Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
BMJ Open Ophthalmol ; 9(1)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653537

ABSTRACT

OBJECTIVE: Microbial keratitis (MK) is a significant cause of blindness in sub-Saharan Africa. We investigated the feasibility of using a novel corneal impression membrane (CIM) for obtaining and processing samples by culture, PCR and whole-genome sequencing (WGS) in patients presenting with suspected MK in Malawi. METHODS AND ANALYSIS: Samples were collected from patients presenting with suspected MK using a 12 mm diameter polytetrafluoroethylene CIM disc. Samples were processed using culture and PCR for Acanthamoeba, herpes simplex virus type 1 (HSV-1) and the bacterial 16S rRNA gene. Minimum inhibitory concentrations of isolates to eight antimicrobials were measured using susceptibility strips. WGS was used to characterise Staphylococcus aureus isolates. RESULTS: 71 eyes of 71 patients were included. The overall CIM isolation rate was 81.7% (58 positive samples from 71 participants). 69 (81.2%) of isolates were Gram-positive cocci. Coagulase-negative Staphylococcus 31.8% and Streptococcus species 14.1% were the most isolated bacteria. Seven (9.9%) participants were positive for HSV-1. Fungi and Acanthamoeba were not detected. Moxifloxacin and chloramphenicol offered the best coverage for both Gram-positive and Gram-negative isolates when susceptibility was determined using known antimicrobial first quartile concentrations and European Committee on Antimicrobial Susceptibility Testing breakpoints, respectively. WGS identified known virulence genes associated with S. aureus keratitis. CONCLUSIONS: In a resource-poor setting, a CIM can be used to safely sample the cornea in patients presenting with suspected MK, enabling identification of causative microorganisms by culture and PCR. Although the microbiological spectrum found was limited to the dry season, these preliminary results could be used to guide empirical treatment.


Subject(s)
Eye Infections, Bacterial , Humans , Pilot Projects , Malawi/epidemiology , Male , Female , Adult , Middle Aged , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/epidemiology , Eye Infections, Bacterial/drug therapy , Young Adult , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Microbial Sensitivity Tests , Cornea/microbiology , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged , Polymerase Chain Reaction , Adolescent , Acanthamoeba/isolation & purification , Acanthamoeba/genetics , Acanthamoeba/drug effects , RNA, Ribosomal, 16S/genetics
2.
Parasitol Res ; 123(4): 192, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652173

ABSTRACT

The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.


Subject(s)
Acanthamoeba , Chlorine Compounds , Disinfectants , Naegleria fowleri , Oxides , Chlorine Compounds/pharmacology , Naegleria fowleri/drug effects , Acanthamoeba/drug effects , Oxides/pharmacology , Disinfectants/pharmacology , Time Factors , Survival Analysis , Amebicides/pharmacology
3.
J Med Chem ; 67(9): 7443-7457, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38683753

ABSTRACT

Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 µM), VT1598 (0.25 µM), and VT1161 (0.20 µM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.


Subject(s)
14-alpha Demethylase Inhibitors , Sterol 14-Demethylase , Sterol 14-Demethylase/metabolism , Sterol 14-Demethylase/chemistry , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , Structure-Activity Relationship , Acanthamoeba/enzymology , Acanthamoeba/drug effects , Acanthamoeba castellanii/enzymology , Acanthamoeba castellanii/drug effects , Crystallography, X-Ray , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Models, Molecular , Molecular Structure
4.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563321

ABSTRACT

To date, no studies have addressed the role of neurotrophins (NTs) in Acanthamoeba spp. infections in the brain. Thus, to clarify the role of NTs in the cerebral cortex and hippocampus during experimental acanthamoebiasis in relation to the host immune status, the purpose of this study was to determine whether Acanthamoeba spp. may affect the concentration of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) in brain structures. Our results suggest that at the beginning of infection in immunocompetent hosts, BDNF and NT-3 may reflect an endogenous attempt at neuroprotection against Acanthamoeba spp. infection. We also observed a pro-inflammatory effect of NGF during acanthamoebiasis in immunosuppressed hosts. This may provide important information for understanding the development of cerebral acanthamoebiasis related to the immunological status of the host. However, the pathogenesis of brain acanthamoebiasis is still poorly understood and documented and, therefore, requires further research.


