Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33309976

ABSTRACT

Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G/metabolism , Lipid Metabolism , Sterols/metabolism , ATP Binding Cassette Transporter, Subfamily G/chemistry , ATP Binding Cassette Transporter, Subfamily G/genetics , Animals , Biological Transport, Active , Cholesterol/metabolism , Humans , Protein Binding , Protein Processing, Post-Translational
2.
Sci Rep ; 7(1): 13393, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042617

ABSTRACT

ABCG4 is an ATP-binding cassette transmembrane protein which has been shown, in vitro, to participate in the cellular efflux of desmosterol and amyloid-ß peptide (Aß). ABCG4 is highly expressed in the brain, but its localization and function at the blood-brain barrier (BBB) level remain unknown. We demonstrate by qRT-PCR and confocal imaging that mouse Abcg4 is expressed in the brain capillary endothelial cells. Modelling studies of the Abcg4 dimer suggested that desmosterol showed thermodynamically favorable binding at the putative sterol-binding site, and this was greater than for cholesterol. Additionally, unbiased docking also showed Aß binding at this site. Using a novel Abcg4-deficient mouse model, we show that Abcg4 was able to export Aß and desmosterol at the BBB level and these processes could be inhibited by probucol and L-thyroxine. Our assay also showed that desmosterol antagonized the export of Aß, presumably as both bind at the sterol-binding site on Abcg4. We show for the first time that Abcg4 may function in vivo to export Aß at the BBB, in a process that can be antagonized by its putative natural ligand, desmosterol (and possibly cholesterol).


Subject(s)
ATP Binding Cassette Transporter, Subfamily G/genetics , ATP Binding Cassette Transporter, Subfamily G/metabolism , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Gene Expression , ATP Binding Cassette Transporter, Subfamily G/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amyloid beta-Peptides/chemistry , Animals , Biomarkers , Capillary Permeability , Cell Membrane Permeability , Desmosterol/metabolism , Fluorescent Antibody Technique , Gene Targeting , Genetic Loci , Mice , Mice, Knockout , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...