/m3 (for one, three, or 10 days). The 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels decreased in the brains of mice that inhaled 20 kBq/m3 radon for three days and in the kidneys of mice that inhaled 2 or 20 kBq/m3 radon for one, three or 10 days. The 8-OHdG levels in the small intestine decreased by approximately 20-40% (2 kBq/m3 for three days or 20 kBq/m3 for one, three or 10 days), but there were no significant differences in the 8-OHdG levels between mice that inhaled a sham treatment and those that inhaled radon. There was no significant change in the levels of 8-oxoguanine DNA glycosylase, which plays an important role in DNA repair. However, the level of Mn-superoxide dismutase (SOD) increased by 15-60% and 15-45% in the small intestine and kidney, respectively, following radon inhalation. These results suggest that Mn-SOD probably plays an important role in the inhibition of oxidative DNA damage.


Subject(s)
DNA Damage/radiation effects , Oxidative Stress/radiation effects , Radon/pharmacology , Superoxide Dismutase/physiology , 8-Hydroxy-2'-Deoxyguanosine/analysis , Administration, Inhalation , Animals , Brain Chemistry/radiation effects , DNA Glycosylases/analysis , Enzyme Induction/radiation effects , Intestine, Small/chemistry , Intestine, Small/radiation effects , Kidney/chemistry , Kidney/radiation effects , Lipid Peroxidation/radiation effects , Male , Mice , Mice, Inbred BALB C , Organ Specificity , Oxidation-Reduction , Radon/administration & dosage , Radon/therapeutic use , Superoxide Dismutase/biosynthesis , Superoxide Dismutase/genetics
13.
Anal Biochem ; 628: 114215, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33957135

ABSTRACT

Immunoassays have been extensively applied in the medical diagnostic field. Enzyme-Linked Immunosorbent Assay (ELISA) and Lateral Flow Immunochemical Assay (LFIA) are methods that have been well established to analysis of clinical substances such as protein, hormones, drugs, identification of antibodies and in the quantification of antigen. Over the past years, the application of these methods has been extended to assess the clinical oxidative stress condition based on monitoring of the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) biomarker levels. The present manuscript provides an overview of the current immunoassays based on ELISA and LFIA technologies applied for a quantitative analysis of the 8-oxodG. The discussion focuses on the principles of development, improvement and analytical performance of these assays. The relationship of the molecule 8-oxodG as a clinical biomarker of the assessment of the oxidative stress condition is also discussed. Commercially available products to 8-oxodG analysis are also presented.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , Enzyme-Linked Immunosorbent Assay , Immunochemistry , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Humans , Oxidative Stress
14.
Chem Res Toxicol ; 34(4): 1161-1168, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33761748

ABSTRACT

To provide insights into the cause of e-cigarette (e-cig) associated lung injury, we examined the effects of propylene glycol (PG) and glycerol (G), two common solvent carriers used to deliver nicotine/flavor, on markers of oxidative stress and inflammation in female B6C3F1 mice which had been used successfully in tobacco smoke (TS)-induced lung carcinogenesis. Mice exposed to air and TS were used as negative and positive controls, respectively. Using LC-MS/MS, we showed that PG/G alone, in the absence of nicotine, significantly increased the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG or its tautomer 8-oxodG), a biomarker of DNA oxidative damage, in lung and plasma of mice; moreover, addition of nicotine (12 and 24 mg/mL) in e-cig liquid appears to suppress the levels of 8-oxodG. Exposure to e-cig aerosols or TS induced nonsignificant increases of plasma C-reactive protein (CRP), a biomarker of inflammation; nonetheless, the levels of fibronectin (FN), a biomarker of tissue injury, were significantly increased by e-cig aerosols or TS. Although preliminary, our data showed that exposure to e-cig aerosols induced a higher score of lung injury than did control air or TS exposure. Our results indicate that the B6C3F1 mouse model may be suitable for an in-depth examination of the impact of e-cig on lung injury associated with oxidative stress and inflammation and this study adds to the growing evidence that the use of e-cig can lead to lung damage.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , Biomarkers/analysis , Electronic Nicotine Delivery Systems , Inflammation/chemically induced , Nicotine/adverse effects , Aerosols/administration & dosage , Aerosols/adverse effects , Animals , Female , Mice , Mice, Inbred Strains , Nicotine/administration & dosage , Oxidative Stress/drug effects
15.
Ecotoxicol Environ Saf ; 212: 112001, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33545407

