Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
1.
Arch Dermatol Res ; 316(6): 301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819656

ABSTRACT

Our study aimed to investigate the role of lipids in melanoma risk and the effect of lipid-lowering drug targets on melanoma. Using Mendelian Randomization analysis, we examined the genetic agents of nine lipid-lowering drugs and their association with melanoma risk. We found that genetically proxied inhibition of HMGCR, ABCG5/ABCG8, and ANGPTL3 was associated with a reduced risk of melanoma. On the other hand, inhibition of LPL and Apo-B100 was significantly associated with an increased risk of melanoma. Sensitivity analyses did not reveal any statistical evidence of bias from pleiotropy or genetic confounding. We did not find a robust association between lipid traits NPC1L1, PCSK9, APOC3 inhibition, and melanoma risk. These findings were validated using two independent lipid datasets. Our analysis also revealed that HMGCR, ANGPTL3, and ABCG5/ABCG8 inhibitors reduced melanoma risk independent of their effects on lipids. This suggests that these targets may have potential for melanoma prevention or treatment. In conclusion, our study provides evidence for a causal role of lipids in melanoma risk and highlights specific lipid-lowering drug targets that may be effective in reducing the risk of melanoma. These findings contribute to the understanding of the underlying mechanisms of melanoma development and provide potential avenues for further research and therapeutic interventions.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , Angiopoietin-Like Protein 3 , Hypolipidemic Agents , Melanoma , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/epidemiology , Hypolipidemic Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Skin Neoplasms/genetics , Skin Neoplasms/epidemiology , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Angiopoietin-like Proteins/genetics , Apolipoprotein B-100/genetics , Genetic Predisposition to Disease , Risk Factors , Polymorphism, Single Nucleotide , Lipoproteins/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Hydroxymethylglutaryl CoA Reductases , Lipoprotein Lipase
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38740521

ABSTRACT

AIMS: The aim of this study was to evaluate the antiobesity effects of heat-killed Lactiplantibacillus plantarum Shinshu N-07 (N-07) isolated from fermented Brassica rapa L. METHODS AND RESULTS: Male mice were divided into three groups (n = 10/group); normal diet, western diet (WD), or WD + N-07 (N-07) group and administered each diet for 56 days. The N-07 group showed significant suppression of body weight gain and epididymal fat, perirenal fat, and liver weights compared with the WD group. Higher levels of fecal total cholesterol, triglyceride (TG), and free fatty acid (FFA) were observed in the N-07 group than in the WD group. The mRNA expression of the cholesterol transporter ATP-binding cassette transporter G5 (ABCG5) was significantly increased in the small intestine of N-07-fed mice compared with WD-fed mice. Moreover, N-07 supplementation significantly increased the mRNA expression of ABCG5 and ABCG8 in Caco-2 cells. Furthermore, the TG- and FFA-removal ability of N-07 was confirmed to evaluate its soybean oil- and oleic acid-binding capacities in in vitro experiments. CONCLUSIONS: The antiobesity effects of N-07 might be due to its ability to promote lipid excretion by regulating cholesterol transporter expression and lipid-binding ability.


Subject(s)
Diet, Western , Obesity , Animals , Male , Mice , Obesity/metabolism , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , Anti-Obesity Agents/pharmacology , Lactobacillus plantarum , Mice, Obese , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , Cholesterol/metabolism , Probiotics , Caco-2 Cells , Brassica rapa/chemistry , Hot Temperature , Lipoproteins/metabolism , Triglycerides/metabolism , Liver/metabolism , Mice, Inbred C57BL
3.
Wiad Lek ; 77(2): 262-267, 2024.
Article in English | MEDLINE | ID: mdl-38592987

ABSTRACT

OBJECTIVE: Aim: The current study was designed to investigate the role of ABCG5 and ABCG5 in serum with normal and expected cardiac complaints with CVDs as individual early diagnostic tools. PATIENTS AND METHODS: Materials and Methods: Data was collected in paper form and recorded from 100 healthy personals and 100 personals suspected with CVS after take the case history and clinical signs in private clinical hospital and the serum was collected for measurements the activity of ABCG5 and ABCG5 by used ELISA reader and the results illustrated that activity of ABCG5 and ABCG5 in all aged groups. RESULTS: Results: Activity of ABCG5 and ABCG5 in all aged groups periods in patient person male and female significant decrease as compared with same age in same period of live, so that the researched depicted that can used the serum activity of ABCG5 and ABCG5 as a diagnostics tools for atherosclerotic cardiovascular disease. CONCLUSION: Conclusions: We identified areas of further exploration on cholesterol transport related with CVD risk and concluded that changes in the Adenosine Triphosphate Binding Cassette transporters mainly G5 and G8 early diagnostic tools for cardiovascular disease in Human. We correlated areas of farther disquisition on nutrient cholesterol and CVD threat, in the included trials, healthy grown-ups consumed high doses of dietary cholesterol.


