Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743625

ABSTRACT

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Subject(s)
AMP-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Spheroids, Cellular , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinase Kinases/genetics , Spheroids, Cellular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation , Cell Line, Tumor , CRISPR-Cas Systems , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396629

ABSTRACT

Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in NSCLC, activates AMP-activated protein kinase (AMPK) which in turn inhibits mammalian target of rapamycin complex 1 (mTORC1) and activates unc-51 like autophagy activating kinase 1 (ULK1) to promote autophagy. Sestrin-2 is a stress-induced protein that enhances LKB1-dependent activation of AMPK, functioning as a tumor suppressor in NSCLC. In previous studies, rosemary (Rosmarinus officinalis) extract (RE) activated the AMPK pathway while inhibiting mTORC1 to suppress proliferation, survival, and migration, leading to the apoptosis of NSCLC cells. In the present study, we investigated the anticancer potential of carnosic acid (CA), a bioactive polyphenolic diterpene compound found in RE. The treatment of H1299 and H460 NSCLC cells with CA resulted in concentration and time-dependent inhibition of cell proliferation assessed with crystal violet staining and 3H-thymidine incorporation, and concentration-dependent inhibition of survival, assessed using a colony formation assay. Additionally, CA induced apoptosis of H1299 cells as indicated by decreased B-cell lymphoma 2 (Bcl-2) levels, increased cleaved caspase-3, -7, poly (ADP-ribose) polymerase (PARP), Bcl-2-associated X protein (BAX) levels, and increased nuclear condensation. These antiproliferative and proapoptotic effects coincided with the upregulation of sestrin-2 and the phosphorylation/activation of LKB1 and AMPK. Downstream of AMPK signaling, CA increased levels of autophagy marker light chain 3 (LC3), an established marker of autophagy; inhibiting autophagy with 3-methyladenine (3MA) blocked the antiproliferative effect of CA. Overall, these data indicate that CA can inhibit NSCLC cell viability and that the underlying mechanism of action of CA involves the induction of autophagy through a Sestrin-2/LKB1/AMPK signaling cascade. Future experiments will use siRNA and small molecule inhibitors to better elucidate the role of these signaling molecules in the mechanism of action of CA as well as tumor xenograft models to assess the anticancer properties of CA in vivo.


Subject(s)
Abietanes , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Abietanes/pharmacology , Abietanes/therapeutic use , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Apoptosis , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1 , Protein Serine-Threonine Kinases/metabolism , Sestrins/drug effects , Sestrins/metabolism , AMP-Activated Protein Kinase Kinases/drug effects , AMP-Activated Protein Kinase Kinases/metabolism
3.
J Cardiovasc Pharmacol ; 83(1): 93-104, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37816196

ABSTRACT

ABSTRACT: Aldehyde dehydrogenase 2 (ALDH2) protects the ischemic heart by activating adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling. However, the molecular mechanisms linking ALDH2 and AMPK signaling are not fully understood. This study aimed to explore the potential mechanisms linking ALDH2 and AMPK in myocardial ischemic injury. An ischemic model was established by ligating the left anterior descending coronary artery in rats. The overexpression or knockdown of ALDH2 in H9c2 cells treated with oxygen-glucose deprivation was obtained through lentivirus infection. Transferase-mediated dUTP nick-end labeling was used to evaluate apoptosis in an ischemic rat model and oxygen-glucose deprivation cells. ALDH2 activity, mitochondrial oxidative stress markers, adenosine triphosphate, respiratory control ratio, and cell viability in H9c2 cells were evaluated using a biological kit and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. Protein expression of ALDH2 , 4-hydroxynonenal, thioredoxin-1 (Trx-1), and AMPK-proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling pathway was detected through Western blotting. ALDH2 activation reduced ischemic-induced myocardial infarct size and apoptosis. ALDH2 protected mitochondrial function by enhancing mitochondrial respiratory control ratio and adenosine triphosphate production, alleviated mitochondrial oxidative stress, and suppressed myocardial apoptosis. Moreover, ALDH2 attenuated ischemia-induced oxidative stress and maintained Trx-1 levels by reducing 4-hydroxynonenal, thereby promoting AMPK-PGC-1α signaling activation. Inhibiting Trx-1 or AMPK abolished the cardioprotective effect of ALDH2 on ischemia. ALDH2 alleviates myocardial injury through increased mitochondrial biogenesis and reduced oxidative stress, and these effects were achieved through Trx1-mediating AMPK-PGC1-α signaling activation.


