Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.642
Filter
2.
Cell Host Microbe ; 32(5): 632-634, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723601

ABSTRACT

Inducing HIV-1 broadly neutralizing antibodies (bnAbs) through vaccination poses exceptional challenges. In this issue of Cell Host & Microbe, Wiehe and colleagues report the elicitation of affinity-matured bnAbs in knock-in mice through boosting immunogen vaccination, which selects for key improbable mutations.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Vaccine Development , AIDS Vaccines/immunology , AIDS Vaccines/genetics , HIV-1/immunology , HIV-1/genetics , Animals , Mice , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , HIV Infections/prevention & control , HIV Infections/immunology , Humans , Gene Knock-In Techniques , Immunization, Secondary , Vaccination
3.
Science ; 384(6697): eadj8321, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753769

ABSTRACT

Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Complementarity Determining Regions , Cryoelectron Microscopy , HIV Antibodies , Macaca mulatta , Animals , AIDS Vaccines/immunology , HIV Antibodies/immunology , Complementarity Determining Regions/immunology , Broadly Neutralizing Antibodies/immunology , Germinal Center/immunology , Antibodies, Neutralizing/immunology , Memory B Cells/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , HIV-1/immunology , B-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Humans , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/genetics
4.
Science ; 384(6697): 738-739, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753801

ABSTRACT

Four new studies inform on the multistep path to generate broadly active HIV-1 antibodies.


Subject(s)
AIDS Vaccines , HIV Antibodies , HIV Infections , HIV-1 , HIV-1/immunology , Humans , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology
5.
Sci Immunol ; 9(95): eadn0622, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38753808

ABSTRACT

Germline-targeting (GT) protein immunogens to induce VRC01-class broadly neutralizing antibodies (bnAbs) to the CD4-binding site of the HIV envelope (Env) have shown promise in clinical trials. Here, we preclinically validated a lipid nanoparticle-encapsulated nucleoside mRNA (mRNA-LNP) encoding eOD-GT8 60mer as a soluble self-assembling nanoparticle in mouse models. In a model with three humanized B cell lineages bearing distinct VRC01-precursor B cell receptors (BCRs) with similar affinities for eOD-GT8, all lineages could be simultaneously primed and undergo diversification and affinity maturation without exclusionary competition. Boosts drove precursor B cell participation in germinal centers; the accumulation of somatic hypermutations, including in key VRC01-class positions; and affinity maturation to boost and native-like antigens in two of the three precursor lineages. We have preclinically validated a prime-boost regimen of soluble self-assembling nanoparticles encoded by mRNA-LNP, demonstrating that multiple lineages can be primed, boosted, and diversified along the bnAb pathway.


Subject(s)
Broadly Neutralizing Antibodies , Nanoparticles , RNA, Messenger , Animals , Mice , Humans , RNA, Messenger/immunology , RNA, Messenger/genetics , Nanoparticles/chemistry , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Lipids/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , Female , Antibodies, Monoclonal , Liposomes
7.
Sci Transl Med ; 16(748): eadn0223, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38753806

ABSTRACT

A protective HIV vaccine will likely need to induce broadly neutralizing antibodies (bnAbs). Vaccination with the germline-targeting immunogen eOD-GT8 60mer adjuvanted with AS01B was found to induce VRC01-class bnAb precursors in 97% of vaccine recipients in the IAVI G001 phase 1 clinical trial; however, heterologous boost immunizations with antigens more similar to the native glycoprotein will be required to induce bnAbs. Therefore, we designed core-g28v2 60mer, a nanoparticle immunogen to be used as a first boost after eOD-GT8 60mer priming. We found, using a humanized mouse model approximating human conditions of VRC01-class precursor B cell diversity, affinity, and frequency, that both protein- and mRNA-based heterologous prime-boost regimens induced VRC01-class antibodies that gained key mutations and bound to near-native HIV envelope trimers lacking the N276 glycan. We further showed that VRC01-class antibodies induced by mRNA-based regimens could neutralize pseudoviruses lacking the N276 glycan. These results demonstrated that heterologous boosting can drive maturation toward VRC01-class bnAb development and supported the initiation of the IAVI G002 phase 1 trial testing mRNA-encoded nanoparticle prime-boost regimens.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , Animals , Humans , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Mice , Vaccination , Immunization, Secondary , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Broadly Neutralizing Antibodies/immunology
8.
Nat Commun ; 15(1): 4301, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773089