ABSTRACT

Neonicotinoid insecticides (NEOs) are widely used around the world. The distribution of NEOs in paired saliva and periodontal blood samples was not previously documented in China. In this study, the concentrations of six NEOs and three corresponding metabolites were measured in 188 paired saliva and periodontal blood samples collected from South China. NEOs and their metabolites were frequently detected (68-94%) in paired saliva and periodontal blood, with median levels of 0.01-0.99 ng/mL. 1-Methyl-3-(tetrahydro-3-furylmethyl) urea was the most predominant NEO in paired saliva (39%) and periodontal blood (42%). Gender-related differences in NEOs and their metabolite concentrations were found: males showed lower levels than females. We calculated the concentration ratios between saliva and periodontal blood (S/PB ratios), and found that the median S/PB ratios of NEO and their metabolites were higher than 1, indicating that NEOs and their metabolites were easily excreted via saliva. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured in paired saliva and periodontal blood as a marker of oxidative stress. 8-OHdG concentrations in saliva and periodontal blood were significantly and positively correlated (p < 0.05) with the concentrations of most NEOs and their metabolites in saliva and periodontal blood samples. These findings indicated that exposure to NEOs and their metabolites is associated with oxidative stress. This study is the first to report NEOs and their metabolites in paired saliva and periodontal blood samples collected from South China.


Subject(s)
Insecticides/blood , Neonicotinoids/blood , Oxidative Stress/drug effects , Periodontium/blood supply , Saliva/chemistry , 8-Hydroxy-2'-Deoxyguanosine/analysis , Adolescent , Adult , Biomarkers/analysis , Child , China , Female , Humans , Insecticides/analysis , Insecticides/metabolism , Male , Middle Aged , Neonicotinoids/analysis , Neonicotinoids/metabolism , Young Adult
16.
Mikrochim Acta ; 188(2): 58, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33507409

ABSTRACT

Oxidative DNA damage plays an important role in the pathogenesis of various diseases. Among oxidative DNA lesions, 8-oxoguanine (8-oxoG) and its corresponding nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG), the guanine and deoxyguanosine oxidation products, have gained much attention, being considered biomarkers for oxidative DNA damage. Both 8-oxoG and 8-oxodG are used to predict overall body oxidative stress levels, to estimate the risk, to detect, and to make prognosis related to treatment of cancer, degenerative, and other age-related diseases. The need for rapid, easy, and low-cost detection and quantification of 8-oxoG and 8-oxodG biomarkers of oxidative DNA damage in complex samples, urine, blood, and tissue, caused an increasing interest on electrochemical sensors based on modified electrodes, due to their high sensitivity and selectivity, low-cost, and easy miniaturization and automation. This review aims to provide a comprehensive and exhaustive overview of the fundamental principles concerning the electrochemical determination of the biomarkers 8-oxoG and 8-oxodG using nanostructured materials (NsM), such as carbon nanotubes, carbon nanofibers, graphene-related materials, gold nanomaterials, metal nanoparticles, polymers, nanocomposites, dendrimers, antibodies and aptamers, and modified electrochemical sensors.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , Guanine/analogs & derivatives , Nanostructures/chemistry , Animals , Biomarkers/analysis , Cell Line, Tumor , DNA Damage , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Guanine/analysis , Humans , Oxidative Stress
17.
PLoS Med ; 17(10): e1003384, 2020 10.
Article in English | MEDLINE | ID: mdl-33052911

ABSTRACT

BACKGROUND: Exposure to environmental chemicals may be a modifiable risk factor for progression of chronic kidney disease (CKD). The purpose of this study was to examine the impact of serially assessed exposure to bisphenol A (BPA) and phthalates on measures of kidney function, tubular injury, and oxidative stress over time in a cohort of children with CKD. METHODS AND FINDINGS: Samples were collected between 2005 and 2015 from 618 children and adolescents enrolled in the Chronic Kidney Disease in Children study, an observational cohort study of pediatric CKD patients from the US and Canada. Most study participants were male (63.8%) and white (58.3%), and participants had a median age of 11.0 years (interquartile range 7.6 to 14.6) at the baseline visit. In urine samples collected serially over an average of 3.0 years (standard deviation [SD] 1.6), concentrations of BPA, phthalic acid (PA), and phthalate metabolites were measured as well as biomarkers of tubular injury (kidney injury molecule-1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) and oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and F2-isoprostane). Clinical renal function measures included estimated glomerular filtration rate (eGFR), proteinuria, and blood pressure. Linear mixed models were fit to estimate the associations between urinary concentrations of 6 chemical exposure measures (i.e., BPA, PA, and 4 phthalate metabolite groups) and clinical renal outcomes and urinary concentrations of KIM-1, NGAL, 8-OHdG, and F2-isoprostane controlling for sex, age, race/ethnicity, glomerular status, birth weight, premature birth, angiotensin-converting enzyme inhibitor use, angiotensin receptor blocker use, BMI z-score for age and sex, and urinary creatinine. Urinary concentrations of BPA, PA, and phthalate metabolites were positively associated with urinary KIM-1, NGAL, 8-OHdG, and F2-isoprostane levels over time. For example, a 1-SD increase in ∑di-n-octyl phthalate metabolites was associated with increases in NGAL (ß = 0.13 [95% CI: 0.05, 0.21], p = 0.001), KIM-1 (ß = 0.30 [95% CI: 0.21, 0.40], p < 0.001), 8-OHdG (ß = 0.10 [95% CI: 0.06, 0.13], p < 0.001), and F2-isoprostane (ß = 0.13 [95% CI: 0.01, 0.25], p = 0.04) over time. BPA and phthalate metabolites were not associated with eGFR, proteinuria, or blood pressure, but PA was associated with lower eGFR over time. For a 1-SD increase in ln-transformed PA, there was an average decrease in eGFR of 0.38 ml/min/1.73 m2 (95% CI: -0.75, -0.01; p = 0.04). Limitations of this study included utilization of spot urine samples for exposure assessment of non-persistent compounds and lack of specific information on potential sources of exposure. CONCLUSIONS: Although BPA and phthalate metabolites were not associated with clinical renal endpoints such as eGFR or proteinuria, there was a consistent pattern of increased tubular injury and oxidative stress over time, which have been shown to affect renal function in the long term. This raises concerns about the potential for clinically significant changes in renal function in relation to exposure to common environmental toxicants at current levels.