Subject(s)
Acanthamoeba , Amebiasis , Nerve Growth Factors , Acanthamoeba/drug effects , Amebiasis/drug therapy , Brain/metabolism , Brain/microbiology , Brain-Derived Neurotrophic Factor/metabolism , Humans , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Neurotrophin 3/metabolism
5.
Microbiol Spectr ; 10(1): e0213821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138157

ABSTRACT

Microbial keratitis is a devastating disease that can cause eye damage and blindness and can be the result of infections by several common ocular pathogens. Importantly, some of these pathogens, such as Acanthamoeba, are particularly unsusceptible to biocides in common contact lens care solutions. Therefore, the disinfection efficacy of preservative-free (PF) disinfection systems against bacteria, fungi, and Acanthamoeba trophozoites and cysts should be assessed as products with the most potential to be efficacious against resistant organisms. PF disinfection systems were analyzed for antimicrobial efficacy. These were the one-step (hydrogen peroxide-based) Clear Care and Clear Care Plus systems and the two-step (povidone-iodine-based) Cleadew system. Stand-alone challenges using bacteria, fungi, and Acanthamoeba were prepared according to the International Standards Organization method 14729. These same challenges were also conducted in the presence of the following contact lenses: Boston RGP, Acuvue Oasys, Biofinity, Ultra, and 2-week PremiO. All challenges were performed at the manufacturer's recommended disinfection time. All preservative-free disinfection systems demonstrated similarly high rates of antimicrobial efficacy when challenged with bacteria or fungi, with or without lenses. However, both Clear Care and Clear Care Plus demonstrated significantly greater disinfection efficacy against Acanthamoeba trophozoites and cysts, with and without lenses (P < 0.05). Cleadew efficacy was impacted by the addition of contact lenses, whereas Clear Care/Clear Care Plus maintained similar efficacies in the absence or presence of lenses. While both hydrogen peroxide and povidone-iodine are highly effective against bacteria and fungi, hydrogen peroxide maintains significantly greater disinfection capabilities than povidone-iodine against all forms of Acanthamoeba. IMPORTANCE Understanding the most efficacious products will allow clinicians to best communicate to patients and consumers the safest products on the market to reduce adverse events, including microbial keratitis, during contact lens use.


Subject(s)
Anti-Infective Agents/pharmacology , Contact Lens Solutions/pharmacology , Disinfection/methods , Eye Diseases/prevention & control , Acanthamoeba/drug effects , Bacteria/drug effects , Contact Lenses/microbiology , Contact Lenses/parasitology , Disinfection/instrumentation , Eye Diseases/microbiology , Eye Diseases/parasitology , Fungi/drug effects , Humans , Hydrogen Peroxide/pharmacology , Povidone-Iodine/pharmacology
6.
Acta Trop ; 226: 106266, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890540

ABSTRACT

Acanthamoeba keratitis infection extends due to the growing number of contact lens users. Indigenous plants including Garcinia mangostana play a vital role in human health and well being. Many species of this plant have been reported with myriads of potent medicinal properties. However, the aims of this study were, for the first time, to isolate compounds from the flower of G. mangostana and to test their anti-Acanthamoeba and anti-adhesion activity against Acanthamoeba triangularis. Powdered flowers of G. mangostana were extracted and chromatographed on a silica gel column. The structures of the compounds were established with the aid of 1H NMR. More so, the anti-Acanthamoeba and anti-adhesion properties were tested on a 96-well polystyrene microtiter plate and soft contact lenses. Scanning electron microscope (SEM) was used to determine the features of A. triangularis on contact lenses. Eight pure compounds were obtained, namely 9-hydroxycalabaxanthone, tovophillin A, garcinone E, garcinone B, α-mangostin, gartinin, 8-deoxygartinin and γ-mangostin. The extract and pure compounds exhibited anti-Acanthamoeba activity with MIC values in the range of 0.25-1 mg/mL. In addition, the extract and α-mangostin displayed significant activity against the adhesion of A. triangularis trophozoites both in polystyrene plate and in contact lenses at 0.5 × MIC (0.25 mg/mL). Furthermore, α-mangostin has the potential to remove A. triangularis adhesion in contact lenses similar to a commercial multipurpose solution (MPS). SEM study confirmed that crude extract and α-mangostin are effective as solutions for contact lenses, which removed A. triangularis trophozoites within 24 h. Alpha-mangostin was non-toxic to Vero cells at a concentration below 39 µM in 24 h. Crude extract of G. mangostana flower and its α-mangostin serve as candidate compounds in the treatment of Acanthamoeba infection or as lens care solution, since they can be used as a source of natural products against Acanthamoeba and virulence factor associated with the adhesion of A. triangularis.