Subject(s)
Cardiovascular Diseases , Lipoproteins , Humans , Male , Female , Aged , Lipoproteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 5 , ATP Binding Cassette Transporter, Subfamily G, Member 8 , Cardiovascular Diseases/diagnosis , Adenosine Triphosphate/metabolism , ATP-Binding Cassette Transporters/metabolism , Cholesterol/metabolism
4.
Diabetes Care ; 47(6): 1092-1098, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593324

ABSTRACT

OBJECTIVE: Whether genetic susceptibility to disease and dietary cholesterol (DC) absorption contribute to inconsistent associations of DC consumption with diabetes and cardiovascular disease (CVD) remains unclear. RESEARCH DESIGN AND METHODS: DC consumption was assessed by repeated 24-h dietary recalls in the UK Biobank. A polygenetic risk score (PRS) for DC absorption was constructed using genetic variants in the Niemann-Pick C1-Like 1 and ATP Binding Cassettes G5 and G8 genes. PRSs for diabetes, coronary artery disease, and stroke were also created. The associations of DC consumption with incident diabetes (n = 96,826) and CVD (n = 94,536) in the overall sample and by PRS subgroups were evaluated using adjusted Cox models. RESULTS: Each additional 300 mg/day of DC consumption was associated with incident diabetes (hazard ratio [HR], 1.17 [95% CI, 1.07-1.27]) and CVD (HR, 1.09 [95% CI, 1.03-1.17]), but further adjusting for BMI nullified these associations (HR for diabetes, 0.99 [95% CI, 0.90-1.09]; HR for CVD, 1.04 [95% CI, 0.98-1.12]). Genetic susceptibility to the diseases did not modify these associations (P for interaction ≥0.06). The DC-CVD association appeared to be stronger in people with greater genetic susceptibility to cholesterol absorption assessed by the non-high-density lipoprotein cholesterol-related PRS (P for interaction = 0.04), but the stratum-level association estimates were not statistically significant. CONCLUSIONS: DC consumption was not associated with incident diabetes and CVD, after adjusting for BMI, in the overall sample and in subgroups stratified by genetic predisposition to cholesterol absorption and the diseases. Nevertheless, whether genetic predisposition to cholesterol absorption modifies the DC-CVD association requires further investigation.


Subject(s)
Cardiovascular Diseases , Cholesterol, Dietary , Humans , Male , Female , Cardiovascular Diseases/genetics , Cardiovascular Diseases/epidemiology , Middle Aged , Cholesterol, Dietary/adverse effects , Cholesterol, Dietary/administration & dosage , Diabetes Mellitus/genetics , Diabetes Mellitus/epidemiology , Aged , Adult , Genetic Predisposition to Disease , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Membrane Transport Proteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
6.
Blood Adv ; 8(10): 2466-2477, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38513134

ABSTRACT

ABSTRACT: Sitosterolemia is a rare autosomal recessive genetic disorder in which patients develop hypercholesterolemia and may exhibit abnormal hematologic and/or liver test results. In this disease, dysfunction of either ABCG5 or ABCG8 results in the intestinal hyperabsorption of all sterols, including cholesterol and, more specifically, plant sterols or xenosterols, as well as in the impaired ability to excrete xenosterols into the bile. It remains unknown how and why some patients develop hematologic abnormalities. Only a few unrelated patients with hematologic abnormalities at the time of diagnosis have been reported. Here, we report on 2 unrelated pedigrees who were believed to have chronic immune thrombocytopenia as their most prominent feature. Both consanguineous families showed recessive gene variants in ABCG5, which were associated with the disease by in silico protein structure analysis and clinical segregation. Hepatosplenomegaly was absent. Thrombopoietin levels and megakaryocyte numbers in the bone marrow were normal. Metabolic analysis confirmed the presence of strongly elevated plasma levels of xenosterols. Potential platelet proteomic aberrations were longitudinally assessed following dietary restrictions combined with administration of the sterol absorption inhibitor ezetimibe. No significant effects on platelet protein content before and after the onset of treatment were demonstrated. Although we cannot exclude that lipotoxicity has a direct and platelet-specific impact in patients with sitosterolemia, our data suggest that thrombocytopenia is neither caused by a lack of megakaryocytes nor driven by proteomic aberrations in the platelets themselves.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , Blood Platelets , Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Proteomics , Thrombocytopenia , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/blood , Lipid Metabolism, Inborn Errors/complications , Hypercholesterolemia/blood , Hypercholesterolemia/genetics , Hypercholesterolemia/complications , Phytosterols/adverse effects , Phytosterols/blood , Blood Platelets/metabolism , Blood Platelets/pathology , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Intestinal Diseases/blood , Intestinal Diseases/diagnosis , Intestinal Diseases/genetics , Intestinal Diseases/etiology , Intestinal Diseases/metabolism , Male , Thrombocytopenia/diagnosis , Thrombocytopenia/blood , Thrombocytopenia/etiology , Thrombocytopenia/metabolism , Female , Proteomics/methods , Pedigree , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Adult , Proteome , Adolescent , Lipoproteins
7.
Hum Genomics ; 18(1): 19, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347599