ABSTRACT

The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , CD4 Antigens , HIV Antibodies , HIV-1 , Humans , AIDS Vaccines/immunology , HIV-1/immunology , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , CD4 Antigens/immunology , CD4 Antigens/metabolism , Vaccines, DNA/immunology , Antibodies, Monoclonal/immunology , HIV Infections/prevention & control , HIV Infections/immunology , HIV Infections/virology , Cryoelectron Microscopy , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , Binding Sites , Complementarity Determining Regions/immunology , Complementarity Determining Regions/chemistry
9.
Lancet HIV ; 11(5): e285-e299, 2024 May.
Article in English | MEDLINE | ID: mdl-38692824

ABSTRACT

BACKGROUND: An effective HIV vaccine will most likely need to have potent immunogenicity and broad cross-subtype coverage. The aim of the HIV Vaccine Trials Network (HVTN) 124 was to evaluate safety and immunogenicity of a unique polyvalent DNA-protein HIV vaccine with matching envelope (Env) immunogens. METHODS: HVTN 124 was a randomised, phase 1, placebo-controlled, double-blind study, including participants who were HIV seronegative and aged 18-50 years at low risk for infection. The DNA vaccine comprised five plasmids: four copies expressing Env gp120 (clades A, B, C, and AE) and one gag p55 (clade C). The protein vaccine included four DNA vaccine-matched GLA-SE-adjuvanted recombinant gp120 proteins. Participants were enrolled across six clinical sites in the USA and were randomly assigned to placebo or one of two vaccine groups (ie, prime-boost or coadministration) in a 5:1 ratio in part A and a 7:1 ratio in part B. Vaccines were delivered via intramuscular needle injection. The primary outcomes were safety and tolerability, assessed via frequency, severity, and attributability of local and systemic reactogenicity and adverse events, laboratory safety measures, and early discontinuations. Part A evaluated safety. Part B evaluated safety and immunogenicity of two regimens: DNA prime (administered at months 0, 1, and 3) with protein boost (months 6 and 8), and DNA-protein coadministration (months 0, 1, 3, 6, and 8). All randomly assigned participants who received at least one dose were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT03409276) and is closed to new participants. FINDINGS: Between April 19, 2018 and Feb 13, 2019, 60 participants (12 in part A [five men and seven women] and 48 in part B [21 men and 27 women]) were enrolled. All 60 participants received at least one dose, and 14 did not complete follow-up (six of 21 in the prime-boost group and eight of 21 in the coadminstration group). 11 clinical adverse events deemed by investigators as study-related occurred in seven of 48 participants in part B (eight of 21 in the prime-boost group and three of 21 in the coadministration group). Local reactogenicity in the vaccine groups was common, but the frequency and severity of reactogenicity signs or symptoms did not differ between the prime-boost and coadministration groups (eg, 20 [95%] of 21 in the prime-boost group vs 21 [100%] of 21 in the coadministration group had either local pain or tenderness of any severity [p=1·00], and seven [33%] vs nine [43%] had either erythema or induration [p=0·97]), nor did laboratory safety measures. There were no delayed-type hypersensitivity reactions or vasculitis or any severe clinical adverse events related to vaccination. The most frequently reported systemic reactogenicity symptoms in the active vaccine groups were malaise or fatigue (five [50%] of ten in part A and 17 [81%] of 21 in the prime-boost group vs 15 [71%] of 21 in the coadministration group in part B), headache (five [50%] and 18 [86%] vs 12 [57%]), and myalgia (four [40%] and 13 [62%] vs ten [48%]), mostly of mild or moderate severity. INTERPRETATION: Both vaccine regimens were safe, warranting evaluation in larger trials. FUNDING: US National Institutes of Health and US National Institute of Allergy and Infectious Diseases.


