Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.421
Filter
1.
Pestic Biochem Physiol ; 202: 105960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879342

ABSTRACT

Dermanyssus gallinae, a worldwide pest in birds, has developed varying degrees of resistance to insecticides. The ATP-binding cassette (ABC) transporters are essential for the removal of xenobiotics from arthropods. However, our knowledge about ABC transporter proteins in D. gallinae is limited. Forty ABC transporters were identified in the transcriptome and genome of D. gallinae. The resistant population displayed an augmented metabolic rate for beta-cypermethrin compared to the susceptible group, with a remarkable increase in the content of ABC transporters. Verapamil was found able to increase the toxicity of beta-cypermethrin in the resistant population. Results from qRT-PCR analysis showed that eleven ABC transcripts were more highly expressed in the resistant population than the susceptible group at all stages of development, and beta-cypermethrin was observed to be able to induce the expression of DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 in D. gallinae. RNAi-mediated knockdown of the five genes was observed to increase the susceptibility of resistant mites to beta-cypermethrin. These results suggest that ABC transporters, DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 genes, may be related to beta-cypermethrin resistance in D. gallinae. This research will serve as a foundation for further studies on mechanism of insecticide resistance, which could be beneficial for controlling D. gallinae.


Subject(s)
ATP-Binding Cassette Transporters , Mites , Pyrethrins , Animals , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Pyrethrins/pharmacology , Pyrethrins/toxicity , Mites/drug effects , Mites/genetics , Insecticides/pharmacology , Insecticides/toxicity , Poultry , Insecticide Resistance/genetics
2.
Int J Med Microbiol ; 315: 151624, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838390

ABSTRACT

Staphylococcus aureus is a notorious pathogen responsible for various severe diseases. Due to the emergence of drug-resistant strains, the prevention and treatment of S. aureus infections have become increasingly challenging. Vancomycin is considered to be one of the last-resort drugs for treating most methicillin-resistant S. aureus (MRSA), so it is of great significance to further reveal the mechanism of vancomycin resistance. VraFG is one of the few important ABC (ATP-binding cassette) transporters in S. aureus that can form TCS (two-component systems)/ABC transporter modules. ABC transporters can couple the energy released from ATP hydrolysis to translocate solutes across the cell membrane. In this study, we obtained a strain with decreased vancomycin susceptibility after serial passaging and selection. Subsequently, whole-genome sequencing was performed on this laboratory-derived strain MWA2 and a novel single point mutation was discovered in vraF gene, leading to decreased sensitivity to vancomycin and daptomycin. Furthermore, the mutation reduces autolysis of S. aureus and downregulates the expression of lytM, isaA, and atlA. Additionally, we observed that the mutant has a less net negative surface charge than wild-type strain. We also noted an increase in the expression of the dlt operon and mprF gene, which are associated with cell surface charge and serve to hinder the binding of cationic peptides by promoting electrostatic repulsion. Moreover, this mutation has been shown to enhance hemolytic activity, expand subcutaneous abscesses, reflecting an increased virulence. This study confirms the impact of a point mutation of VraF on S. aureus antibiotic resistance and virulence, contributing to a broader understanding of ABC transporter function and providing new targets for treating S. aureus infections.


Subject(s)
ATP-Binding Cassette Transporters , Anti-Bacterial Agents , Bacterial Proteins , Staphylococcal Infections , Staphylococcus aureus , Vancomycin , Virulence/genetics , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Animals , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Vancomycin Resistance/genetics , Whole Genome Sequencing , Daptomycin/pharmacology , Mice , Autolysis , Humans , Point Mutation , Mutation , Female
3.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837708

ABSTRACT

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Subject(s)
ATP-Binding Cassette Transporters , Cathepsin D , Lysosomes , Retinal Pigment Epithelium , Stargardt Disease , Cathepsin D/metabolism , Cathepsin D/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease/metabolism , Stargardt Disease/pathology , Stargardt Disease/genetics , Animals , Humans , Mice , Lysosomes/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Induced Pluripotent Stem Cells/metabolism , Mice, Knockout , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
4.
Pestic Biochem Physiol ; 202: 105932, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879298

ABSTRACT

The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 µmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.