ABSTRACT

The causal relationships between plasma metabolites and cholelithiasis/cholecystitis risks remain elusive. Using two-sample Mendelian randomization, we found that genetic proxied plasma campesterol level showed negative correlation with the risk of both cholelithiasis and cholecystitis. Furthermore, the increased risk of cholelithiasis is correlating with the increased level of plasma campesterol. Lastly, genetic colocalization study showed that the leading SNP, rs4299376, which residing at the ABCG5/ABCG8 gene loci, was shared by plasma campesterol level and cholelithiasis, indicating that the aberrant transportation of plant sterol/cholesterol from the blood stream to the bile duct/gut lumen might be the key in preventing cholesterol gallstone formation.


Subject(s)
Cholecystitis , Cholesterol/analogs & derivatives , Gallstones , Phytosterols , Humans , Lipoproteins/genetics , Mendelian Randomization Analysis , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Cholecystitis/epidemiology , Cholecystitis/genetics , Gallstones/epidemiology , Gallstones/genetics , Gallstones/metabolism
8.
Hepatology ; 79(5): 986-1004, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37976384

ABSTRACT

BACKGROUND AND AIMS: Parenteral nutrition-associated cholestasis (PNAC) is an important complication in patients with intestinal failure with reduced LRH-1 expression. Here, we hypothesized that LRH-1 activation by its agonist, dilauroylphosphatidylcholine (DLPC), would trigger signal transducer and activator of transcription 6 (STAT6) signaling and hepatic macrophage polarization that would mediate hepatic protection in PNAC. APPROACH AND RESULTS: PNAC mouse model (oral DSSx4d followed by PNx14d; DSS-PN) was treated with LRH-1 agonist DLPC (30 mg/kg/day) intravenously. DLPC treatment prevented liver injury and cholestasis while inducing hepatic mRNA expression of Nr5a2 (nuclear receptor subfamily 5 group A member 2), Abcb11 (ATP binding cassette subfamily B member 11), Abcg5 (ATP-binding cassette [ABC] transporters subfamily G member 5), Abcg8 (ATP-binding cassette [ABC] transporters subfamily G member 8), nuclear receptor subfamily 0, and ATP-binding cassette subfamily C member 2 ( Abcc2) mRNA, all of which were reduced in PNAC mice. To determine the mechanism of the DLPC effect, we performed RNA-sequencing analysis of the liver from Chow, DSS-PN, and DSS-PN/DLPC mice, which revealed DLPC upregulation of the anti-inflammatory STAT6 pathway. In intrahepatic mononuclear cells or bone-marrow derived macrophages (BMDM) from PNAC mice, DLPC treatment prevented upregulation of pro-inflammatory (M1) genes, suppressed activation of NFκB and induced phosphorylation of STAT6 and its target genes, indicating M2 macrophage polarization. In vitro, incubation of DLPC with cultured macrophages showed that the increased Il-1b and Tnf induced by exposure to lipopolysaccharides or phytosterols was reduced significantly, which was associated with increased STAT6 binding to promoters of its target genes. Suppression of STAT6 expression by siRNA in THP-1 cells exposed to lipopolysaccharides, phytosterols, or both resulted in enhanced elevation of IL-1B mRNA expression. Furthermore, the protective effect of DLPC in THP-1 cells was abrogated by STAT6 siRNA. CONCLUSIONS: These results indicate that activation of LRH-1 by DLPC may protect from PNAC liver injury through STAT6-mediated macrophage polarization.