Subject(s)
AMP-Activated Protein Kinases , Myocardial Infarction , Animals , Rats , Adenosine Triphosphate/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/pharmacology , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Mitochondria , Myocardial Infarction/metabolism , Myocytes, Cardiac , Oxidation-Reduction , Oxygen/metabolism , Oxygen/pharmacology , AMP-Activated Protein Kinase Kinases/metabolism
4.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 196-202, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38158667

ABSTRACT

To study the influence of ghrelin on hypoxia/reoxygenation (H/R) induced H9C2 cell pyroptosis by regulating NLRP3. H9C2 cells were categorized into 3 distinct groups: the control group (referred to as Control), the hypoxia-exposed group (abbreviated as H), and the hypoxia/reoxygenation-exposed group (referred to as H/R). The expression of ghrelin and NLRP3 was determined. Ghrelin overexpression cell line was established to analyze its effects on cell viability, cell cycle and apoptosis. Simultaneously, the assessment of NLRP3 and Caspase-1 expression levels was conducted. To further inspect the effect of ghrelin on H/R treated H9C2 cells via NLRP3, the experimental setups were formulated as follows: control group (Control), H/R group (abbreviated as H/R), Ghrelin overexpression group (Ghrelin), ghrelin overexpression and NLRP3 overexpression group (Ghrelin + NLRP3), NLRP3 overexpression group (NLRP3), NLRP3 negative control group (NLRP3-NC). Experiments mentioned above were performed in each group. In comparison to control, H/R cells expressed significantly lower level of ghrelin, but higher level of NLRP3. Further, a noteworthy reduction in cell viability was evident within the H/R group, with much more cells in G0/G1 phase and less in S phase, and with elevated cell death rate and protein levels of NLRP3 and caspase-1 (P<0.05). Overexpression of ghrelin was capable of increasing cell viability, reducing G0/G1 cell number while increasing S phase cells. Ghrelin overexpression could suppress cell apoptosis and both NLRP3 and caspase-1 expressions. NLRP3 overexpression could diminish the beneficial impacts of ghrelin on H/R treated H9C2 cells. Ghrelin exhibited the capability to suppress H/R induced H9C2 cell pyroptosis through inhibition of NLRP3.


Subject(s)
Cell Survival , Ghrelin , Hypoxia , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Rats , AMP-Activated Protein Kinase Kinases/metabolism , Apoptosis , Caspase 1/metabolism , Cell Cycle , Cell Line , Gene Expression , Ghrelin/metabolism , Hypoxia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , TOR Serine-Threonine Kinases/metabolism
5.
J Biol Chem ; 299(7): 104906, 2023 07.
Article in English | MEDLINE | ID: mdl-37302555

ABSTRACT

The tumor suppressor Liver Kinase B1 (LKB1) is a multifunctional serine/threonine protein kinase that regulates cell metabolism, polarity, and growth and is associated with Peutz-Jeghers Syndrome and cancer predisposition. The LKB1 gene comprises 10 exons and 9 introns. Three spliced LKB1 variants have been documented, and they reside mainly in the cytoplasm, although two possess a nuclear-localization sequence (NLS) and are able to shuttle into the nucleus. Here, we report the identification of a fourth and novel LKB1 isoform that is, interestingly, targeted to the mitochondria. We show that this mitochondria-localized LKB1 (mLKB1) is generated from alternative splicing in the 5' region of the transcript and translated from an alternative initiation codon encoded by a previously unknown exon 1b (131 bp) hidden within the long intron 1 of LKB1 gene. We found by replacing the N-terminal NLS of the canonical LKB1 isoform, the N-terminus of the alternatively spliced mLKB1 variant encodes a mitochondrial transit peptide that allows it to localize to the mitochondria. We further demonstrate that mLKB1 colocalizes histologically with mitochondria-resident ATP Synthase and NAD-dependent deacetylase sirtuin-3, mitochondrial (SIRT3) and that its expression is rapidly and transiently upregulated by oxidative stress. We conclude that this novel LKB1 isoform, mLKB1, plays a critical role in regulating mitochondrial metabolic activity and oxidative stress response.