Subject(s)
Benzhydryl Compounds/adverse effects , Phenols/adverse effects , Phthalic Acids/adverse effects , Renal Insufficiency, Chronic/etiology , 8-Hydroxy-2'-Deoxyguanosine/analysis , 8-Hydroxy-2'-Deoxyguanosine/urine , Adolescent , Benzhydryl Compounds/urine , Biomarkers , Canada/epidemiology , Child , Cohort Studies , Creatinine , F2-Isoprostanes/analysis , F2-Isoprostanes/urine , Female , Glomerular Filtration Rate , Hepatitis A Virus Cellular Receptor 1/analysis , Humans , Kidney/pathology , Kidney Function Tests/methods , Lipocalin-2/analysis , Lipocalin-2/urine , Longitudinal Studies , Male , Oxidative Stress/drug effects , Phenols/urine , Phthalic Acids/urine , Renal Insufficiency, Chronic/epidemiology , United States/epidemiology
18.
Asian Pac J Cancer Prev ; 21(8): 2325-2329, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32856861

ABSTRACT

OBJECTIVE: Squamous Cell Carcinoma is almost always preceded by potentially malignant disorders in the oral cavity before malignant transformation. Characterization of  8-OHdG from the saliva offers a relatively non-invasive, simple and efficient methodology for monitoring oxidative stress in subjects of Premalignant oral disorders (PMOD) and Oral Squamous Cell Carcinoma (OSCC). Hence the aim of the current study is to estimate the levels of salivary 8-hydroxydeoxyguanosine (8-OHdG) as a potential DNA Damage Biomarker in OSMF and OSCC patients in comparison to healthy individuals to assess disease progression from potentially malignant oral disorder to frank malignancy. MATERIALS AND METHODS: The study was conducted among 90 patients [Oral Squamous cell carcinoma (n=30) and Oral Submucous Fibrosis (n=30) and healthy gender and age matched controls (n=30)]. 4ml of unstimulated saliva was collected from each of the subjects and was subjected to Sandwich ELISA for the quantification of salivary 8-OHdG. Statistical analysis was done using ANOVA, and p value was set at ≤0.05. RESULTS: The mean age of OSCC patients were 56.8±11.8 years. Smoking was the most prevalent adverse habit among this group (66.6%) followed by Smokeless tobacco chewers (40%). The mean age of OSMF patients was 46.2± 9.8 years. Smokeless tobacco was the most predominant habit among the OSMF patients (83.33%) followed by smoking (33.33%). The mean OHdG levels among the controls was 6.59±1.47 (ng/dl) and almost doubled in patients of OSMF 13.89±1.96(ng/dL) and further raised in OSCC patients 19.96 ± 2.11 (ng/dL). These levels showed a highly significant difference (p <0.0001) in mean on comparison by using one-way ANOVA. Pearson correlation between the groups were also statistically significant (p=0.000). CONCLUSION: There were significant differences in the concentration of salivary 8-OHdG between healthy controls, OSMF, and OSCC patients. Hence, 8-OHdG can be used as a novel biomarker of DNA damage to assess disease progression.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Saliva/chemistry , Adult , Aged , Carcinoma, Squamous Cell/metabolism , Case-Control Studies , Cell Transformation, Neoplastic , Disease Progression , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mouth Neoplasms/metabolism , Prognosis , Saliva/metabolism
19.
Metallomics ; 12(9): 1428-1448, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32677644