Subject(s)
Cholestasis , Phosphatidylcholines , Phytosterols , Humans , Mice , Animals , Lipoproteins/metabolism , STAT6 Transcription Factor/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cholestasis/etiology , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , Kupffer Cells/metabolism , RNA, Small Interfering , RNA, Messenger/metabolism , Parenteral Nutrition/adverse effects , Adenosine Triphosphate
9.
Asian J Surg ; 46(9): 3560-3567, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37344314

ABSTRACT

BACKGROUND: The overexpression of the cholesterol transporter: ATP-binding cassette transporter (ABCG8) due to the effect of ABCG8 genetic variant (rs11887534) leads to the precipitation of cholesterol crystals and gallstone disease (GSD). OBJECTIVE: To evaluate the chemical composition of gallstones and the role of ABCG8 (rs11887534) in the susceptibility to GSD. METHODS: We enrolled 77 patients with GSD treated with standard laparoscopic or open cholecystectomy and 75 age and sex-matched healthy controls. Chemical analysis of the extracted gallstones was performed. Analysis of the rs11887534 was performed by real-time PCR TaqMan technique for both cases and controls. RESULTS: Pure cholesterol stones were the main type of stones in GSD patients. The CC genotype carriers of rs11887534 were more prone to gallstone formation than other genotypes. The CC genotype carriers were 100 folds at increased risk to develop pure cholesterol stones. CONCLUSION: The most prevalent type of gallbladder stones is pure cholesterol stone. ABCG8 (rs11887534) could be associated with increased risk for cholesterol gallstones formation, this risk was more pronounced in female patients.


Subject(s)
Gallstones , Humans , Female , Genetic Predisposition to Disease , Egypt , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Cholesterol
10.
PLoS One ; 18(6): e0287146, 2023.
Article in English | MEDLINE | ID: mdl-37310967

ABSTRACT

Macrophage inhibitory cytokine 1 (MIC-1), which is overproduced in various human cancers and associated with cachexia, acts on the hypothalamus to suppress appetite and reduce body weight. We investigated the mechanisms through which MIC-1 affects bile acid metabolism and gallstone formation, which are poorly understood. Over 6 weeks, male C57BL/6 mice fed either standard chow or a lithogenic diet were intraperitoneally injected with phosphate-buffered saline (PBS) or MIC-1 (200 µg/kg/week). Among lithogenic diet-fed mice, MIC-1 treatment resulted in increased gallstone formation compared with PBS treatment. Compared with PBS treatment, MIC-1 treatment decreased hepatic cholesterol and bile acid levels and reduced expression of HMG-CoA reductase (HMGCR), the master cholesterol metabolism regulator sterol regulatory element-binding protein 2, cholesterol 7α-hydroxylase (CYP7A1), mitochondrial sterol 27-hydroxylase, and oxysterol 7α-hydroxylase. Compared with PBS treatment, MIC-1 treatment had no effect on small heterodimer partner, farnesoid X receptor, or pregnane X receptor expression, and extracellular signal-related kinase and c-Jun N-terminal kinase phosphorylation decreased, suggesting that these factors do not contribute to the MIC-1-induced reduction in CYP7A1 expression. Compared with PBS treatment, MIC-1 treatment increased AMP-activated protein kinase (AMPK) phosphorylation. Treatment with the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) reduced CYP7A1 and HMGCR expression, whereas the AMPK inhibitor Compound C reversed MIC-1-induced reductions in CYP7A1 and HMGCR expression. Furthermore, in MIC-1-treated mice, total biliary cholesterol levels increased together with increased ATP-binding cassette subfamily G (ABCG)5 and ABCG8 expression. Compared with PBS treatment, MIC-1 treatment did not affect expression of liver X receptors α and ß, liver receptor homolog 1, hepatocyte nuclear factor 4α, or NR1I3 (also known as constitutive androstane receptor), which are upstream of ABCG5/8; however, MIC-1 treatment increased ABCG5/8 expression and promoter activities. Our study indicates that MIC-1 influences gallstone formation by increasing AMPK phosphorylation, reducing CYP7A1 and HMGCR expression, and increasing ABCG5 and ABCG8 expression.


Subject(s)
Gallstones , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Growth Differentiation Factor 15 , AMP-Activated Protein Kinases , Diet , Macrophages , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Lipoproteins
11.
Genes (Basel) ; 14(3)2023 03 20.
Article in English | MEDLINE | ID: mdl-36981027