Subject(s)
Acanthamoeba , Contact Lens Solutions , Garcinia mangostana , Plant Extracts/pharmacology , Acanthamoeba/drug effects , Animals , Chlorocebus aethiops , Flowers/chemistry , Garcinia mangostana/chemistry , Humans , Phytochemicals/pharmacology , Vero Cells
7.
Am J Trop Med Hyg ; 106(2): 681-684, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34724625

ABSTRACT

Acanthamoeba keratitis is predominantly caused by genotype T4. We report a case of severe keratitis caused by Acanthamoeba in a 39-year-old man who had prior accidental exposure to a corrosive chemical. The patient developed central full thickness ring infiltration and epithelial defect with hypopyon that required keratoplasty. The acanthamoebae isolated from the patient exhibited thermotolerance phenotype with the capability to grow well at ambient temperature and at 42°C. Analysis of a near complete 18S rRNA gene of this isolate revealed a distinct sequence that can be unequivocally assigned to genotype T12, a rare genotype incriminated in corneal infections.


Subject(s)
Acanthamoeba Keratitis/diagnosis , Acanthamoeba/genetics , Genotype , Acanthamoeba/classification , Acanthamoeba/drug effects , Acanthamoeba/pathogenicity , Acanthamoeba Keratitis/drug therapy , Adult , Antiprotozoal Agents/therapeutic use , Eye Infections, Parasitic/diagnosis , Eye Infections, Parasitic/drug therapy , Humans , Male , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Severity of Illness Index , Thailand
8.
Int J Antimicrob Agents ; 58(5): 106425, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34419578

ABSTRACT

Acanthamoebae are opportunistic pathogens that cause serious infections, including Acanthamoeba keratitis, a sight-threatening disease affecting mainly contact lens wearers, and granulomatous amoebic encephalitis, an infection of the central nervous system that occurs mostly in immunocompromised individuals. Although these infections are rare, they are a challenge for healthcare providers. In the last decade, the search for and implementation of novel treatment approaches against these parasites and the infections they cause have intensified, but current options are still unsatisfactory. The aim of this study was to investigate the in vitro activity of the gold-based compound auranofin against Acanthamoeba spp. The study showed that auranofin has potent antimicrobial activity against Acanthamoeba spp., with an IC50 ranging from 2.9 to 3.48 µM, and thus may be useful in the prevention and control of Acanthamoeba infections.


Subject(s)
Acanthamoeba/drug effects , Amebiasis/drug therapy , Antiparasitic Agents/pharmacology , Auranofin/pharmacology , Acanthamoeba/growth & development , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/parasitology , Amebiasis/parasitology , Encephalitis/drug therapy , Encephalitis/parasitology , Humans , Parasitic Sensitivity Tests
9.
J Parasitol ; 107(4): 537-546, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34265050