Subject(s)
AMP-Activated Protein Kinase Kinases , Mitochondria , Mutation , Oxidative Stress , Protein Serine-Threonine Kinases , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sirtuin 3/metabolism , Protein Sorting Signals , Protein Transport , Mitochondrial Proton-Translocating ATPases/metabolism , Alternative Splicing , Codon, Initiator
6.
Nat Commun ; 14(1): 2779, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188705

ABSTRACT

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Subject(s)
Aging , Antidepressive Agents , Harmine , Mitochondria , Mitophagy , Monoamine Oxidase , Receptors, GABA-A , Harmine/analogs & derivatives , Harmine/pharmacology , Antidepressive Agents/pharmacology , Mitochondria/drug effects , Mitophagy/drug effects , Muscle Fibers, Skeletal/drug effects , AMP-Activated Protein Kinase Kinases/metabolism , Muscle, Skeletal/drug effects , Liver/drug effects , Aging/drug effects , Insulin Resistance , Glucose Intolerance/metabolism , Prediabetic State/metabolism , Monoamine Oxidase/metabolism , Receptors, GABA-A/metabolism , Longevity/drug effects , Caenorhabditis elegans , Drosophila melanogaster , Frailty/prevention & control , Physical Conditioning, Animal , Models, Animal , Male , Female , Animals , Mice , Fatty Liver/metabolism , Adipose Tissue, Brown/drug effects
7.
Biochem Biophys Res Commun ; 661: 34-41, 2023 06 18.
Article in English | MEDLINE | ID: mdl-37086572

ABSTRACT

Physiological activities of the body exhibit an obvious biological rhythm. At the core of the circadian rhythm, BMAL1 is the only clock gene whose deletion leads to abnormal physiological functions. However, whether intermittent heat stress influences cardiovascular function by altering the circadian rhythm of clock genes has not been reported. This study aimed to investigate whether intermittent heat stress induces autophagy and apoptosis, and the effects of BMAL1 on thoracic aortic autophagy and apoptosis. An intermittent heat stress model was established in vitro, and western blotting and immunofluorescence were used to detect the expression of autophagy, apoptosis, the AMPK/mTOR/ULK1 pathway, and BMAL1. After BMAL1 silencing, RT-qPCR was performed to detect the expression levels of autophagy and apoptosis-related genes. Our results suggest that heat stress induces autophagy and apoptosis in RTAECs. In addition, intermittent heat stress increased the phosphorylation of AMPK and ULK1, but reduced the phosphorylation of mTOR, AMPK inhibitor Compound C reversed the phosphorylation of AMPK, mTOR, and ULK1, and Beclin1 and LC3-II/LC3-I were downregulated. Furthermore, BMAL1 expression was elevated in vitro and shBMAL1 decreased autophagy and apoptosis. We revealed that intermittent heat stress induces autophagy and apoptosis, and that BMAL1 may be involved in the occurrence of autophagy and apoptosis.


Subject(s)
ARNTL Transcription Factors , Autophagy , Endothelial Cells , Heat-Shock Response , Animals , Rats , Aorta, Thoracic/cytology , Endothelial Cells/cytology , ARNTL Transcription Factors/metabolism , AMP-Activated Protein Kinase Kinases/metabolism , Signal Transduction , Phosphorylation , Apoptosis , Cells, Cultured
9.
BMC Cardiovasc Disord ; 23(1): 11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627571

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is a common frequently-occurring disease in the clinic and a serious threat to human health. This research aimed to explore the value between GASL1 and AS. METHODS: The expression and values of GASL1 in AS patients were revealed by qRT-PCR and ROC curve. The HUVEC cells were induced by ox-LDL to construct in-vitro models. Cell viability was detected by MTT assay, and apoptosis was detected by flow cytometry. The inflammatory situation was reflected by the ELISA assay. Double luciferase reporter gene assay verified the regulatory relationship between GASL1 and miR-106a, miR-106a and LKB1. RESULTS: The levels of GASL1 was lower in AS group than those in control group. The value of GASL1 in predicting AS patients was also tested by the ROC curve. After HUVEC cells were induced by ox-LDL, the levels of GASL1 and LKB1 decreased significantly, while the level of miR-106a increased significantly. Upregulation of LKB1 reversed the effect of upregulation of GASL1 on viability, apoptosis, and inflammation of HUVEC cells induced by ox-LDL. CONCLUSION: Overexpression of GASL1 might suppress ox-LDL-induced HUVEC cell viability, apoptosis, and inflammation by regulating miR-106a/LKB1 axis.