Subject(s)
Antifungal Agents , Antimicrobial Cationic Peptides , Botrytis , Transcriptome , Transcriptome/physiology , Antifungal Agents/metabolism , Antimicrobial Cationic Peptides/toxicity , Botrytis/drug effects , Botrytis/physiology , Real-Time Polymerase Chain Reaction , Hydrogen Peroxide , Gene Expression , ATP-Binding Cassette Transporters/metabolism , Mitogen-Activated Protein Kinase Kinases , Mitochondria , Oxidative Stress
5.
Nat Commun ; 15(1): 4811, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844452

ABSTRACT

Human multidrug resistance protein 5 (hMRP5) effluxes anticancer and antivirus drugs, driving multidrug resistance. To uncover the mechanism of hMRP5, we determine six distinct cryo-EM structures, revealing an autoinhibitory N-terminal peptide that must dissociate to permit subsequent substrate recruitment. Guided by these molecular insights, we design an inhibitory peptide that could block substrate entry into the transport pathway. We also identify a regulatory motif, comprising a positively charged cluster and hydrophobic patches, within the first nucleotide-binding domain that modulates hMRP5 localization by engaging with membranes. By integrating our structural, biochemical, computational, and cell biological findings, we propose a model for hMRP5 conformational cycling and localization. Overall, this work provides mechanistic understanding of hMRP5 function, while informing future selective hMRP5 inhibitor development. More broadly, this study advances our understanding of the structural dynamics and inhibition of ABC transporters.


Subject(s)
Cryoelectron Microscopy , Humans , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Biological Transport , HEK293 Cells , Models, Molecular , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Peptides/metabolism , Peptides/chemistry , Protein Conformation
6.
Stem Cell Res ; 78: 103458, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870564

ABSTRACT

The Stargardt's Disease, Type 1 (STGD1) is associated with the loss of function mutations in ABCA4. This gene codes for a retina-specific, ATP-binding cassette (ABC) family transporter, involved in the transport of the key visual cycle intermediate, all-trans-retinaldehyde (atRAL), across the photoreceptor cell membranes. Here, we report the establishment of a patient-specific, iPSC line (LVPEIi008-A), that carries a homozygous nonsense mutation at (c.6088C > T) position, within exon 44 of ABCA4. The patient-specific skin fibroblasts were reprogrammed using episomal plasmids and the stably expanding iPSC line expressed the key stemness and pluripotency markers, maintained its chromosomal integrity and tested negative for mycoplasma.


Subject(s)
ATP-Binding Cassette Transporters , Codon, Nonsense , Exons , Induced Pluripotent Stem Cells , Stargardt Disease , Induced Pluripotent Stem Cells/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Stargardt Disease/pathology , Humans , Homozygote , Cell Line , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/metabolism
7.
BMC Genomics ; 25(1): 494, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764031

ABSTRACT

BACKGROUND: Mammary gland development is a critical process in mammals, crucial for their reproductive success and offspring nourishment. However, the functional roles of key candidate genes associated with teat number, including ABCD4, VRTN, PROX2, and DLST, in this developmental process remain elusive. To address this gap in knowledge, we conducted an in-depth investigation into the dynamic expression patterns, functional implications, and regulatory networks of these candidate genes during mouse mammary gland development. RESULTS: In this study, the spatial and temporal patterns of key genes were characterized in mammary gland development. Using time-series single-cell data, we uncovered differences in the expression of A bcd4, Vrtn, Prox2, and Dlst in cell population of the mammary gland during embryonic and adult stages, while Vrtn was not detected in any cells. We found that only overexpression and knockdown of Abcd4 could inhibit proliferation and promote apoptosis of HC11 mammary epithelial cells, whereas Prox2 and Dlst had no significant effect on these cells. Using RNA-seq and qPCR, further analysis revealed that Abcd4 can induce widespread changes in the expression levels of genes involved in mammary gland development, such as Igfbp3, Ccl5, Tlr2, and Prlr, which were primarily associated with the MAPK, JAK-STAT, and PI3K-AKT pathways by functional enrichment. CONCLUSIONS: These findings revealed ABCD4 as a candidate gene pivotal for regulating mammary gland development and lactation during pregnancy by influencing PRLR expression.


Subject(s)
ATP-Binding Cassette Transporters , Mammary Glands, Animal , Animals , Female , Mice , Apoptosis/genetics , Cell Proliferation , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Signal Transduction , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism
8.
Arch Oral Biol ; 164: 105988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788293