ABSTRACT

INTRODUCTION: copper dyshomeostasis has long been linked with several neurodegenerative disorders. The binding of Cu with amyloid beta and other neuronal proteins in the brain leads to the generation of oxidative stress, which eventually causes neurotoxicity. METHOD: the present study was aimed at elucidating the efficacy of monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) and d-penicillamine (DPA) (0.3 mEq kg-1, oral administration for 2 weeks) against Cu(ii)-induced (20 mg kg-1, oral administration for 16 weeks) neurotoxicity in Sprague-Dawley (SD) rats. RESULTS: we observed that the MiADMSA treatment modulated the altered oxidative and nitrosative stress parameters, antioxidant enzymes, and acetylcholinesterase (AChE) activity. Significant improvements were noticed in the neurobehavioral parameters except for the memory parameter. We also observed moderate improvement of memory impairment in the rats treated with MiADMSA and DPA post Cu(ii) exposure, as assessed by a passive avoidance test. Disease progression involves multiple factors and results in the up-regulation of intra and extracellular proteins such as amyloid beta and tau proteins; the expressions of these proteins were significantly reduced by the treatment proposed in our study, and these results were confirmed by ELISA and qRT-PCR. The expression of caspase-3 was higher in Cu(ii)-exposed rats, whereas it was lower in the MiADMSA-treated group. The proposed treatment reduced the copper-induced histological changes in the cortex and hippocampus regions of the brain. CONCLUSION: it can be summarised from the present study that MiADMSA is effective in reducing Cu(ii)-induced oxido-nitrosative stress, antioxidant defense enzymes, neurobehavioral changes, neuronal markers, apoptotic markers, and their genetic expressions. We conclude that chelation therapy using MiADMSA might be a promising approach for the treatment of copper-induced neurotoxicity.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , Amyloid beta-Peptides/analysis , Copper/adverse effects , Neuroprotective Agents/pharmacology , Succimer/analogs & derivatives , tau Proteins/analysis , Animals , Brain/drug effects , Brain Chemistry/drug effects , Male , Molecular Docking Simulation , Rats, Sprague-Dawley , Succimer/pharmacology
20.
Int Breastfeed J ; 15(1): 57, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32552911

ABSTRACT

BACKGROUND: The profile of sirtuin 3 (SIRT3), 8-hydroxy-2'-deoxyguanosine (8-OHdG), brain-derived neurotrophic factor (BDNF) and serotonin (5-HT) in cord blood and in early breast milk was studied and it was related to perinatal factors. 5-HT and BDNF signalling systems have been claimed to play a critical role in intrauterine development, postnatal adaptation and lactation. Since prematurity and Caesarean birth are frequently associated with inflammation and related oxidative stress, an attempt was made to reveal the adaptive changes of the protective SIRT3 and the complex interplay among these bioactive components in cord blood and early breast milk. METHODS: Three groups each consisting of 30 mothers were included in the study: mothers who underwent spontaneous vaginal birth at term (group I), Caesarean section at term (group II) and preterm birth (group III). Venous cord blood and early breast milk samples were collected for measuring the biomarkers. SIRT3, 8-OHdG, BDNF and 5-HT levels were determined by using commercially available ELISA kits. RESULTS: It was demonstrated that cord blood levels of SIRT3, BDNF and 5-HT were markedly reduced whereas those of 8-OHdG were significantly elevated after preterm birth when compared with birth at term. The Caesarean section was associated with a moderate decrease in BDNF and 5-HT, however, both SIRT3 and 8-OHdG remained unaffected. Breast milk levels of all biomarkers studied proved to be independent of their corresponding cord blood concentrations. In response to preterm birth breast milk SIRT3, 8-OHdG and 5-HT increased significantly, while a drastic fall occurred in BDNF. A significant positive relationship was found of 5-HT with SIRT3 and 8-OHdG irrespective of the gestational age and the mode of delivery. CONCLUSIONS: It is suggested that the selected biomarkers in the breast milk mostly derive from local production by the mammary glands and 5-HT may have an essential role in the control of this process.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , Delivery, Obstetric/methods , Fetal Blood/chemistry , Milk, Human/chemistry , Serotonin/analysis , Sirtuin 3/analysis , Adult , Biomarkers/analysis , Brain-Derived Neurotrophic Factor , Breast Feeding , Cesarean Section , Female , Humans , Hungary , Infant, Newborn , Male , Parturition , Pregnancy , Premature Birth
SELECTION OF CITATIONS
SEARCH DETAIL