Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 36(11): e23196, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35979984

ABSTRACT

Doxorubicin (DOX) is a potent chemotherapeutic agent used for cancer treatment, however, DOX-induced cardiotoxicity is a serious clinical problem because it causes acute and chronic heart dysfunction. Many studies have indicated that the α1-adrenergic receptor protects the heart from pathologic stress through activation survival signaling, however, the mechanism remains largely unknown. Previous studies have detected that the phenylephrine-induced complex-1 (PEX1) transcription factor, also known as zinc-finger protein 260 (Zfp260), is an effector of α1-adrenergic signaling in cardiac hypertrophy. Our present study aimed to investigate the role and underlying mechanism of PEX1 in cardiomyocyte survival during DOX-induced cardiotoxicity. Mice were exposed to a single intraperitoneal injection of DOX (15 mg/kg) to generate DOX-induced cardiotoxicity. We found that PEX1 expression was downregulated in DOX-treated murine hearts. PEX1 deficiency resulted in increased apoptosis, and conversely, PEX1 overexpression alleviated apoptosis induced by DOX in primary cardiomyocytes, as well as upregulated antiapoptotic genes such as BCL-2 and BCL-XL. Mechanistically, we identified that PEX1 might exert its antiapoptosis effect by playing a pivotal role in the action of α1-adrenergic signaling activation, which depends on the presence of GATA-4. Based on these findings, we supposed that PEX1 may be a novel transcription factor involved in cardiac cell survival and a promising candidate target for DOX-induced cardiotoxicity.


Subject(s)
Adrenergic Agents , Cardiotoxicity , Mice , Animals , Cardiotoxicity/metabolism , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Doxorubicin/toxicity , Myocytes, Cardiac/metabolism , Apoptosis , Transcription Factors/metabolism , Oxidative Stress , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/pharmacology
2.
Clin Cancer Res ; 28(20): 4479-4493, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35972731

ABSTRACT

PURPOSE: Human papillomavirus (HPV) causes >5% of cancers, but no therapies uniquely target HPV-driven cancers. EXPERIMENTAL DESIGN: We tested the cytotoxic effect of 864 drugs in 16 HPV-positive and 17 HPV-negative human squamous cancer cell lines. We confirmed apoptosis in vitro and in vivo using patient-derived xenografts. Mitotic pathway components were manipulated with drugs, knockdown, and overexpression. RESULTS: Aurora kinase inhibitors were more effective in vitro and in vivo in HPV-positive than in HPV-negative models. We hypothesized that the mechanism of sensitivity involves retinoblastoma (Rb) expression because the viral oncoprotein E7 leads to Rb protein degradation, and basal Rb protein expression correlates with Aurora inhibition-induced apoptosis. Manipulating Rb directly, or by inducing E7 expression, altered cells' sensitivity to Aurora kinase inhibitors. Rb affects expression of the mitotic checkpoint genes MAD2L1 and BUB1B, which we found to be highly expressed in HPV-positive patient tumors. Knockdown of MAD2L1 or BUB1B reduced Aurora kinase inhibition-induced apoptosis, whereas depletion of the MAD2L1 regulator TRIP13 enhanced it. TRIP13 is a potentially druggable AAA-ATPase. Combining Aurora kinase inhibition with TRIP13 depletion led to extensive apoptosis in HPV-positive cancer cells but not in HPV-negative cancer cells. CONCLUSIONS: Our data support a model in which HPV-positive cancer cells maintain a balance of MAD2L1 and TRIP13 to allow mitotic exit and survival in the absence of Rb. Because it does not affect cells with intact Rb function, this novel combination may have a wide therapeutic window, enabling the effective treatment of Rb-deficient cancers.


Subject(s)
Alphapapillomavirus , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/pharmacology , ATPases Associated with Diverse Cellular Activities/therapeutic use , Adenosine Triphosphatases , Apoptosis , Aurora Kinases/metabolism , Aurora Kinases/therapeutic use , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Humans , Oncogene Proteins, Viral/genetics , Papillomaviridae/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Papillomavirus Infections/genetics , Retinoblastoma Protein/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
3.
Biochem Biophys Res Commun ; 498(4): 932-939, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29545175

ABSTRACT

Lung cancer remains the leading cause of cancer-related deaths in the world. The RAF/MEK/ERK pathway controls many fundamental cellular functions and plays key roles in lung carcinogenesis. However, the proteins that regulate this pathway remain largely unknown. Here, we identified a novel C-RAF-binding protein, RUVBL1, which activates the RAF/MEK/ERK pathway by inhibiting phosphorylation of the C-RAF protein at serine 259. RUVBL1 expression was elevated in lung adenocarcinoma tissues. In addition, knocking out RUVBL1 effectively inhibited the proliferation and invasion of A549 cells. In vivo experiments, RUVBL1 deficiency significantly decreased the tumorigensis of lung cancer. In conclusion, we have shown that RUVBL1 could activate the RAF/MEK/ERK pathway by inhibiting phosphorylation of the C-RAF protein at serine 259, to promote lung cancer progression. Therefore, RUVBL1 could represent a novel therapeutic target for lung cancer treatment.


Subject(s)
ATPases Associated with Diverse Cellular Activities/physiology , Carcinogenesis/metabolism , Carrier Proteins/physiology , DNA Helicases/physiology , Lung Neoplasms/etiology , MAP Kinase Signaling System , Proto-Oncogene Proteins c-raf/metabolism , Signal Transduction/drug effects , A549 Cells , ATPases Associated with Diverse Cellular Activities/pharmacology , Carcinogenesis/drug effects , Carrier Proteins/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA Helicases/pharmacology , Humans , Phosphorylation/drug effects , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...