ABSTRACT

ABCG5 and ABCG8 are two key adenosine triphosphate-binding cassette (ABC) proteins that regulate whole-body sterol trafficking. This study aimed to elucidate the association between ABCG5/G8 gene region variants and lipid profile, cardiometabolic traits, and gallstone disease history in Taiwan. A total of 1494 Taiwan Biobank participants with whole-genome sequencing data and 117,679 participants with Axiom Genome-Wide CHB Array data were enrolled for analysis. Using genotype-phenotype and stepwise linear regression analyses, we found independent associations of four Asian-specific ABCG5 variants, rs119480069, rs199984328, rs560839317, and rs748096191, with total, low-density lipoprotein (LDL), and non-high-density lipoprotein (HDL) cholesterol levels (all p ≤ 0.0002). Four other variants, which were in nearly complete linkage disequilibrium, exhibited genome-wide significant associations with gallstone disease history, and the ABCG8 rs11887534 variant showed a trend of superiority for gallstone disease history in a nested logistic regression model (p = 0.074). Through regional association analysis of various other cardiometabolic traits, two variants of the PLEKHH2, approximately 50 kb from the ABCG5/G8 region, exhibited significant associations with blood pressure status (p < 10-6). In conclusion, differential effects of ABCG5/G8 region variants were noted for lipid profile, blood pressure status, and gallstone disease history in Taiwan. These results indicate the crucial role of individualized assessment of ABCG5/G8 variants for different cardiometabolic phenotypes.


Subject(s)
Cardiovascular Diseases , Gallstones , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Blood Pressure/genetics , Taiwan , Lipoproteins/genetics , Gallstones/genetics , Cholesterol
12.
Nutrients ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839356

ABSTRACT

ATP-binding cassette protein G5 (ABCG5)/ABCG8 heterodimer exports cholesterol from cells, while Niemann-Pick C1-like 1 (NPC1L1) imports cholesterol and vitamin K. We examined whether ABCG5/ABCG8 transports vitamin K similar to NPC1L1. Since high concentrations of vitamin K3 show cytotoxicity, the cytoprotective effects of ABCG5/ABCG8 were examined. BHK cells expressing ABCG5/ABCG8 were more resistant to vitamin K3 cytotoxicity than control cells, suggesting that ABCG5/ABCG8 transports vitamin K3 out of cells. The addition of vitamin K1 reversed the effects of ABCG5/ABCG8, suggesting that vitamin K1 competitively inhibits the transport of vitamin K3. To examine the transport of vitamin K1 by ABCG5/ABCG8, vitamin K1 levels in the medium and cells were measured. Vitamin K1 levels in cells expressing ABCG5/ABCG8 were lower than those in control cells, while vitamin K1 efflux increased in cells expressing ABCG5/ABCG8. Furthermore, the biliary vitamin K1 concentration in Abcg5/Abcg8-deficient mice was lower than that in wild-type mice, although serum vitamin K1 levels were not affected by the presence of Abcg5/Abcg8. These findings suggest that ABCG5 and ABCG8 are involved in the transport of sterols and vitamin K. ABCG5/ABCG8 and NPC1L1 might play important roles in the regulation of vitamin K absorption and excretion.


Subject(s)
ATP-Binding Cassette Transporters , Lipoproteins , Mice , Animals , Lipoproteins/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 5 , ATP Binding Cassette Transporter, Subfamily G, Member 8 , Vitamin K , Cholesterol/metabolism
13.
Adv Clin Chem ; 110: 145-169, 2022.
Article in English | MEDLINE | ID: mdl-36210074

ABSTRACT

Sitosterolemia is an inherited metabolic disorder characterized by increased levels of plant sterols, such as sitosterol. This disease is caused by loss-of-function genetic mutations in the ATP-binding cassette (ABC) subfamily G member 5 or member 8 (ABCG5 or ABCG8, respectively), both of which play important roles in the selective excretion of plant sterols from the liver and intestine, leading to a failure to excrete plant sterols. Sitosterolemia, which is currently considered a rare genetic disorder, has been described as a phenocopy of homozygous familial hypercholesterolemia (FH). Typical phenotypes of sitosterolemia, including elevated low-density lipoprotein (LDL) cholesterol, tendon xanthomas, and premature coronary artery disease, overlap those of homozygous FH; however, there are substantial differences between these two diseases in terms of treatments and prognoses. Moreover, it is of note that sitosterolemia appears to be quite underdiagnosed, although accurate diagnosis and appropriate interventions will likely to lead to better prognoses compared with homozygous FH. Unlike cases of homozygous FH, dietary counseling is quite effective in reducing the LDL cholesterol as well as sitosterol of patients with sitosterolemia. In this chapter, we summarize the current understandings of this disease and provide useful tips for the diagnosis as well as better treatment of patients with sitosterolemia.


Subject(s)
Phytosterols , Sitosterols , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Adenosine Triphosphate , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Humans , Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Lipoproteins/genetics , Phytosterols/adverse effects , Phytosterols/genetics , Sitosterols/chemistry
14.
Nature ; 608(7922): 413-420, 2022 08.
Article in English | MEDLINE | ID: mdl-35922515

ABSTRACT

High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.