ABSTRACT

OBJECTIVE: The fact that certain oral carcinoma patients experience radiotherapy failure implies that a more radioresistant and aggressive phenotype of surviving cancer cells potentially occurs during treatment. Our study aimed to establish radioresistant oral cancer cells through a fractionated irradiation protocol that mimics clinically relevant radiotherapy dosing strategies and to investigate all-round alterations in the malignant phenotype. METHODS: Radioresistant oral carcinoma cells were generated by exposing Cal27 and Detroit 562 cells to 60 Gy radiation in 10 dose-escalating fractions and verified by cell immunofluorescence. Specific markers related to the epithelial-mesenchymal transition (EMT) process and the cancer stem cell (CSC) phenotype were assessed by Western blotting. Cell invasion and migration were evaluated using Matrigel-coated transwell and wound healing assays, respectively. Nontargeted metabolomics was used to mechanistically delineate the potential metabolic patterns linked to EMT and CSCs; the CSC phenotype was also examined by sphere formation assays and cell immunofluorescence. RESULTS: Radioresistant oral carcinoma cell lines were successfully established and validated. These cells exhibited enhanced EMT and increase in both cell invasion and migration. These radioresistant cells further demonstrated a high metabolic profile, notably marked by lipid metabolism reprogramming and functional enrichment of ATP-binding cassette (ABC) transporters. Consistently, enhanced CSC phenotype in radioresistant cells was confirmed by elevated expression of stemness markers and increased sphere-forming capacity. CONCLUSION: Radioresistant oral carcinoma cells subjected to fractionated radiation exhibit an augmented malignant phenotype. The metabolic characteristics linked to enhanced EMT and CSC phenotypes provide potential targets for improving radiotherapy in oral carcinoma.


Subject(s)
Cell Movement , Dose Fractionation, Radiation , Epithelial-Mesenchymal Transition , Mouth Neoplasms , Neoplastic Stem Cells , Phenotype , Radiation Tolerance , Humans , Mouth Neoplasms/radiotherapy , Mouth Neoplasms/pathology , Neoplastic Stem Cells/radiation effects , Cell Line, Tumor , Blotting, Western , Neoplasm Invasiveness , ATP-Binding Cassette Transporters/metabolism
9.
NPJ Syst Biol Appl ; 10(1): 63, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821949

ABSTRACT

Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S. cerevisiae CENPK2-1C yeast cultures. We treated the experimental group with 0.5 mM CBD and monitored CENPK2-1C cultures. We observed a latent-stationary phase post-diauxic shift in the experimental group and harvested samples in the inflection point of this growth phase for transcriptomic and metabolomic analysis. We compared the transcriptomes of the CBD-treated yeast and the positive control, identifying eight significantly overexpressed genes with a log fold change of at least 1.5 and a significant adjusted p-value. Three notable genes were PDR5 (an ABC-steroid and cation transporter), CIS1, and YGR035C. These genes are all regulated by pleiotropic drug resistance linked promoters. Knockout and rescue of PDR5 showed that it is a causal factor in the post-diauxic shift phenotype. Metabolomic analysis revealed 48 significant spectra associated with CBD-fed cell pellets, 20 of which were identifiable as non-CBD compounds, including fatty acids, glycerophospholipids, and phosphate-salvage indicators. Our results suggest that mitochondrial regulation and lipidomic remodeling play a role in yeast's response to CBD, which are employed in tandem with pleiotropic drug resistance (PDR). We conclude that bioengineers should account for off-target product C-flux, energy use from ABC-transport, and post-stationary phase cell growth when developing cannabinoid-biosynthetic yeast strains.


Subject(s)
Cannabidiol , Lipidomics , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Cannabidiol/pharmacology , Lipidomics/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Metabolomics/methods , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Transcriptome/genetics , Transcriptome/drug effects , Gene Expression Regulation, Fungal/drug effects , Drug Resistance, Fungal/genetics , Gene Expression Profiling/methods
10.
Commun Biol ; 7(1): 672, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822018

ABSTRACT

ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.


Subject(s)
Cadmium , Cryoelectron Microscopy , Glutathione , Humans , Cadmium/metabolism , Cadmium/chemistry , Glutathione/metabolism , Glutathione/chemistry , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Protein Binding , Models, Molecular , Phytochelatins/metabolism , Phytochelatins/chemistry , Protein Conformation , Binding Sites
11.
Proc Natl Acad Sci U S A ; 121(23): e2320879121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805290

ABSTRACT

Our ability to fight pathogens relies on major histocompatibility complex class I (MHC-I) molecules presenting diverse antigens on the surface of diseased cells. The transporter associated with antigen processing (TAP) transports nearly the entire repertoire of antigenic peptides into the endoplasmic reticulum for MHC-I loading. How TAP transports peptides specific for MHC-I is unclear. In this study, we used cryo-EM to determine a series of structures of human TAP, both in the absence and presence of peptides with various sequences and lengths. The structures revealed that peptides of eight or nine residues in length bind in a similarly extended conformation, despite having little sequence overlap. We also identified two peptide-anchoring pockets on either side of the transmembrane cavity, each engaging one end of a peptide with primarily main chain atoms. Occupation of both pockets results in a global conformational change in TAP, bringing the two halves of the transporter closer together to prime it for isomerization and ATP hydrolysis. Shorter peptides are able to bind to each pocket separately but are not long enough to bridge the cavity to bind to both simultaneously. Mutations that disrupt hydrogen bonds with the N and C termini of peptides almost abolish MHC-I surface expression. Our findings reveal that TAP functions as a molecular caliper that selects peptides according to length rather than sequence, providing antigen diversity for MHC-I presentation.