Subject(s)
AIDS Vaccines , HIV Antibodies , HIV Infections , HIV-1 , Vaccines, DNA , Humans , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , AIDS Vaccines/adverse effects , Adult , Male , Female , Double-Blind Method , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Vaccines, DNA/adverse effects , HIV Infections/prevention & control , HIV Infections/immunology , Middle Aged , Young Adult , HIV Antibodies/blood , Adolescent , HIV-1/immunology , United States , Immunization, Secondary , Immunogenicity, Vaccine , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/genetics , Antibodies, Neutralizing/blood
10.
Science ; 384(6697): eadk0582, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753770

ABSTRACT

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Germinal Center , HIV Antibodies , HIV-1 , Immunization, Secondary , Nanoparticles , mRNA Vaccines , Animals , Humans , Mice , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Cross Reactions , Gene Knock-In Techniques , Germinal Center/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , HIV-1/genetics , Liposomes , Memory B Cells/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Somatic Hypermutation, Immunoglobulin , mRNA Vaccines/immunology , Female , Mice, Inbred C57BL
11.
Proc Natl Acad Sci U S A ; 121(22): e2317230121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768344

ABSTRACT

Efforts to develop an HIV-1 vaccine include those focusing on conserved structural elements as the target of broadly neutralizing monoclonal antibodies. MAb D5 binds to a highly conserved hydrophobic pocket on the gp41 N-heptad repeat (NHR) coiled coil and neutralizes through prevention of viral fusion and entry. Assessment of 17-mer and 36-mer NHR peptides presenting the D5 epitope in rodent immunogenicity studies showed that the longer peptide elicited higher titers of neutralizing antibodies, suggesting that neutralizing epitopes outside of the D5 pocket may exist. Although the magnitude and breadth of neutralization elicited by NHR-targeting antigens are lower than that observed for antibodies directed to other epitopes on the envelope glycoprotein complex, it has been shown that NHR-directed antibodies are potentiated in TZM-bl cells containing the FcγRI receptor. Herein, we report the design and evaluation of covalently stabilized trimeric 51-mer peptides encompassing the complete gp41 NHR. We demonstrate that these peptide trimers function as effective antiviral entry inhibitors and retain the ability to present the D5 epitope. We further demonstrate in rodent and nonhuman primate immunization studies that our 51-mer constructs elicit a broader repertoire of neutralizing antibody and improved cross-clade neutralization of primary HIV-1 isolates relative to 17-mer and 36-mer NHR peptides in A3R5 and FcγR1-enhanced TZM-bl assays. These results demonstrate that sensitive neutralization assays can be used for structural enhancement of moderately potent neutralizing epitopes. Finally, we present expanded trimeric peptide designs which include unique low-molecular-weight scaffolds that provide versatility in our immunogen presentation strategy.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV-1 , HIV Envelope Protein gp41/immunology , HIV Envelope Protein gp41/chemistry , HIV-1/immunology , Animals , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Humans , Mice , Epitopes/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Peptides/immunology , Peptides/chemistry , Female , Antibodies, Monoclonal/immunology
12.
Int J Biol Macromol ; 270(Pt 2): 132236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768924