ABSTRACT

Nanomedicine has the potential in enhancing the efficacy and bioavailability of anti-infective agents. Here we determined whether conjugation of the Malaysian cultivated seaweed Kappaphycus alvarezii with silver-conjugated nanoparticles enhanced anti-acanthamoebic properties. Silver-conjugated K. alvarezii were successfully synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and transmission electron microscopy. Amoebicidal effects were evaluated against Acanthamoeba castellanii, and cytotoxicity assays were performed using HaCaT cells. Viability assays revealed that silver nanoparticles conjugated with K. alvarezii extract exhibited significant antiamoebic properties (P < 0.05). Nano-conjugates induced the production of reactive oxygen species. Importantly, silver-conjugated extract inhibited amoeba-mediated host cell damage as established by lactate dehydrogenase release. Neither the nano-conjugates nor the extract showed cytotoxicity against human cells in vitro. Liquid chromatography and mass spectroscopy revealed several molecules, including 2,6-nonadien-1-ol, N-desmethyl trifluoperazine, dulciol B, lucidumol A, acetoxolone, 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol, C16 sphinganine, 22-tricosenoic acid, and ß-dihydrorotenone, of which dulciol B and C16 sphinganine are known to possess antimicrobial activities. In summary, marine organisms are an important source of bioactive molecules with anti-acanthamoebic properties that can be enhanced by conjugating with silver nanoparticles. Natural products combined with nanotechnology using multifunctional nanoparticle complexes can deliver therapeutic agents effectively and hold promise in the development of new formulations of anti-acanthamoebic agents.


Subject(s)
Acanthamoeba/drug effects , Metal Nanoparticles/therapeutic use , Rhodophyta/chemistry , Silver/metabolism , Humans , Malaysia , Reactive Oxygen Species/metabolism , Silver/therapeutic use
10.
Parasitology ; 148(11): 1392-1400, 2021 09.
Article in English | MEDLINE | ID: mdl-34162452

ABSTRACT

Acanthamoeba spp. are widely distributed in the environment and cause serious infections in humans. Treatment of Acanthamoeba infections is very challenging and not always effective which requires the development of more efficient drugs against Acanthamoeba spp. The purpose of the present study was to test medicinal plants that may be useful in the treatment of Acanthamoeba spp. Here we evaluated the trophozoital and cysticidal activity of 13 flavonoid glycosides isolated from Delphinium gracile, D. staphisagria, Consolida oliveriana and from Aconitum napellus subsp. Lusitanicum against the amoeba Acanthamoeba castellanii. AlamarBlue Assay Reagent® was used to determine the activity against trophozoites of A. castellanii, and cytotoxic using Vero cells. Cysticidal activity was assessed on treated cysts by light microscopy using a Neubauer chamber to quantify cysts and trophozoites. Flavonoids 1, 2, 3 and 4 showed higher trophozoital activity and selectivity indexes than the reference drug chlorhexidine digluconate. In addition, flavonoid 2 showed 100% cysticidal activity at a concentration of 50 µm, lower than those of the reference drug and flavonoid 3 (100 µm). These results suggest that flavonoids 2 and 3 might be used for the development of novel therapeutic approaches against Acanthamoeba infections after satisfactory in vivo evaluations.


Subject(s)
Acanthamoeba/drug effects , Aconitum/chemistry , Delphinium/chemistry , Glycosides/pharmacology , Plant Extracts/pharmacology , Ranunculaceae/chemistry , Acanthamoeba/growth & development , Animals , Chlorocebus aethiops , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Flavonoids/toxicity , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/toxicity , Inhibitory Concentration 50 , Molecular Structure , Plant Extracts/isolation & purification , Trophozoites/drug effects , Trophozoites/growth & development , Vero Cells/drug effects
11.
Int J Parasitol Drugs Drug Resist ; 15: 144-151, 2021 04.
Article in English | MEDLINE | ID: mdl-33684885

ABSTRACT

The validation of anti-Acanthamoeba activity of commercial eye drops has gained a great interest recently and a growing number of commercials eye drop were evaluated for their aptitude to inhibit Acanthamoeba as a second pharmacological effect. In the present study, three different eye drops, commercializing in Spain, including TobraDex, Cusimolol and Colircusi antiedema have been tested in vitro against trophozoites and cysts stage of the facultative pathogen Acanthamoeba. The alamarBlue™ method was used to evaluate both trophocidal and cysticidal properties. The most active eye drops were tested for their impact on some programmed cell death features. We found out that the cells inhibition was strain and eye drop dependent, and 5% eye drop was able to eliminate both trophozoite and cyst stage of Acanthamoeba spp. A treatment of 24 h with 5% of TobraDex or Cusimolol was able to show DNA condensation, collapse in the mitochondrial membrane potential and reduction of the ATP level production in Acanthamoeba. We could assume that the present eye drops could induce programed cell death like process in Acanthamoeba via mitochondrial pathway.