Subject(s)
AMP-Activated Protein Kinase Kinases , Atherosclerosis , MicroRNAs , RNA, Long Noncoding , Humans , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Cell Proliferation , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation , Lipoproteins, LDL/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism
10.
Aging Cell ; 22(3): e13764, 2023 03.
Article in English | MEDLINE | ID: mdl-36625257

ABSTRACT

Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.


Subject(s)
Autophagy , Cellular Senescence , Morpholines , Muscle Development , Myoblasts, Skeletal , Protein Kinase Inhibitors , Purines , Cellular Senescence/drug effects , Morpholines/pharmacology , Purines/pharmacology , Protein Kinase Inhibitors/pharmacology , Humans , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/physiology , Autophagy/drug effects , Insulin/metabolism , AMP-Activated Protein Kinase Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Glycolysis/drug effects , Citric Acid Cycle/drug effects , Insulin Resistance , Cells, Cultured , Muscle Development/drug effects
11.
J Agric Food Chem ; 71(1): 443-456, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36573646

ABSTRACT

High blood concentrations of nonesterified fatty acids (NEFAs) provoke various metabolic disorders and are associated with mammary tissue injury and decreased milk production in dairy cows. Nuciferine, an alkaloid found in Nelumbo nucifera leaves, has great potential for correcting lipid metabolism derangements and lipotoxicity. In this study, we evaluated the lipotoxicity induced by excessive NEFA in bovine mammary epithelial cells (bMECs) and investigated whether nuciferine alleviates NEFA-induced lipotoxicity and the underlying molecular mechanisms. We found that excessive NEFA (1.2 and 2.4 mM) induced lipid accumulation, apoptosis, and migration ability impairment in bMECs, whereas nuciferine could ameliorate these disarrangements, as indicated by decreasing triglyceride content, protein abundance of SREBP-1c, cytoplasmic cytochrome c, and cleaved caspase-3 and increasing protein abundance of PPARα and migration ability. Moreover, nuciferine could reverse NEFA-induced LKB1/AMPK signaling inhibition, and the protective effect of nuciferine on lipotoxicity caused by NEFA was abrogated by AMPK inhibitor dorsomorphin. Furthermore, transfection with LKB1 siRNA (si-LKB1) largely abolished the activation effect of nuciferine on AMPK. Overall, nuciferine can protect bMECs from excessive NEFA-induced lipid accumulation, apoptosis, and impaired migration by activating LKB1/AMPK signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , Fatty Acids, Nonesterified , Animals , Cattle , Female , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Apoptosis , Epithelial Cells/metabolism , Fatty Acids, Nonesterified/toxicity , Lipid Metabolism , Signal Transduction , AMP-Activated Protein Kinase Kinases/metabolism
12.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077459

ABSTRACT

Liver kinase B1 (LKB1) is a serine/threonine protein kinase that acts as a key tumor suppressor protein by activating its downstream kinases, such as AMP-activated protein kinase (AMPK). However, the regulatory actions of LKB1 and AMPK on DNA damage response (DDR) remain to be explored. In this study, we investigated the function of LKB1 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that LKB1 stabilizes and activates p53 through the c-Jun N-terminal kinase (JNK) pathway, which promotes cisplatin-induced apoptosis in human fibrosarcoma cell line HT1080. On the other hand, we found that AMPKα1 and α2 double knockout (DKO) cells showed enhanced stabilization of p53 and increased susceptibility to apoptosis induced by cisplatin, suggesting that AMPK negatively regulates cisplatin-induced apoptosis. Moreover, the additional stabilization of p53 and subsequent apoptosis in AMPK DKO cells were clearly canceled by the treatment with the antioxidants, raising the possibility that AMPK suppresses the p53 activation mediated by oxidative stress. Thus, our findings unexpectedly demonstrate the reciprocal regulation of p53 by LKB1 and AMPK in DDR, which provides insights into the molecular mechanisms of DDR.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Cisplatin , DNA Damage , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Apoptosis , Cell Line, Tumor , Cisplatin/metabolism , Cisplatin/pharmacology , Humans , Phosphorylation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
Oncol Rep ; 48(3)2022 09.
Article in English | MEDLINE | ID: mdl-35856436