ABSTRACT

Antigen presenting cells (APCs)-derived exosomes are nano-vesicles that can induce antigen-specific T cell responses, and possess therapeutic effects in clinical settings. Moreover, dendritic cells (DCs)-based vaccines have been developed to combat human immunodeficiency virus-1 (HIV-1) infection in preclinical and clinical trials. We investigated the immunostimulatory effects (B- and T-cells activities) of DCs- and exosomes-based vaccine constructs harboring HIV-1 Nefmut-Tat fusion protein as an antigen candidate and heat shock protein 70 (Hsp70) as an adjuvant in mice. The modified DCs and engineered exosomes harboring Nefmut-Tat protein or Hsp70 were prepared using lentiviral vectors compared to electroporation, characterized and evaluated by in vitro and in vivo immunological tests. Our data indicated that the engineered exosomes induced high levels of total IgG, IgG2a, IFN-γ, TNF-α and Granzyme B. Moreover, co-injection of exosomes harboring Hsp70 could significantly increase the secretion of antibodies, cytokines and Granzyme B. The highest levels of IFN-γ and TNF-α were observed in exosomes harboring Nefmut-Tat combined with exosomes harboring Hsp70 (Exo-Nefmut-Tat + Exo-Hsp70) regimen after single-cycle replicable (SCR) HIV-1 exposure. Generally, Exo-Nefmut-Tat + Exo-Hsp70 regimen can be considered as a promising safe vaccine candidate due to high T-cells (Th1 and CTL) activity and its maintenance against SCR HIV-1 exposure.


Subject(s)
AIDS Vaccines , Dendritic Cells , Exosomes , HIV-1 , HSP70 Heat-Shock Proteins , nef Gene Products, Human Immunodeficiency Virus , tat Gene Products, Human Immunodeficiency Virus , Exosomes/immunology , Exosomes/metabolism , Dendritic Cells/immunology , Animals , HIV-1/immunology , HIV-1/genetics , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/genetics , AIDS Vaccines/immunology , nef Gene Products, Human Immunodeficiency Virus/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics , Mice , tat Gene Products, Human Immunodeficiency Virus/immunology , tat Gene Products, Human Immunodeficiency Virus/genetics , Humans , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Female , HIV Infections/immunology , HIV Infections/prevention & control , Cytokines/metabolism
13.
Nat Commun ; 15(1): 3924, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724518

ABSTRACT

An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.


Subject(s)
Antibodies, Neutralizing , HIV Antibodies , HIV-1 , env Gene Products, Human Immunodeficiency Virus , HIV-1/immunology , Humans , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , AIDS Vaccines/immunology , Neutralization Tests , HEK293 Cells , Consensus Sequence , HIV Infections/virology , HIV Infections/immunology , Protein Binding , Epitopes/immunology
14.
Nat Immunol ; 25(6): 1083-1096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816616

ABSTRACT

Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.


Subject(s)
Antibody Affinity , B-Lymphocytes , Germinal Center , HIV Antibodies , HIV-1 , Germinal Center/immunology , Animals , Mice , Humans , B-Lymphocytes/immunology , HIV-1/immunology , HIV Antibodies/immunology , Antibody Affinity/immunology , Antibodies, Neutralizing/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Gene Knock-In Techniques , Mice, Transgenic , Broadly Neutralizing Antibodies/immunology , Mice, Inbred C57BL
15.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816615

ABSTRACT

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV Infections , HIV-1 , Macaca mulatta , Animals , Humans , HIV Envelope Protein gp41/immunology , HIV Antibodies/immunology , Mice , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Vaccination , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , Nanoparticles/chemistry , Female , Complementarity Determining Regions/immunology , Epitopes/immunology
16.
Cell Host Microbe ; 32(5): 693-709.e7, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38670093