Subject(s)
Acanthamoeba , Amebicides , Ophthalmic Solutions , Acanthamoeba/drug effects , Amebicides/pharmacology , Amebicides/therapeutic use , Ophthalmic Solutions/pharmacology , Ophthalmic Solutions/therapeutic use , Trophozoites
12.
Bioorg Chem ; 108: 104682, 2021 03.
Article in English | MEDLINE | ID: mdl-33556696

ABSTRACT

Opportunistic parasitic protozoa of genus Acanthamoeba are responsible to cause severe infections in humans such as Acanthamoeba Keratitis or Amoebic Granulomatous Encephalitis. Current treatments are usually toxic and inefficient and there is a need to access new therapeutic agents. The antiamoebic effects of nephthediol (1) and fourteen germacranolide and eudesmanolide sesquiterpene lactones (2-5, 7-12) isolated from the indigenous zoanthid Palythoa aff. clavata collected at the coast of Lanzarote, Canary Islands were studied against Acanthamoeba castellanii Neff, and the clinical strains A. polyphaga and A. griffini. 4-epi-arbusculin A (11) presented the lowest IC50 value (26,47 ± 1,69 µM) against A. castellanii Neff and low cytotoxicity against murine macrophages, followed by isobadgerin (2), which also showed to be active against A. castellanii Neff cysts. The studies on the mode of action of compounds 2 and 11 revealed these sesquiterpene lactones induce mechanisms of PDC on A. castellanii Neff.


Subject(s)
Acanthamoeba/drug effects , Anthozoa/chemistry , Antiprotozoal Agents/pharmacology , Lactones/pharmacology , Sesquiterpenes/pharmacology , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Dose-Response Relationship, Drug , Lactones/chemistry , Lactones/isolation & purification , Molecular Structure , Parasitic Sensitivity Tests , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Structure-Activity Relationship
13.
Sci Rep ; 11(1): 1036, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441799

ABSTRACT

To report on Acanthamoeba keratitis cases in a tertiary university eye-hospital in Graz, Austria, over a 21-year period. Retrospective study. Parameters included demographics, diagnostics, clinical courses, medical therapies, surgical interventions, secondary complications, and best spectacle-corrected visual acuity (BSCVA). Patient records for 44 eyes of 42 patients were analysed; 2 bilateral infections. Mean age at presentation was 31 ± 13 (16-65) years; contact lenses were used in 41 of 44 eyes (93.2%). Symptoms at initial presentation were mainly pain (41/43, 95.3%) and photophobia (16/43, 37.2%). Most frequent morphological findings were stromal infiltrates (30/44, 68.2%). Diagnosis was mainly confirmed by smears (40/42, 95.2%) and polymerase chain reaction (8/42, 19%). Antiamoebic treatment comprised biguanides and diamidines. Penetrating keratoplasty was performed in 10/44 (22.7%) eyes. Median time from symptom onset to initial visit was 2 (0-26) weeks; median follow-up was 30 (2-1008) weeks. BSCVA improved in 23/36 (63.9%) eyes, remained unchanged in 6/36 (16.7%) eyes and deteriorated in 7/36 (19.4%) eyes. Acanthamoeba keratitis predominantly occurs in young contact lens wearers. Diagnosis should be considered in patients with pain and stromal infiltrates. In the majority of cases, BSCVA can be improved. Early diagnosis and adequate treatment should be implemented to prevent complications.