ABSTRACT

The increasing morbidity and high mortality of intrahepatic cholangiocarcinoma (ICC) has led to the urgent need for new diagnostics and therapeutics. Liver kinase B1 (LKB1) exerts a tumor suppressor role in multiple malignances, while its regulatory role in exosomes secreted by ICC cells is obscure. In the present study, exosomes were extracted from cell culture supernatants of RBE and HCCC­9810 ICC cells as well as plasma of patients with ICC by ultracentrifugation and the morphology of exosomes was identified by transmission electron microscopy. Notably, compared with that of intracellular LKB1, the protein level of exosomal LKB1 was decreased. Silencing intracellular LKB1 increased the protein levels of programmed death ligand 1 (PD­L1), Slug and phosphorylated­AKT in exosomes, accompanied by decreased expression levels of exosomal LKB1. Exosomes with lower protein levels of LKB1 promoted the expression of the immune checkpoint PD­L1, malignant phenotypes of ICC cells in vitro, and cancer metastasis in vivo. Moreover, the low level of exosomal LKB1 in plasma was tightly associated with the poor prognosis of patients with ICC. Collectively, exosomal LKB1 inhibits the immune checkpoint PD­L1 and metastasis of ICC cells. These findings may provide new methods for the diagnosis and immune therapy of ICC.


Subject(s)
AMP-Activated Protein Kinase Kinases , Bile Duct Neoplasms , Cholangiocarcinoma , Exosomes , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cell Line, Tumor , Cholangiocarcinoma/pathology , Exosomes/metabolism , Humans
14.
Cell Rep ; 40(3): 111125, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858546

ABSTRACT

PTEN and LKB1 are intimately associated with gastrointestinal tumorigenesis. Mutations of PTEN or LKB1 lead to Cowden syndrome and Peutz-Jeghers syndrome characterized by development of gastrointestinal polyps. However, the cells of origin of these polyps and underlying mechanism remain unclear. Here, we reveal that PTEN or LKB1 deficiency in Gli1+ gut mesenchymal cells, but not intestinal epithelium, drives polyp formation histologically resembling polyposis in human patients. Mechanistically, although PTEN and LKB1 converge to regulate mTOR/AKT signaling in various tumor contexts, we find that mTOR is essential for PTEN-deletion-induced polyp formation but is largely dispensable for polyposis induced by mesenchymal LKB1 deficiency. Altogether, our studies identify Gli1-expressing mesenchymal cells as a common cell of origin for polyposis associated with PTEN and LKB1 and reveal their engagement of different downstream pathways in gut mesenchyme to suppress gastrointestinal tumorigenesis.


Subject(s)
AMP-Activated Protein Kinase Kinases/metabolism , Colorectal Neoplasms , Peutz-Jeghers Syndrome , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Humans , PTEN Phosphohydrolase/genetics , Peutz-Jeghers Syndrome/genetics , Peutz-Jeghers Syndrome/pathology , Protein Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases , Zinc Finger Protein GLI1/genetics
15.
Commun Biol ; 5(1): 642, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768580

ABSTRACT

The hypoxic ventilatory response (HVR) is critical to breathing and thus oxygen supply to the body and is primarily mediated by the carotid bodies. Here we reveal that carotid body afferent discharge during hypoxia and hypercapnia is determined by the expression of Liver Kinase B1 (LKB1), the principal kinase that activates the AMP-activated protein kinase (AMPK) during metabolic stresses. Conversely, conditional deletion in catecholaminergic cells of AMPK had no effect on carotid body responses to hypoxia or hypercapnia. By contrast, the HVR was attenuated by LKB1 and AMPK deletion. However, in LKB1 knockouts hypoxia evoked hypoventilation, apnoea and Cheyne-Stokes-like breathing, while only hypoventilation and apnoea were observed after AMPK deletion. We therefore identify LKB1 as an essential regulator of carotid body chemosensing and uncover a divergence in dependency on LKB1 and AMPK between the carotid body on one hand and the HVR on the other.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Carotid Body , Hypoxia , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Apnea , Carotid Body/metabolism , Humans , Hypercapnia/metabolism , Hypoventilation/metabolism , Hypoxia/metabolism
16.
Cell Metab ; 34(6): 874-887.e6, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35504291

