Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 66: 103287, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33752129

ABSTRACT

BACKGROUND: Therapeutic agents with novel mechanisms of action are needed to combat the growing epidemic of type 2 diabetes (T2D) and related metabolic syndromes. Liver X receptor (LXR) agonists possess preclinical efficacy yet produce side effects due to excessive lipogenesis. Anticipating that many beneficial and detrimental effects of LXR agonists are mediated by ABCA1 and SREPB1c expression, respectively, we hypothesized that a phenotypic optimization strategy prioritizing selective ABCA1 induction would identify an efficacious lead compound with an improved side effect profile over existing LXRß agonists. METHODS: We synthesized and characterized a novel small molecule for selective induction of ABCA1 vs. SREBP1c in vitro. This compound was evaluated in both wild-type mice and a high-fat diet (HFD) mouse model of obesity-driven diabetes through functional, biochemical, and metabolomic analysis. FINDINGS: Six weeks of oral administration of our lead compound attenuated weight gain, glucose intolerance, insulin signaling deficits, and adiposity. Global metabolomics revealed suppression of gluconeogenesis, free fatty acids, and pro-inflammatory metabolites. Target identification linked these beneficial effects to selective LXRß agonism and PPAR/RXR antagonism. INTERPRETATION: Our observations in the HFD model, combined with the absence of lipogenesis and neutropenia in WT mice, support this novel approach to therapeutic development for T2D and related conditions.


Subject(s)
ATP Binding Cassette Transporter 1/agonists , Metabolome , Metabolomics , Obesity/etiology , Obesity/metabolism , Adiposity/drug effects , Animals , Biomarkers , Cytokines/metabolism , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Drug Development , Glucose Intolerance , Inflammation Mediators/metabolism , Insulin Resistance , Lipids/blood , Lipogenesis , Liver X Receptors/agonists , Male , Metabolomics/methods , Mice , Molecular Targeted Therapy , Obesity/drug therapy , Peroxisome Proliferator-Activated Receptors/antagonists & inhibitors , RNA, Small Interfering/genetics , Retinoid X Receptors/antagonists & inhibitors
2.
Can J Cardiol ; 35(6): 770-781, 2019 06.
Article in English | MEDLINE | ID: mdl-31151713

ABSTRACT

BACKGROUND: Small peptides based on the C-terminal domain of apo E have recently been proposed as ATP-binding cassette transporter A1 (ABCA1) agonist with therapeutic potential. Previous work has shown that a novel synthetic peptide, CS-6253, acts synergistically with apolipoprotein A-I or alone to generate high-density lipoprotein (HDL) particles; we have also shown that cells can release microparticles (50-350 nm in apparent diameter) in an ABCA1- and apolipoprotein A-I-dependent manner. The purpose of this study was to explore the ability of a novel synthetic peptide CS-6253 to induce microparticle release from various cell lines in the process of HDL biogenesis. METHODS: The effects of CS-6253 on microparticle formation through the ABCA1 transporter were examined in vitro using cell-based systems and pharmacologic manipulations. RESULTS: In cell-based systems combined with fast performance liquid chromatography and nano-sight-tracking analysis, we show that ABCA1 and CS-6253 mediate and increase the production of microparticles containing cholesterol. CS-6253 in baby hamster kidney cells not expressing ABCA1 (baby hamster kidney mock cells) did not alter cholesterol removal across the plasma membrane in the absence of ABCA1 expression even at high concentrations. We report that CS-6253 is not cytotoxic. CONCLUSIONS: The present study shows that CS-6253 generates cholesterol containing microparticles with size heterogeneity (100-350 nm) in an ABCA1-dependent manner. We show that microparticles contribute to cell cholesterol efflux from monocyte-macrophage cells. At high doses, CS-6253 is not able to extract cholesterol from cells not expressing ABCA1, indicating that CS-6253 requires ABCA1 cooperation for cholesterol mobilization. We conclude that CS-6253 is an ABCA1 agonist peptide that promotes cellular cholesterol efflux through HDL biogenesis and microparticle formation.