Subject(s)
Acanthamoeba Keratitis/epidemiology , Tertiary Care Centers/statistics & numerical data , Acanthamoeba/drug effects , Acanthamoeba Keratitis/diagnosis , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/pathology , Adolescent , Adult , Aged , Antiprotozoal Agents/therapeutic use , Austria/epidemiology , Female , Humans , Intraocular Pressure , Male , Middle Aged , Retrospective Studies , Treatment Outcome , Visual Acuity , Young Adult
14.
Acta Trop ; 216: 105830, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33465352

ABSTRACT

Amoebae of the genus Acanthamoeba are worldwide distributed causative agents of serious human infections such as granulomatous amoebic encephalitis (GAE) and Acanthamoeba keratitis (AK). To date, treatment of these infections is non-uniform and frequently unsuccessful. Recently, the phosphonium salts were studied for their high levels of antimicrobial activity. This work was aimed to investigate the cytotoxic effect of metronidazole and two phosphonium salts (PS1, PS2) on two clinical Acanthamoeba isolates. The isolates showed distinctly higher susceptibility to both phosphonium salts than to metronidazole. The highest susceptibility was noted to PS1 after 48 h of incubation. Metronidazole derivate PS2 showed higher susceptibility than metronidazole. The values of EC50 of PS2 were approximately twenty times lower than EC50 of metronidazole for Acanthamoeba lugdunensis strain and sixteen times lower for Acanthamoeba quina strain after 48 h. Although the therapeutic effect of metronidazole in Acanthamoeba infections is usually insufficient, its derivatisation can result in a significantly higher amoebicidal effect. Cytomorphological changes of trophozoites after exposure to tested compounds included rounding up of the cells, damage of membrane integrity, presence of pathological protrusions, elongation of the cells or pseudocyst-like stages. Obtained results indicate possible therapeutic potential of studied phosphonium salts.


Subject(s)
Acanthamoeba/drug effects , Amebicides/pharmacology , Metronidazole/analogs & derivatives , Metronidazole/pharmacology , Trophozoites/drug effects , Acanthamoeba/genetics , Animals , Genotype , Humans
15.
Int J Parasitol Drugs Drug Resist ; 14: 218-229, 2020 12.
Article in English | MEDLINE | ID: mdl-33238231

ABSTRACT

Curcuma longa and Curcumin have been documented to have a wide spectrum of pharmacological effects, including anti-Acanthamoeba activity. Hence, this study sought to explore the anti-adhesion activity of C. longa extract and Curcumin against Acanthamoeba triangularis trophozoites and cysts in plastic and contact lenses. Our results showed that C. longa extract and Curcumin significantly inhibited the adhesion of A. triangularis trophozoites and cysts to the plastic surface, as investigated by the crystal violet assay (P < 0.05). Also, an 80-90% decrease in adhesion of trophozoites and cysts to the plastic surface was detected following the treatment with C. longa extract and Curcumin at 1/2 × MIC, compared to the control. In the contact lens model, approximately 1 log cells/mL of the trophozoites and cysts was reduced when the cells were treated with Curcumin, when compared to the control. Pre-treatment of the plastic surface with Curcumin at 1/2-MIC reduced 60% and 90% of the adhesion of trophozoites and cysts, respectively. The reduction in 1 Log cells/mL of the adhesion of A. triangularis trophozoites was observed when lenses were pre-treated with both the extract and Curcumin. Base on the results obtained from this study, A. triangularis trophozoites treated with C. longa extract and Curcumin have lost strong acanthopodia, thorn-like projection pseudopodia observed by scanning electron microscope. This study also revealed the therapeutic potentials of C. longa extract and Curcumin, as such, have promising anti-adhesive potential that can be used in the management/prevention of A. triangularis adhesion to contact lenses.