Subject(s)
Asialoglycoprotein Receptor , Cholesterol , Lipid Metabolism , AMP-Activated Protein Kinases/metabolism , ATP Binding Cassette Transporter 1 , ATP Binding Cassette Transporter, Subfamily G, Member 5 , ATP Binding Cassette Transporter, Subfamily G, Member 8 , Asialoglycoprotein Receptor/antagonists & inhibitors , Asialoglycoprotein Receptor/deficiency , Asialoglycoprotein Receptor/genetics , Asialoglycoprotein Receptor/metabolism , Asialoglycoproteins/metabolism , Atorvastatin/pharmacology , BRCA1 Protein , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cholesterol/metabolism , Drug Synergism , Endocytosis , Ezetimibe/pharmacology , Humans , Lipids/analysis , Lipids/blood , Liver/metabolism , Liver X Receptors/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1 , Ubiquitin-Protein Ligases/metabolism
15.
J Mol Biol ; 434(20): 167795, 2022 10 30.
Article in English | MEDLINE | ID: mdl-35988751

ABSTRACT

The ATP-binding cassette (ABC) sterol transporters are responsible for maintaining cholesterol homeostasis in mammals by participating in reverse cholesterol transport (RCT) or transintestinal cholesterol efflux (TICE). The heterodimeric ABCG5/G8 carries out selective sterol excretion, preventing the abnormal accumulation of plant sterols in human bodies, while homodimeric ABCG1 contributes to the biogenesis and metabolism of high-density lipoproteins. A sterol-binding site on ABCG5/G8 was proposed at the interface of the transmembrane domain and the core of lipid bilayers. In this study, we have determined the crystal structure of ABCG5/G8 in a cholesterol-bound state. The structure combined with amino acid sequence analysis shows that in the proximity of the sterol-binding site, a highly conserved phenylalanine array supports functional implications for ABCG cholesterol/sterol transporters. Lastly, in silico docking analysis of cholesterol and stigmasterol (a plant sterol) suggests sterol-binding selectivity on ABCG5/G8, but not ABCG1. Together, our results provide a structural basis for cholesterol binding on ABCG5/G8 and the sterol selectivity by ABCG transporters.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , ATP Binding Cassette Transporter, Subfamily G, Member 8 , Cholesterol , ATP Binding Cassette Transporter, Subfamily G, Member 5/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Cholesterol/chemistry , Cholesterol/metabolism , Cryoelectron Microscopy , Humans , Lipid Bilayers/chemistry , Lipoproteins, HDL/metabolism , Phenylalanine/metabolism , Phytosterols/metabolism , Protein Binding , Protein Conformation , Stigmasterol/metabolism
16.
Circ Genom Precis Med ; 15(3): e003390, 2022 06.
Article in English | MEDLINE | ID: mdl-35549507

ABSTRACT

BACKGROUND: Sitosterolemia is a rare autosomal recessive disorder caused by homozygous or compound heterozygous variants in ABCG5/ABCG8. The disease is characterized by increased plasma plant sterols. Small case series suggest that patients with sitosterolemia have wide phenotypic heterogeneity with great variability on either plasma cholesterol levels or development of atherosclerotic cardiovascular disease. The present study aims to characterize the prevalence and clinical features of sitosterolemia participating in a familial hypercholesterolemia genetic cascade screening program. METHODS: From 443 familial hypercholesterolemia index cases, 260 were negative for familial hypercholesterolemia genes and were sequenced for the ABCG5/8 genes. Clinical and laboratory characteristics of affected individuals were determined. RESULTS: Eight (3.1%) index cases were found to be homozygous or compound heterozygous variant for ABCG5/ABCG8 genes, confirming the genetic diagnosis of sitosterolemia. Screening their relatives led to the identification of 6 additional confirmed sitosterolemia cases (3 homozygous and 3 compound heterozygous variant) and 18 carriers (heterozygous). The mean age of identified sitosterolemia cases (n=14) was 37.2±19.8 years, 50% were females, and 78.6% (all adults) presented either clinical or subclinical atherosclerotic cardiovascular disease. As expected, affected individuals presented elevated plasma plant sterol levels (mean ß-Sitosterol and campesterol, respectively, 160.3±107.1 and 32.0±19.6 µg/mL) and the highest plasma LDL (low-density lipoprotein)-cholesterol was 269.0±120.0 mg/dL (range: 122-521 mg/dL). LDL-cholesterol mean reduction with therapy among cases was 65%. Eighty-three percent (83%) of identified sitosterolemia patients presented hematologic abnormalities. CONCLUSIONS: Testing genes associated with sitosterolemia in the molecular routine workflow of a familial hypercholesterolemia cascade screening program allowed the precise diagnosis of sitosterolemia in a substantial number of patients with varying LDL-C levels and high incidence of early atherosclerotic cardiovascular disease and hematologic abnormalities.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , ATP Binding Cassette Transporter, Subfamily G, Member 8 , Cardiovascular Diseases , Hypercholesterolemia , Hyperlipoproteinemia Type II , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Adolescent , Adult , Cardiovascular Diseases/genetics , Cholesterol , Cholesterol, LDL , Female , Humans , Hypercholesterolemia/genetics , Hyperlipoproteinemia Type II/genetics , Intestinal Diseases/genetics , Lipid Metabolism, Inborn Errors/genetics , Lipoproteins/genetics , Male , Middle Aged , Phytosterols/adverse effects , Young Adult
17.
Protein Sci ; 31(5): e4297, 2022 05.
Article in English | MEDLINE | ID: mdl-35481657