Subject(s)
ATP Binding Cassette Transporter 1/agonists , Cell-Derived Microparticles/metabolism , Peptides/pharmacology , Animals , Cell Survival , Cells, Cultured , Cholesterol/metabolism , Cricetinae , Humans , Macrophages/metabolism , Models, Animal
3.
Free Radic Biol Med ; 129: 463-472, 2018 12.
Article in English | MEDLINE | ID: mdl-30321700

ABSTRACT

A bulk of cholesteryl esters accumulation in macrophage foam cells drives the occurrence and development of atherosclerosis. Evidence now shows that autophagy plays key roles in the degradation of intracellular lipid droplets via autolysosome, and also in the release of intracellular lipids via cholesterol efflux. In this study, we identified that a mitochondria-targeted antioxidant, Mito-Tempol, has protective effects against cholesteryl esters accumulation by activating autophagy. Mito-Tempol was shown to ameliorate the lipid burden for atherosclerosis, both in vitro and in vivo. In the established in vitro foam cell formation system using oxidized low-density lipoprotein (ox-LDL)-loaded THP-1 macrophages, Mito-Tempol prevented intracellular oxidative stress and attenuated lipid accumulation. Mito-Tempol rescued ox-LDL-impaired autophagic flux, thereby facilitating autophagy-mediated lipid degradation in THP-1 macrophages. Meanwhile, Mito-Tempol also increased the efflux of cholesterol via autophagy-dependent ABCA1 and ABCG1 up-regulation. The classical autophagy pathway of mTOR may be one of the effector for the autophagy restoration of Mito-Tempol. Our findings give the first insight that cardiovascular system disease may benefits more from the treatment of Mito-Tempol for its impact of reversing atherosclerosis via autophagy.


Subject(s)
Antioxidants/pharmacology , Atherosclerosis/drug therapy , Autophagy/genetics , Cyclic N-Oxides/pharmacology , Hypertension/drug therapy , Mitochondria/drug effects , ATP Binding Cassette Transporter 1/agonists , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/agonists , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Autophagy/drug effects , Cell Differentiation/drug effects , Cholesterol Esters/metabolism , Foam Cells/drug effects , Foam Cells/metabolism , Foam Cells/pathology , Gene Expression Regulation , Humans , Hypertension/genetics , Hypertension/metabolism , Hypertension/pathology , Lipoproteins, LDL/pharmacology , Male , Mitochondria/metabolism , Oxidative Stress , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , Spin Labels , THP-1 Cells , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tetradecanoylphorbol Acetate/pharmacology
4.
J Lipid Res ; 59(5): 830-842, 2018 05.
Article in English | MEDLINE | ID: mdl-29563219

ABSTRACT

apoE is the primary lipid carrier within the CNS and the strongest genetic risk factor for late onset Alzheimer's disease (AD). apoE is primarily lipidated via ABCA1, and both are under transcriptional regulation by the nuclear liver X receptor (LXR). Considerable evidence from genetic (using ABCA1 overexpression) and pharmacological (using synthetic LXR agonists) studies in AD mouse models suggests that increased levels of lipidated apoE can improve cognitive performance and, in some strains, can reduce amyloid burden. However, direct synthetic LXR ligands have hepatotoxic side effects that limit their clinical use. Here, we describe a set of small molecules, previously annotated as antagonists of the purinergic receptor, P2X7, which enhance ABCA1 expression and activity as well as apoE secretion, and are not direct LXR ligands. Furthermore, P2X7 is not required for these molecules to induce ABCA1 upregulation and apoE secretion, demonstrating that the ABCA1 and apoE effects are mechanistically independent of P2X7 inhibition. Hence, we have identified novel dual activity compounds that upregulate ABCA1 across multiple CNS cell types, including human astrocytes, pericytes, and microglia, through an indirect LXR mechanism and that also independently inhibit P2X7 receptor activity.


Subject(s)
ATP Binding Cassette Transporter 1/agonists , Apolipoproteins E/agonists , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/metabolism , Small Molecule Libraries/pharmacology , ATP Binding Cassette Transporter 1/metabolism , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/pharmacology , Animals , Apolipoproteins E/metabolism , Aziridines/chemistry , Aziridines/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Cells, Cultured , Humans , Mice , Mice, Knockout , Molecular Structure , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Purinergic P2X Receptor Antagonists/chemistry , Receptors, Purinergic P2X7/deficiency , Small Molecule Libraries/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Up-Regulation/drug effects
5.
Atherosclerosis ; 258: 56-64, 2017 03.
Article in English | MEDLINE | ID: mdl-28196336