ABSTRACT

The tumor microenvironment (TME) contains a rich source of nutrients that sustains cell growth and facilitate tumor development. Glucose and glutamine in the TME are essential for the development and activation of effector T cells that exert antitumor function. Immunotherapy unleashes T cell antitumor function, and although many solid tumors respond well, a significant proportion of patients do not benefit. In patients with KRAS-mutant lung adenocarcinoma, KEAP1 and STK11/Lkb1 co-mutations are associated with impaired response to immunotherapy. To investigate the metabolic and immune microenvironment of KRAS-mutant lung adenocarcinoma, we generated murine models that reflect the KEAP1 and STK11/Lkb1 mutational landscape in these patients. Here, we show increased glutamate abundance in the Lkb1-deficient TME associated with CD8 T cell activation in response to anti-PD1. Combination treatment with the glutaminase inhibitor CB-839 inhibited clonal expansion and activation of CD8 T cells. Thus, glutaminase inhibition negatively impacts CD8 T cells activated by anti-PD1 immunotherapy.


Subject(s)
AMP-Activated Protein Kinase Kinases , Adenocarcinoma of Lung , CD8-Positive T-Lymphocytes , Glutaminase , Lung Neoplasms , AMP-Activated Protein Kinase Kinases/deficiency , AMP-Activated Protein Kinase Kinases/immunology , AMP-Activated Protein Kinase Kinases/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Glutaminase/antagonists & inhibitors , Glutaminase/immunology , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lymphocyte Activation , Mice , Mutation , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins p21(ras)/immunology , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Microenvironment
17.
Bioengineered ; 13(4): 8349-8359, 2022 04.
Article in English | MEDLINE | ID: mdl-35311465

ABSTRACT

The nuclear receptor 4A1 (NR4A1) is widely involved in the regulation of cell survival and is related to ischemic injury in several organs. This research examined the emerging role and mechanism of NR4A1 in hepatocyte ischemia-reperfusion injury (IRI). BRL-3A cells were subjected to hypoxia-reperfusion (H/R) to simulate an IRI model in vitro. The expression of NR4A1 and liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathway-related proteins (LKB1, AMPK, and ACC) was detected by western blotting or RT-qPCR under H/R condition after NR4A1 overexpression or silencing. Then, radicicol, an inhibitor of LKB1 pathway, was used to determine the role of NR4A1 in hepatocyte H/R injury by regulating LKB1. Under the help of CCK-8 assay, cell viability was assessed. The levels of ROS, MDA, and SOD were determined with corresponding kits to evaluate oxidative stress. Additionally, RT-qPCR was employed to analyze the releases of the inflammatory factors. Flow cytometry was applied to estimate the apoptosis and its related proteins, and autophagy-associated proteins were assayed by western blotting. Results indicated that NR4A1 was highly expressed, while proteins in LKB1/AMPK signaling was downregulated in BRL-3A cells exposed to H/R. The activation of LKB1/AMPK pathway could be negatively regulated by NR4A1. Moreover, NR4A1 depletion conspicuously promoted cell viability, inhibited oxidative stress as well as inflammation, and induced apoptosis and autophagy in H/R-stimulated BRL-3A cells, which were reversed after radicicol intervention. Collectively, NR4A1/LKB1/AMPK axis is a new protective pathway involved in hepatocyte IRI, shedding new insights into the improvement of hepatocyte IRI.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Nuclear Receptor Subfamily 4, Group A, Member 1 , Reperfusion Injury , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Gene Silencing , Hepatocytes/metabolism , Hypoxia/metabolism , Liver/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism
18.
Biomed Pharmacother ; 148: 112750, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35219120