ABSTRACT

A major goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs). Although success has been achieved in initiating bnAb B cell lineages, design of boosting immunogens that select for bnAb B cell receptors with improbable mutations required for bnAb affinity maturation remains difficult. Here, we demonstrate a process for designing boosting immunogens for a V3-glycan bnAb B cell lineage. The immunogens induced affinity-matured antibodies by selecting for functional improbable mutations in bnAb precursor knockin mice. Moreover, we show similar success in prime and boosting with nucleoside-modified mRNA-encoded HIV-1 envelope trimer immunogens, with improved selection by mRNA immunogens of improbable mutations required for bnAb binding to key envelope glycans. These results demonstrate the ability of both protein and mRNA prime-boost immunogens for selection of rare B cell lineage intermediates with neutralizing breadth after bnAb precursor expansion, a key proof of concept and milestone toward development of an HIV-1 vaccine.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , B-Lymphocytes , HIV Antibodies , HIV-1 , AIDS Vaccines/immunology , AIDS Vaccines/genetics , Animals , HIV Antibodies/immunology , HIV-1/immunology , HIV-1/genetics , Mice , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Humans , HIV Infections/immunology , HIV Infections/prevention & control , Broadly Neutralizing Antibodies/immunology , Mutation , Vaccine Development , Immunization, Secondary , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/genetics
17.
Int J Pharm ; 657: 124131, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38643811

ABSTRACT

Immunization is a straightforward concept but remains for some pathogens like HIV-1 a challenge. Thus, new approaches towards increasing the efficacy of vaccines are required to turn the tide. There is increasing evidence that antigen exposure over several days to weeks induces a much stronger and more sustained immune response compared to traditional bolus injection, which usually leads to antigen elimination from the body within a couple of days. Therefore, we developed a poly(ethylene) glycol (PEG) hydrogel platform to investigate the principal feasibility of a sustained release of antigens to mimic natural infection kinetics. Eight-and four-armed PEG macromonomers of different MWs (10, 20, and 40 kDa) were end-group functionalized to allow for hydrogel formation via covalent cross-linking. An HIV-1 envelope (Env) antigen in its trimeric (Envtri) or monomeric (Envmono) form was applied. The soluble Env antigen was compared to a formulation of Env attached to silica nanoparticles (Env-SiNPs). The latter are known to have a higher immunogenicity compared to their soluble counterparts. Hydrogels were tunable regarding the rheological behavior allowing for different degradation times and release timeframes of Env-SiNPs over two to up to 50 days. Affinity measurements of the VCR01 antibody which specifically recognizes the CD4 binding site of Env, revealed that neither the integrity nor the functionality of Envmono-SiNPs (Kd = 2.1 ± 0.9 nM) and Envtri-SiNPs (Kd = 1.5 ± 1.3 nM), respectively, were impaired after release from the hydrogel (Kd before release: 2.1 ± 0.1 and 7.8 ± 5.3 nM, respectively). Finally, soluble Env and Env-SiNPs which are two physico-chemically distinct compounds, were co-delivered and shown to be sequentially released from one hydrogel which could be beneficial in terms of heterologous immunization or single dose vaccination. In summary, this study presents a tunable, versatile applicable, and effective delivery platform that could improve vaccination effectiveness also for other infectious diseases than HIV-1.


Subject(s)
AIDS Vaccines , Delayed-Action Preparations , HIV-1 , Hydrogels , Nanoparticles , Polyethylene Glycols , Hydrogels/chemistry , Nanoparticles/chemistry , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , AIDS Vaccines/chemistry , Polyethylene Glycols/chemistry , HIV-1/immunology , Silicon Dioxide/chemistry , Humans , Drug Liberation , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry
18.
Carbohydr Polym ; 332: 121844, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431385