ABSTRACT

BACKGROUND AND AIMS: Apple polyphenol contains abundant procyanidins, which have been associated with an anti-atherosclerosis and cholesterol-lowering effect. The aim of this study was to investigate whether apple procyanidins (APCs) feature therapeutic efficacy in terms of regressing atherosclerosis and whether this efficacy is due to mechanisms other than a cholesterol-lowering effect. METHODS: After eight weeks on an atherogenic diet, rabbits were given a normal diet for another eight weeks to normalize the increased serum lipids level. The rabbits in the baseline group were sacrificed at this stage. The control group was subsequently fed a normal diet for eight weeks, while the APCs group was administrated 50 mg/kg/day of APCs in addition to the normal diet. Serum lipids and aortic intimal-medial thickness (IMT) were serially examined, and the resected aorta was examined histologically and through molecular biology. RESULTS: Aortic IMT on ultrasonography and the lipid accumulation area examined using Sudan IV staining were significantly reduced in the APCs group as compared to the control group. Serum lipid profiles were not different between the groups. Immunohistochemistry showed significantly decreased staining of an oxidative stress marker and significantly increased staining of ATP-binding cassette subfamily A member 1 (ABCA1) in the APCs group. Western blotting and RT-PCR also showed increased expression of ABCA1 mRNA and its protein in the APCs group. CONCLUSIONS: This study revealed that APCs administration causes a regression of atherosclerosis. APCs might hold promise as an anti-atherosclerotic agent.


Subject(s)
ATP Binding Cassette Transporter 1/agonists , Aorta/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Biflavonoids/pharmacology , Cardiovascular Agents/pharmacology , Catechin/pharmacology , Fruit/chemistry , Malus/chemistry , Proanthocyanidins/pharmacology , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biflavonoids/isolation & purification , Cardiovascular Agents/isolation & purification , Catechin/isolation & purification , Cholesterol/blood , Disease Models, Animal , Lipoproteins, LDL/blood , Male , Oxidative Stress/drug effects , Phytotherapy , Plants, Medicinal , Plaque, Atherosclerotic , Proanthocyanidins/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/blood , Scavenger Receptors, Class E/metabolism , Time Factors , Up-Regulation
6.
PLoS One ; 11(9): e0162384, 2016.
Article in English | MEDLINE | ID: mdl-27598782

ABSTRACT

The apolipoprotein E (APOE) gene is the most highly associated susceptibility locus for late onset Alzheimer's Disease (AD), and augmenting the beneficial physiological functions of apoE is a proposed therapeutic strategy. In a high throughput phenotypic screen for small molecules that enhance apoE secretion from human CCF-STTG1 astrocytoma cells, we show the chrysanthemic ester 82879 robustly increases expressed apoE up to 9.4-fold and secreted apoE up to 6-fold and is associated with increased total cholesterol in conditioned media. Compound 82879 is unique as structural analogues, including pyrethroid esters, show no effect on apoE expression or secretion. 82879 also stimulates liver x receptor (LXR) target genes including ATP binding cassette A1 (ABCA1), LXRα and inducible degrader of low density lipoprotein receptor (IDOL) at both mRNA and protein levels. In particular, the lipid transporter ABCA1 was increased by up to 10.6-fold upon 82879 treatment. The findings from CCF-STTG1 cells were confirmed in primary human astrocytes from three donors, where increased apoE and ABCA1 was observed along with elevated secretion of high-density lipoprotein (HDL)-like apoE particles. Nuclear receptor transactivation assays revealed modest direct LXR agonism by compound 82879, yet 10 µM of 82879 significantly upregulated apoE mRNA in mouse embryonic fibroblasts (MEFs) depleted of both LXRα and LXRß, demonstrating that 82879 can also induce apoE expression independent of LXR transactivation. By contrast, deletion of LXRs in MEFs completely blocked mRNA changes in ABCA1 even at 10 µM of 82879, indicating the ability of 82879 to stimulate ABCA1 expression is entirely dependent on LXR transactivation. Taken together, compound 82879 is a novel chrysanthemic ester capable of modulating apoE secretion as well as apoE-associated lipid metabolic pathways in astrocytes, which is structurally and mechanistically distinct from known LXR agonists.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Apolipoproteins E/genetics , Astrocytes/drug effects , Liver X Receptors/genetics , Pyrethrins/pharmacology , Receptors, LDL/genetics , ATP Binding Cassette Transporter 1/agonists , ATP Binding Cassette Transporter 1/metabolism , Animals , Apolipoproteins E/agonists , Apolipoproteins E/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Cell Line, Tumor , Esters , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Lipid Metabolism/drug effects , Liver X Receptors/agonists , Liver X Receptors/metabolism , Mice , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Primary Cell Culture , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, LDL/agonists , Receptors, LDL/metabolism , Signal Transduction
7.
J Alzheimers Dis ; 54(3): 1219-1233, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27567858

