Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 77: 109827, 2021 01.
Article in English | MEDLINE | ID: mdl-33161094

ABSTRACT

ADAMTSs (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) are secreted proteases dependent on Zn2+/Ca2+, involved in physiological and pathological processes and are part of the extracellular matrix (ECM). Here, we investigated if ADAMTS-1 is required for invasion and migration of cells and the possible mechanism involved. In order to test ADAMTS-1's role in ovarian cancer cells (CHO, NIH-OVCAR-3 and ES2) and NIH-3 T3 fibroblasts, we modified the levels of ADAMTS-1 and compared those to parental. Cells exposed to ADAMTS-1-enriched medium exhibited a decline in cell migration and invasion when compared to controls with or without a functional metalloproteinase domain. The opposite was observed in cells when ADAMTS-1 was deleted via the CRISPR/Cas9 approach. The decline in ADAMTS-1 levels enhanced the phosphorylated form of Src and FAK. We also evaluated the activities of cellular Rho GTPases from cell lysates using the GLISA® kit. The Cdc42-GTP signal was significantly increased in the CRISPR ADAMTS-1 ES-2 cells. By a Förster resonance energy transfer (FRET) biosensor for Cdc42 activity in ES-2 cells we demonstrated that Cdc42 activity was strongly polarized at the leading edge of migrating cells with ADAMTS-1 deletion, compared to the wild type cells. As conclusion, ADAMTS-1 inhibits proliferation, polarization and migration.


Subject(s)
ADAMTS1 Protein/metabolism , cdc42 GTP-Binding Protein/metabolism , ADAMTS1 Protein/deficiency , ADAMTS1 Protein/genetics , CRISPR-Cas Systems/genetics , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival , Female , Focal Adhesion Kinase 1/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Phosphorylation , RNA, Guide, Kinetoplastida/metabolism , Signal Transduction , src-Family Kinases/metabolism
2.
Exp Physiol ; 103(12): 1717-1731, 2018 12.
Article in English | MEDLINE | ID: mdl-30191627

ABSTRACT

NEW FINDINGS: What is the central question of this study? Thoracic aortic aneurysm and dissection (TAAD) is characterized by extracellular matrix remodelling and an inflammatory response. Evidence suggests that ADAMTS1 is closely associated with TAAD development, but whether it contributes to the pathophysiology of TAAD remains unknown. What is the main finding and its importance? We generated inducible postnatal ADAMTS1 knockout mice and found that ADAMTS1 deficiency attenuated ß-aminopropionitrile-dependent TAAD formation and rupture. Furthermore, ADAMTS1 deficiency suppressed neutrophil and macrophage infiltration by inhibiting inflammatory cytokine levels and macrophage migration during the early stage of ß-aminopropionitrile-induced TAAD. ADAMTS1 could be a new therapeutic target for TAAD. ABSTRACT: Thoracic aortic aneurysm and dissection (TAAD), as a life-threatening cardiovascular disease, is characterized by extracellular matrix remodelling and an inflammatory response. A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) is an inflammation-related protein that is able to degrade extracellular matrix proteins in arteries. Herein, we investigated whether ADAMTS1 contributes to the pathophysiology of TAAD in mice. Using the mouse model of ß-aminopropionitrile (BAPN)-induced TAAD, we found that ADAMTS1 expression was upregulated beginning in the early stage of TAAD development and localized predominantly in the aortic adventitia. ADAMTS1-floxed mice and whole-body tamoxifen-inducible ADAMTS1 knockout mice (ADAMTS1flox/flox Ubc-CreERT2+ , ADAMTS1 KO) were generated to investigate the direct causal role of ADAMTS1 in TAAD development. The incidence and rupture rates of BAPN-induced TAAD in ADAMTS1 KO mice were significantly lower than those in ADAMTS1flox/flox mice (45.5 versus 81.8% and 18.2 versus 42.4%, respectively). Aortas from BAPN-treated ADAMTS1flox/flox mice displayed profound destruction of the elastic lamellae, abundant neutrophil and macrophage accumulation in the adventitia, obviously increased neutrophil proportions in peripheral blood and significantly increased expression of inflammatory factors in the early stage of TAAD induction, all of which were markedly suppressed in ADAMTS1 KO mice. Furthermore, ADAMTS1-deficient macrophages exhibited abrogated migration capacity both in vivo and in vitro. In conclusion, ADAMTS1 plays a crucial role in postnatal TAAD formation and rupture by regulating inflammatory responses, suggesting that ADAMTS1 might be a new therapeutic target for TAAD.


Subject(s)
ADAMTS1 Protein/deficiency , Aortic Aneurysm, Thoracic/metabolism , Aminopropionitrile/pharmacology , Aortic Dissection/chemically induced , Aortic Dissection/metabolism , Animals , Aorta/drug effects , Aorta/metabolism , Aortic Aneurysm, Thoracic/chemically induced , Disease Models, Animal , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Up-Regulation/physiology
3.
Cell Death Dis ; 8(6): e2846, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569793

ABSTRACT

The process of follicular development involves communications between oocyte and surrounding granulosa cells. FURIN is a member of the family of proprotein convertases that is involved in the activation of a large number of zymogens and proproteins by cleavage at its recognition motif. To investigate the functions of FURIN in female fertility, furinflox/flox (furfl/fl) mice were crossed with Zp3-Cre mice and Gdf9-Cre, respectively, to achieve oocyte-specific disruption of FURIN. Here we report for the first time that FURIN is dispensable for primordial follicle maintenance and activation but important for early secondary follicular development, as ablation of FURIN in oocytes caused failure of follicle development beyond the type 4 and/or 5a follicles in mutant mice, resulting in increased number of early secondary follicles and the severely decreased number of mature follicles, thus anovulation and infertility. We also found that the developmental arrest of early secondary follicles might be rooted in the loss of the mature form of ADAMTS1 (85-kDa prodomain truncated) and compromised proliferation of granulosa cells in mutant mice. Taken together, our data highlight the importance of FURIN in follicle development beyond the early secondary follicle stage and indicate that compromised FURIN function leads to follicular dysplasia and female infertility in mice.


Subject(s)
ADAMTS1 Protein/genetics , Furin/genetics , Granulosa Cells/enzymology , Infertility, Female/genetics , Oocytes/enzymology , ADAMTS1 Protein/deficiency , Animals , Cell Communication , Cell Cycle Checkpoints/genetics , Cell Proliferation , Crosses, Genetic , Female , Furin/deficiency , Gene Expression Regulation, Developmental , Granulosa Cells/pathology , Humans , Infertility, Female/enzymology , Infertility, Female/pathology , Male , Mice , Mice, Knockout , Oocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...