ABSTRACT

ATP-binding cassette (ABC) systems, characterized by ABC-type nucleotide-binding domains (NBDs), play crucial roles in various aspects of human physiology. Human ABCG5 and ABCG8 form a heterodimeric transporter that functions in the efflux of sterols. We used sequence similarity search, multiple sequence alignment, phylogenetic analysis, and structure comparison to study the evolutionary origin and sequence signatures of ABCG5 and ABCG8. Orthologs of ABCG5 and ABCG8, supported by phylogenetic analysis and signature residues, were identified in bilaterian animals, Filasterea, Fungi, and Amoebozoa. Such a phylogenetic distribution suggests that ABCG5 and ABCG8 could have originated in the last common ancestor of Amorphea (the unikonts), the eukaryotic group including Amoebozoa and Opisthokonta. ABCG5 and ABCG8 were missing in genomes of various lineages such as snakes, jawless vertebrates, non-vertebrate chordates, echinoderms, and basal metazoan groups. Amino-acid changes in key positions in ABCG8 Walker A motif and/or ABCG5 C-loop were observed in most tetrapod organisms, likely resulted in the loss of ATPase activity at one nucleotide-binding site. ABCG5 and ABCG8 in Ecdysozoa (such as insects) exhibit elevated evolutionary rates and accumulate various changes in their NBD functional motifs. Alignment inspection revealed several residue positions that show different amino-acid usages in ABCG5/ABCG8 compared to other ABCG subfamily proteins. These residues were mapped to the structural cores of transmembrane domains (TMDs), the NBD-TMD interface, and the interface between TMDs. They serve as sequence signatures to differentiate ABCG5/ABCG8 from other ABCG subfamily proteins, and some of them may contribute to substrate specificity of the ABCG5/ABCG8 transporter.


Subject(s)
ATP-Binding Cassette Transporters , Lipoproteins , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Lipoproteins/chemistry , Nucleotides/metabolism , Phylogeny
18.
Clin Chim Acta ; 530: 39-44, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35248527

ABSTRACT

BACKGROUND AND AIM: Clinical manifestations and genetic backgrounds of Japanese patients with sitosterolemia have been unclear. MATERIALS AND METHODS: We searched PubMed for studies using the keywords "sitosterolemia" or "phytosterolemia" and "Japan". Moreover, we added information from the members of the Committee on Primary Dyslipidemia under the Research Program on Rare and Intractable Disease of the Ministry of Health, Labour and Welfare (MHLW) of Japan. RESULTS: We identified 36 patients with sitosterolemia caused by biallelic pathogenic mutations in the ATP-binding cassette subfamily G member 5 (ABCG5) or ATP-binding cassette subfamily G member 8 (ABCG8) from 31 families in Japan. The diagnosed age ranged from 0 to 64 years (median 13 years). The median sitosterol and LDL cholesterol levels were 100 µg/ml (IQR: 50-183), and 193 mg/dl (IQR: 108-295), respectively. All the patients exhibited cutaneous and/or tendon xanthomas, up to 9 (25%) patients exhibited premature coronary artery disease, 5 (16%) patients exhibited arthritis, and 8 (22%) patients exhibited blood abnormalities. Ezetimibe was administered to all the patients, including infantile cases, while statins, colestimide, evolocumab, probucol, and LDL apheresis were also used. CONCLUSION: We are providing a demographic overview of the clinical and genetic backgrounds of Japanese patients with sitosterolemia.