ABSTRACT

The allele ɛ4 of apolipoprotein E (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and is therefore a promising therapeutic target. Human and animal model studies suggest that apoE4 is hypolipidated; accordingly, we have previously shown that the retinoid X receptor (RXR) agonist bexarotene upregulates ABCA1, the main apoE-lipidating protein, resulting in increased lipidation of apoE4, and the subsequent reversal of the pathological effects of apoE4, namely: accumulation of Aß42 and hyperphosphorylated tau, as well as reduction in the levels of synaptic markers and cognitive deficits. Since the RXR system has numerous other targets, it is important to devise the means of activating ABCA1 selectively. We presently utilized CS-6253, a peptide shown to directly activate ABCA1 in vitro, and examined the extent to which it can affect the degree of lipidation of apoE4 in vivo and counteract the associated brain and behavioral pathologies. This revealed that treatment of young apoE4-targeted replacement mice with CS-6253 increases the lipidation of apoE4. This was associated with a reversal of the apoE4-driven Aß42 accumulation and tau hyperphosphorylation in hippocampal neurons, as well as of the synaptic impairments and cognitive deficits. These findings suggest that the pathological effects of apoE4 in vivo are associated with decreased activation of ABCA1 and impaired lipidation of apoE4 and that the downstream brain-related pathology and cognitive deficits can be counteracted by treatment with the ABCA1 agonist CS-6253. These findings have important clinical ramifications and put forward ABCA1 as a promising target for apoE4-related treatment of AD.


Subject(s)
ATP Binding Cassette Transporter 1/agonists , Apolipoprotein E4/antagonists & inhibitors , Brain/pathology , Cognition Disorders/pathology , Peptides/pharmacology , ATP Binding Cassette Transporter 1/metabolism , Animals , Apolipoprotein E4/metabolism , Brain/drug effects , Cognition Disorders/drug therapy , Cognition Disorders/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptides/therapeutic use
8.
Nutrients ; 8(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27447665

ABSTRACT

Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-ß-carotene (9-cis-ßc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-ßc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with ßc from the alga Dunaliella led to ßc accumulation in peritoneal macrophages. 9-cis-ßc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from ßc in RAW264.7 macrophages. Furthermore, 9-cis-ßc, as well as all-trans-ßc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-ßc augmented cholesterol efflux from macrophages ex vivo. 9-cis-ßc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-ßc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of ßc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.


Subject(s)
Atherosclerosis/prevention & control , Cholesterol, HDL/metabolism , Dietary Supplements , Lipid Regulating Agents/therapeutic use , Macrophages, Peritoneal/metabolism , Up-Regulation , beta Carotene/analogs & derivatives , ATP Binding Cassette Transporter 1/agonists , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/agonists , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , Apolipoproteins E/agonists , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Chlorophyta/chemistry , Cholesterol, HDL/blood , Enzyme Induction , Lipid Regulating Agents/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phytoplankton/chemistry , RAW 264.7 Cells , Receptors, LDL/genetics , Receptors, LDL/metabolism , Retinoic Acid 4-Hydroxylase/chemistry , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , beta Carotene/metabolism , beta Carotene/therapeutic use
10.
Lipids ; 50(12): 1195-207, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26494560

ABSTRACT

The schweinfurthins have potent antiproliferative activity in multiple glioblastoma multiforme (GBM) cell lines; however, the mechanism by which growth is impeded is not fully understood. Previously, we demonstrated that the schweinfurthins reduce the level of key isoprenoid intermediates in the cholesterol biosynthetic pathway. Herein, we describe the effects of the schweinfurthins on cholesterol homeostasis. Intracellular cholesterol levels are greatly reduced in cells incubated with 3-deoxyschweinfurthin B (3dSB), an analog of the natural product schweinfurthin B. Decreased cholesterol levels are due to decreased cholesterol synthesis and increased cholesterol efflux; both of these cellular actions can be influenced by liver X-receptor (LXR) activation. The effects of 3dSB on ATP-binding cassette transporter 1 levels and other LXR targets are similar to that of 25-hydroxycholesterol, an LXR agonist. Unlike 25-hydroxycholesterol, 3dSB does not act as a direct agonist for LXR α or ß. These data suggest that cholesterol homeostasis plays a significant role in the growth inhibitory activity of the schweinfurthins and may elucidate a mechanism that can be targeted in human cancers such as GBM.