ABSTRACT

Anti-viral and anti-tumor vaccines aim to induce cytotoxic CD8+ T cells (CTL) and antibodies. Conserved protein antigens, such as p24 from human immunodeficiency virus, represent promising component for elicitation CTLs, nevertheless with suboptimal immunogenicity, if formulated as recombinant protein. To enhance immunogenicity and CTL response, recombinant proteins may be targeted to dendritic cells (DC) for cross presentation on MHCI, where mannose receptor and/or other lectin receptors could play an important role. Here, we constructed liposomal carrier-based vaccine composed of recombinant p24 antigen bound by metallochelating linkage onto surface of nanoliposomes with surface mannans coupled by aminooxy ligation. Generated mannosylated proteonanoliposomes were analyzed by dynamic light scattering, isothermal titration, and electron microscopy. Using murine DC line MutuDC and murine bone marrow derived DC (BMDC) we evaluated their immunogenicity and immunomodulatory activity. We show that p24 mannosylated proteonanoliposomes activate DC for enhanced MHCI, MHCII and CD40, CD80, and CD86 surface expression both on MutuDC and BMDC. p24 mannosylated liposomes were internalized by MutuDC with p24 intracellular localization within 1 to 3 h. The combination of metallochelating and aminooxy ligation could be used simultaneously to generate nanoliposomal adjuvanted recombinant protein-based vaccines versatile for combination of recombinant antigens relevant for antibody and CTL elicitation.


Subject(s)
AIDS Vaccines , HIV-1 , Animals , Humans , Mice , Antigens , Dendritic Cells , Liposomes/metabolism , Mannans/metabolism , Recombinant Proteins/metabolism , AIDS Vaccines/immunology
20.
J Virol ; 98(3): e0172023, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38412036

ABSTRACT

The rational design of HIV-1 immunogens to trigger the development of broadly neutralizing antibodies (bNAbs) requires understanding the viral evolutionary pathways influencing this process. An acute HIV-1-infected individual exhibiting >50% plasma neutralization breadth developed neutralizing antibody specificities against the CD4-binding site (CD4bs) and V1V2 regions of Env gp120. Comparison of pseudoviruses derived from early and late autologous env sequences demonstrated the development of >2 log resistance to VRC13 but not to other CD4bs-specific bNAbs. Mapping studies indicated that the V3 and CD4-binding loops of Env gp120 contributed significantly to developing resistance to the autologous neutralizing response and that the CD4-binding loop (CD4BL) specifically was responsible for the developing resistance to VRC13. Tracking viral evolution during the development of this cross-neutralizing CD4bs response identified amino acid substitutions arising at only 4 of 11 known VRC13 contact sites (K282, T283, K421, and V471). However, each of these mutations was external to the V3 and CD4BL regions conferring resistance to VRC13 and was transient in nature. Rather, complete resistance to VRC13 was achieved through the cooperative expression of a cluster of single amino acid changes within and immediately adjacent to the CD4BL, including a T359I substitution, exchange of a potential N-linked glycosylation (PNLG) site to residue S362 from N363, and a P369L substitution. Collectively, our data characterize complex HIV-1 env evolution in an individual developing resistance to a VRC13-like neutralizing antibody response and identify novel VRC13-associated escape mutations that may be important to inducing VRC13-like bNAbs for lineage-based immunogens.IMPORTANCEThe pursuit of eliciting broadly neutralizing antibodies (bNAbs) through vaccination and their use as therapeutics remains a significant focus in the effort to eradicate HIV-1. Key to our understanding of this approach is a more extensive understanding of bNAb contact sites and susceptible escape mutations in HIV-1 envelope (env). We identified a broad neutralizer exhibiting VRC13-like responses, a non-germline restricted class of CD4-binding site antibody distinct from the well-studied VRC01-class. Through longitudinal envelope sequencing and Env-pseudotyped neutralization assays, we characterized a complex escape pathway requiring the cooperative evolution of four amino acid changes to confer complete resistance to VRC13. This suggests that VRC13-class bNAbs may be refractory to rapid escape and attractive for therapeutic applications. Furthermore, the identification of longitudinal viral changes concomitant with the development of neutralization breadth may help identify the viral intermediates needed for the maturation of VRC13-like responses and the design of lineage-based immunogens.


Subject(s)
Broadly Neutralizing Antibodies , HIV Infections , Humans , Amino Acids , Broadly Neutralizing Antibodies/immunology , CD4 Antigens/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Epitopes , HIV Antibodies , HIV Antigens , HIV Envelope Protein gp120/genetics , HIV Seropositivity , HIV-1/genetics , AIDS Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...