Subject(s)
ATP-Binding Cassette Transporters , Antigen Presentation , Histocompatibility Antigens Class I , Peptides , Humans , Peptides/metabolism , Peptides/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Cryoelectron Microscopy , Protein Conformation , Protein Binding , Models, Molecular
12.
Genome Biol ; 25(1): 123, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760655

ABSTRACT

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Subject(s)
Chromatin , Retina , Retinal Diseases , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Chromatin/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retina/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Promoter Regions, Genetic , Genetic Loci , Zebrafish/genetics , Regulatory Sequences, Nucleic Acid , Genome, Human
13.
Biochemistry ; 63(10): 1322-1334, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38696389

ABSTRACT

Periplasmic solute-binding proteins (SBPs) are key ligand recognition components of bacterial ATP-binding cassette (ABC) transporters that allow bacteria to import nutrients and metabolic precursors from the environment. Periplasmic SBPs comprise a large and diverse family of proteins, of which only a small number have been empirically characterized. In this work, we identify a set of 610 unique uncharacterized proteins within the SBP_bac_5 family that are found in conserved operons comprising genes encoding (i) ABC transport systems and (ii) putative amidases from the FmdA_AmdA family. From these uncharacterized SBP_bac_5 proteins, we characterize a representative periplasmic SBP from Mesorhizobium sp. A09 (MeAmi_SBP) and show that MeAmi_SBP binds l-amino acid amides but not the corresponding l-amino acids. An X-ray crystal structure of MeAmi_SBP bound to l-serinamide highlights the residues that impart distinct specificity for l-amino acid amides and reveals a structural Ca2+ binding site within one of the lobes of the protein. We show that the residues involved in ligand and Ca2+ binding are conserved among the 610 SBPs from experimentally uncharacterized FmdA_AmdA amidase-associated ABC transporter systems, suggesting these homologous systems are also likely to be involved in the sensing, uptake, and metabolism of l-amino acid amides across many Gram-negative nitrogen-fixing soil bacteria. We propose that MeAmi_SBP is involved in the uptake of such solutes to supplement pathways such as the citric acid cycle and the glutamine synthetase-glutamate synthase pathway. This work expands our currently limited understanding of microbial interactions with l-amino acid amides and bacterial nitrogen utilization.


Subject(s)
Amides , Periplasmic Binding Proteins , Amides/metabolism , Amides/chemistry , Crystallography, X-Ray , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Amino Acids/metabolism , Mesorhizobium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Models, Molecular , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Calcium/metabolism , Protein Binding
14.
PLoS One ; 19(5): e0302677, 2024.
Article in English | MEDLINE | ID: mdl-38696463

ABSTRACT

The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-ß-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds.


Subject(s)
ATP-Binding Cassette Transporters , Anopheles , Antioxidants , HSP70 Heat-Shock Proteins , Ocimum , Plant Extracts , Animals , Anopheles/drug effects , Anopheles/genetics , Anopheles/metabolism , Plant Extracts/pharmacology , Antioxidants/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Larva/drug effects , Larva/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Stress, Physiological/drug effects
15.
Physiol Plant ; 176(3): e14354, 2024.
Article in English | MEDLINE | ID: mdl-38769079

ABSTRACT

Female gametogenesis has been rarely studied due to gametophyte lethality and the unavailability of related genetic resources. In this study, we identified a rice ATP-binding cassette transporter, OsABCB24, whose null function displayed a significantly reduced seed setting rate by as much as 94%-100% compared with that of the wild type (WT). The reciprocal cross of WT and mutant plants demonstrated that the female reproductive organs in mutants were functionally impaired. Confocal microscopy observations revealed that, although megasporogenesis remained unaffected in CRISPR/Cas9 osabcb24 mutants, the formation of female gametophytes was interrupted. Additionally, the structure of the syncytial nucleus was impaired during the initial stages of endosperm formation. Histochemical analysis showed that OsABCB24 was preferentially expressed at the conjunction of receptacle and ovary, spanning from the functional megaspore stage to the two-nucleate embryo sac stage. Further, OsABCB24 was identified as an endoplasmic reticulum membrane-localized protein. Notably, the overexpression of OsABCB24 triggered a 1.5- to 2-fold increase in grain production compared to the WT. Our findings showed that OsABCB24 plays a key role in both female gametophyte development and the early development of seeds.