Subject(s)
ATP Binding Cassette Transporter 1/agonists , Anticholesteremic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cholesterol/metabolism , Glioblastoma/drug therapy , Orphan Nuclear Receptors/agonists , Stilbenes/pharmacology , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Biological Transport/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/metabolism , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Hydroxycholesterols/metabolism , Hydroxylation , Kinetics , Liver X Receptors , Neoplasm Proteins/agonists , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Orphan Nuclear Receptors/chemistry , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
11.
PLoS One ; 10(7): e0131997, 2015.
Article in English | MEDLINE | ID: mdl-26207756

ABSTRACT

Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preß-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preß-1 HDL with increase in the cycling of apo A-I between the preß and α-HDL particles in-vitro. These mechanisms are potentially anti-atherogenic.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Apolipoproteins E/metabolism , Cholesterol/metabolism , High-Density Lipoproteins, Pre-beta/metabolism , Peptides/pharmacology , ATP Binding Cassette Transporter 1/agonists , ATP Binding Cassette Transporter 1/genetics , Animals , Apolipoprotein A-I/metabolism , Apolipoproteins E/chemistry , Biological Transport/drug effects , CD36 Antigens/metabolism , Cell Line , Cell Line, Tumor , Dose-Response Relationship, Drug , Foam Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins , Macrophages/metabolism , Male , Mice, Inbred C57BL , Peptides/metabolism , Phospholipids/metabolism , Rats , Time Factors
12.
FEBS J ; 281(3): 970-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24289152

ABSTRACT

Liver X receptors (LXRs) are ligand-activated members of the nuclear receptor superfamily that regulate the expression of genes involved in lipid metabolism and inflammation, although their role in inflammation and immunity is less well known. It has been reported that oxysterols/LXRs may act as anti-inflammatory molecules, although opposite actions have also been reported. In this study, we investigated the effect of platelet-activating factor (PAF), a proinflammatory molecule, on LXRα signalling in human neutrophils. We found that PAF exerted an inhibitory effect on mRNA expression of TO901317-induced LXRα, ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and sterol response element binding protein 1c. This negative action was mediated by the PAF receptor, and was dependent on the release of reactive oxygen species elicited by PAF, as it was enhanced by pro-oxidant treatment and reversed by antioxidants. Current data also support the idea that PAF induces phosphorylation of the LXRα molecule in an extracellular signal-regulated kinase 1/2-mediated fashion. These results suggest that a possible mechanism by which PAF exerts its proinflammatory effect is through the downregulation of LXRα and its related genes, which supports the notion that LXRα ligands exert a modulatory role in the neutrophil-mediated inflammatory response.


Subject(s)
Down-Regulation , Neutrophils/metabolism , Orphan Nuclear Receptors/metabolism , Platelet Activating Factor/metabolism , Platelet Membrane Glycoproteins/agonists , Receptors, G-Protein-Coupled/agonists , Signal Transduction , ATP Binding Cassette Transporter 1/agonists , ATP Binding Cassette Transporter 1/antagonists & inhibitors , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/agonists , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Anticholesteremic Agents/antagonists & inhibitors , Anticholesteremic Agents/pharmacology , Antioxidants/pharmacology , Cells, Cultured , Down-Regulation/drug effects , Humans , Liver X Receptors , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Neutrophil Activation/drug effects , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/immunology , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/antagonists & inhibitors , Orphan Nuclear Receptors/genetics , Oxidants/pharmacology , Oxidative Stress/drug effects , Phosphorylation/drug effects , Platelet Activating Factor/agonists , Platelet Activating Factor/antagonists & inhibitors , Platelet Membrane Glycoproteins/antagonists & inhibitors , Platelet Membrane Glycoproteins/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Processing, Post-Translational/drug effects , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/agonists , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...