Subject(s)
Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Adenosine Triphosphate , Adolescent , Adult , Child , Child, Preschool , Humans , Hypercholesterolemia , Infant , Infant, Newborn , Intestinal Diseases/diagnosis , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Japan , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Middle Aged , Phytosterols/adverse effects , Phytosterols/genetics , Young Adult
19.
Liver Int ; 42(7): 1585-1592, 2022 07.
Article in English | MEDLINE | ID: mdl-35129276

ABSTRACT

INTRODUCTION: Gallstones are increasingly common in children. Genetic analyses of adult cohorts demonstrated that the sterol transporter ABCG8 p.D19H and Gilbert UGT1A1*28 variants enhance the odds of developing gallstones. The genetic background of common lithiasis in children remains unknown. METHODS: Overall, 214 children with gallstone disease (1 month-17 years, 107 boys) were inclueded. The control cohorts comprised 214 children (age 6-17 years, 115 boys) and 172 adults (age 40-92 years, 70 men) without gallstones. The ABCG8 p.D19H and UGT1A1*28 polymorphisms as well as ABCB4 (c.504C>T rs1202283, c.711A>T rs2109505) and NPC1L1 variants (p.V1296V rs217434, c.-18C>A rs41279633) were genotyped using TaqMan assays. Serum concentrations of plant sterols and cholesterol precursors were measured by gas chromatography/mass spectrometry. RESULTS: The ABCG8 risk allele was associated with an increased risk of stones (OR = 1.82, p = .03). Children carrying the p.19H allele presented with lower serum concentrations of surrogate markers of intestinal cholesterol absorption and decreased ratios of phytosterols to the cholesterol precursor desmosterol. Carriers of the common NPC1L1 rs217434 allele had an increased gallstone risk compared with stone-free adults (OR 1.90, p < .01). This variant also affected the ratio of phytosterols to cholesterol precursors (p = .03). Other tested variants were not associated with gallstone risk. CONCLUSIONS: The p.D19H ABCG8 and, to a lesser extent, NPC1L1 rs217434 variants increase the risk of early-onset gallstone formation. These results point to the presence of a common lithogenic pathway in children and adults.


Subject(s)
Gallstones , Phytosterols , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cholesterol , Gallstones/genetics , Gallstones/metabolism , Genetic Predisposition to Disease , Humans , Male , Membrane Transport Proteins/genetics , Middle Aged , Phytosterols/adverse effects , Phytosterols/genetics , Sterols/metabolism
20.
Lipids Health Dis ; 21(1): 11, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35042526

ABSTRACT

BACKGROUND: Sitosterolemia is a lipid disorder characterized by the accumulation of phytosterols in plasma and organs, caused by mutations in the ABCG5 and/or ABCG8 genes. The disease is frequently misdiagnosed and mistreated as familial hypercholesterolemia (FH). To gain a better understanding of the disease, the current status of diagnosis and treatment of Chinese patients with sitosterolemia was reviewed and summarized. METHOD: Literature search was performed. The clinical features and molecular characteristics of Chinese patients with sitosterolemia were analysed. Four children with sitosterolemia and the treatment experience were described. RESULTS: Fifty-five patients with sitosterolemia have been reported in China. These patients were aged from 3 months to 67 years at diagnosis, and the median was 8 years of age. Several complications, such as xanthomas in 47 patients (85%), thrombocytopenia in 17 patients (31%), anemia in 14 patients (25%), and cardiovascular damage in 12 patients (22%), were observed. Thirty-nine patients (71%) exhibited mutations in the ABCG5 gene, 15 patients (27%) showed mutations in ABCG8, and variations in both genes occurred in one patient (2%). A patient with two clinically rare diseases, namely, sitosterolemia and glycogen storage disease type VI (GSD VI)), is reported here for the first time. The four reported patients were treated with low cholesterol and phytosterol-limited diet alone or combined with cholestyramine. Even though decreases were observed for total plasma cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C), and these levels were as low as normal in some patients, the levels of plant sterols remained above the normal range. However, TC, LDL-C and plant sterol levels remained at high levels in patients treated with a control diet control only. CONCLUSIONS: The analysis reveals that different from Caucasians carrying mainly variations in ABCG8, most Chinese patients have mutations in the ABCG5 gene, and Arg446Ter, Gln251Ter, anArg389His might be hot-spot mutations in Chinese patients. The current survey provides clinical data to enable the development of a standardized protocol for the diagnosis and treatment of sitosterolemia in China.


Subject(s)
Hypercholesterolemia/diagnosis , Intestinal Diseases/diagnosis , Lipid Metabolism, Inborn Errors/diagnosis , Phytosterols/adverse effects , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , China , Female , Humans , Hypercholesterolemia/complications , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Infant , Intestinal Diseases/complications , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Lipoproteins/genetics , Male , Middle Aged , Mutation/genetics , Phytosterols/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...