ABSTRACT

A part of atypical antipsychotics exert mood-stabilising effects via modulation of various monoamine receptors and intracellular signalling. Recent pharmacodynamic studies suggested that tripartite-synaptic transmission can be involved in pathophysiology of mood-disorders, schizophrenia, their associated cognitive impairments, and several adverse-reactions to atypical antipsychotics. Therefore, to explore mechanisms underlying antidepressive mood-stabilising and antipsychotic effects of lurasidone, we determined concentration-dependent effects of acute and subchronic lurasidone administrations on astroglial L-glutamate release, and expression of connexin43, ERK, AKT, adenosine monophosphate activated protein kinase (AMPK), 5-HT1A (5-HT1AR) and 5-HT7 (5-HT7R) receptors in cultured astrocytes using ultra-high-pressure liquid-chromatography with mass-spectrometry and capillary-immunoblotting systems. Therapeutically-relevant lurasidone concentration suppressed astroglial L-glutamate release through activated connexin43-containing hemichannel by decreasing connexin43 expression in plasma-membrane. Subchronic lurasidone administration downregulated 5-HT1AR and 5-HT7R in astroglial plasma-membrane concentration-dependently. Subchronic lurasidone administration attenuated ERK and AMPK signallings concentration-dependently without affecting AKT signalling. These results suggest that effects of subchronic lurasidone administration on astroglial L-glutamate release, 5-HT receptor, and intracellular signalling are similar to vortioxetine and different from mood-stabilising atypical antipsychotics, clozapine. Therefore, inhibitory effects of subchronic lurasidone administration on astroglial L-glutamate release through activated connexin43-containing hemichannel probably contribute to pathophysiology of antidepressive mood-stabilising effects of lurasidone. Furthermore, inhibitory effects of subchronic lurasidone administration on ERK and AMPK activities (without affecting AKT activity) induced by downregulation of 5-HT7R could result in clinical advantages of lurasidone, lower risk of weight gain.


Subject(s)
Antipsychotic Agents/pharmacology , Lurasidone Hydrochloride/pharmacology , Mood Disorders/drug therapy , Receptors, Serotonin/metabolism , Synaptic Transmission/drug effects , Weight Gain/drug effects , AMP-Activated Protein Kinase Kinases/metabolism , Animals , Astrocytes/metabolism , Connexin 43/metabolism , Female , Glutamic Acid/metabolism , MAP Kinase Signaling System/drug effects , Mood Disorders/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley
19.
Int J Mol Sci ; 23(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35216174

ABSTRACT

(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.


Subject(s)
Aging/metabolism , Energy Metabolism , Insulin Resistance , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Weight Gain , AMP-Activated Protein Kinase Kinases/metabolism , Aging/genetics , Aging/pathology , Animals , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Phosphotransferases (Phosphate Group Acceptor)/genetics , Proto-Oncogene Proteins c-akt/metabolism , Uncoupling Protein 1/metabolism
20.
Chem Biol Interact ; 355: 109850, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35149085

ABSTRACT

3-Chloro-1, 2-propanediol (3-MCPD) is a widespread food contaminant with kidney as the main target organ. The exploration of ingredients as intervention strategy towards 3-MCPD induced nephrotoxicity is needed. Diosgenin (DIO) is a steroidal saponin presented in several plants and foods. Here we assessed whether DIO attenuates nephrotoxicity induced by 3-MCPD using Human embryonic kidney 293 (HEK293) cells and Sprague-Dawley (SD) rats. The results showed that DIO (2, 6, 8 µM) increased cell viability and exerted inhibitory effect on caspase 3 and caspase 9 activities. Histological examination of rats showed that 15 mg/kg bw DIO ameliorated renal pathological changes caused by 3-MCPD (30 mg/kg bw). DIO also induced autophagy and the blockade of autophagy with 3-Methyladenine (3-MA) aggravated mitochondrial apoptosis induced by 3-MCPD in HEK293 cells. Moreover, treatment with DIO caused an increase in p-LKB1/LKB1 and p-AMPK/AMPK expressions and a decrease in p-mTOR/mTOR, p-ULK1(Ser757), p-P70S6K and p-4EBP1 expressions. Additionally, DIO improved mitochondrial dynamics mainly through inhibiting the relocation of DRP1 on mitochondria and enhancing MFN1 and MFN2 expressions. In conclusion, our study demonstrated for the first time that DIO protected against kidney injury induced by 3-MCPD through the induction of autophagy via LKB1-AMPK-mTOR pathway and the improvement of mitochondrial fission and fusion.


Subject(s)
Autophagy/drug effects , Diosgenin/pharmacology , Mitochondrial Dynamics/drug effects , Protective Agents/pharmacology , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cell Survival/drug effects , Diosgenin/therapeutic use , HEK293 Cells , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phosphorylation/drug effects , Protective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , alpha-Chlorohydrin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...