Subject(s)
ATP-Binding Cassette Transporters , Gene Expression Regulation, Plant , Oryza , Ovule , Plant Proteins , Seeds , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Ovule/growth & development , Ovule/genetics , Ovule/metabolism , Mutation/genetics , Plants, Genetically Modified
16.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743629

ABSTRACT

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Subject(s)
Cytosol , Glutaredoxins , Glutathione , Iron-Sulfur Proteins , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cytosol/metabolism , Iron-Sulfur Proteins/metabolism , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Glutathione/metabolism , Mitochondria/metabolism , Glutaredoxins/metabolism , Glutaredoxins/genetics , ATP-Binding Cassette Transporters/metabolism , Mitochondrial Proteins/metabolism
17.
Invest Ophthalmol Vis Sci ; 65(5): 27, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38758638

ABSTRACT

Purpose: To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities. Methods: NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart. Endogenous retinal fluorophores and hydrophobic whole retinal extracts of Abca4-/- pigmented and albino mice were imaged to probe the fluorescence origin of NIR-AOFLIO. Results: The RPE mosaic was resolved at all locations in five of seven younger subjects (<35 years old). The mean lifetime across near-peripheral regions (8° and 12°) was longer compared to near-foveal regions (0° and 2°). Repeatability across two visits showed moderate to excellent correlation (intraclass correlation: 0.88 [τm], 0.75 [τ1], 0.65 [τ2], 0.98 [a1]). The mean lifetime across drusen-containing eyes was longer than in age-matched healthy eyes. Fluorescence was observed in only the extracts from pigmented Abca4-/- mouse. Conclusions: NIR-AOFLIO was repeatable and allowed visualization of the RPE cellular mosaic. An observed signal in only the pigmented mouse extract infers the fluorescence signal originates predominantly from melanin. Variations observed across the retina with intermediate age-related macular degeneration suggest NIR-AOFLIO may act as a functional measure of a biomarker for in vivo monitoring of early alterations in retinal health.


Subject(s)
Ophthalmoscopy , Optical Imaging , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/metabolism , Ophthalmoscopy/methods , Adult , Middle Aged , Animals , Female , Mice , Male , Young Adult , Optical Imaging/methods , Reproducibility of Results , Infrared Rays , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Fluorescein Angiography/methods
18.
Plant Physiol Biochem ; 211: 108676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714125

ABSTRACT

ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.


Subject(s)
ATP-Binding Cassette Transporters , Glycine max , Plant Proteins , Selenium , Glycine max/metabolism , Glycine max/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Selenium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
19.
Plant Physiol Biochem ; 211: 108710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735154

ABSTRACT

Adenosine triphosphate-binding cassette transporters (ABC transporters) are involved in regulating plant growth, development and tolerance to environmental stresses. In this study, a total of 138 ABC transporter genes were identified in the lentil genome that were classified into eight subfamilies. Four lentil ABC transporters from subfamily B and I were clustered together with the previously characterized ABC transporter proteins related to aluminium (Al) detoxification. Lentil ABC transporter genes were distributed across the chromosomes. Tandem duplication was the main driving force for expansion of the ABC gene family. Collinearity of lentil with soybean indicated that ABC gene family is closely linked to Glycine max. ABC genes in the same subfamily showed similar gene structure and conserved motifs. The ABC promoter regions harboured a large number of plant hormones and multiple stress responsive cis-regulatory elements. The qRT-PCR showed that ABC genes had varied expression in roots of lentil at different time points under Al stress. This is the first report on genome wide identification and expression analyses of genes encoding ABC transporter genes in lentil which has provided in-depth insight for future research on evolution and elucidation of molecular mechanisms for aluminium tolerance.


Subject(s)
ATP-Binding Cassette Transporters , Aluminum , Gene Expression Regulation, Plant , Lens Plant , Plant Proteins , Stress, Physiological , Lens Plant/genetics , Lens Plant/metabolism , Lens Plant/drug effects , Aluminum/toxicity , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Gene Expression Profiling , Phylogeny , Promoter Regions, Genetic/genetics
20.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727275

ABSTRACT

ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.


Subject(s)
ATP-Binding Cassette Transporters , Central Nervous System , Neuroglia , Humans , ATP-Binding Cassette Transporters/metabolism , Neuroglia/metabolism , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...