Subject(s)
Acanthamoeba , Contact Lenses , Curcumin , Plant Extracts , Acanthamoeba/drug effects , Animals , Contact Lenses/parasitology , Curcuma/chemistry , Curcumin/pharmacology , Plant Extracts/pharmacology , Plastics , Polystyrenes , Rhizome/chemistry , Trophozoites
16.
PLoS Negl Trop Dis ; 14(9): e0008353, 2020 09.
Article in English | MEDLINE | ID: mdl-32970675

ABSTRACT

Diseases caused by pathogenic free-living amoebae include primary amoebic meningoencephalitis (Naegleria fowleri), granulomatous amoebic encephalitis (Acanthamoeba spp.), Acanthamoeba keratitis, and Balamuthia amoebic encephalitis (Balamuthia mandrillaris). Each of these are difficult to treat and have high morbidity and mortality rates due to lack of effective therapeutics. Since repurposing drugs is an ideal strategy for orphan diseases, we conducted a high throughput phenotypic screen of 12,000 compounds from the Calibr ReFRAME library. We discovered a total of 58 potent inhibitors (IC50 <1 µM) against N. fowleri (n = 19), A. castellanii (n = 12), and B. mandrillaris (n = 27) plus an additional 90 micromolar inhibitors. Of these, 113 inhibitors have never been reported to have activity against Naegleria, Acanthamoeba or Balamuthia. Rapid onset of action is important for new anti-amoeba drugs and we identified 19 compounds that inhibit N. fowleri in vitro within 24 hours (halofuginone, NVP-HSP990, fumagillin, bardoxolone, belaronib, and BPH-942, solithromycin, nitracrine, quisinostat, pabinostat, pracinostat, dacinostat, fimepinostat, sanguinarium, radicicol, acriflavine, REP3132, BC-3205 and PF-4287881). These compounds inhibit N. fowleri in vitro faster than any of the drugs currently used for chemotherapy. The results of these studies demonstrate the utility of phenotypic screens for discovery of new drugs for pathogenic free-living amoebae, including Acanthamoeba for the first time. Given that many of the repurposed drugs have known mechanisms of action, these compounds can be used to validate new targets for structure-based drug design.


Subject(s)
Amebiasis/drug therapy , Amebicides/pharmacology , Drug Repositioning/methods , High-Throughput Screening Assays/methods , Acanthamoeba/drug effects , Balamuthia mandrillaris/drug effects , Databases, Pharmaceutical , Naegleria fowleri/drug effects , Neglected Diseases/drug therapy , Small Molecule Libraries
17.
Bioorg Chem ; 104: 104224, 2020 11.
Article in English | MEDLINE | ID: mdl-32892068

ABSTRACT

A series of alkylphosphocholines with foscarnet moiety was synthesized. The structure of these zwitterionic amphiphiles was modified in both polar and non-polar parts of surfactant molecule. Investigations of physicochemical properties are represented by the determination of critical micelle concentration, the surface tension value at the cmc and the surface area per surfactant head group utilising surface tension measurements. Hydrodynamic diameter of surfactant micelles was determined using the dynamic light scattering technique. Alkylphosphocholines exhibit significant cytotoxic, anticandidal (Candida albicans) and antiamoebal (Acanthamoeba spp. T4 genotype) activity. The relationship between the structure, physicochemical properties and biological activity of the tested compounds revealed that lipophilicity has a significant influence on biological activity of the investigated surfactants. More lipophilic alkylphosphocholines with octadecyl chains show cytotoxic activity against cancer cells which is higher than that of the compounds with shorter alkyl chains. The opposite situation was observed in case of anticandidal and antiamoebal activity of these surfactants. The most active compounds were found to have pentadecyl chains. The foscarnet analogue of miltefosine C15-PFA-C showed the highest anticandidal activity. The minimum value of anticandidal activity of this compound is 1,4 µM thus representing the highest anticandidal activity found within the group of alkylphosphocholines.


Subject(s)
Amebicides/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Foscarnet/pharmacology , Phosphorylcholine/pharmacology , 3T3 Cells , Acanthamoeba/drug effects , Amebicides/chemical synthesis , Amebicides/chemistry , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Candida albicans/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Foscarnet/chemistry , Humans , Hydrodynamics , Mice , Micelles , Microbial Sensitivity Tests , Molecular Structure , Parasitic Sensitivity Tests , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Structure-Activity Relationship , Surface Tension
18.
Exp Parasitol ; 218: 108008, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32979343

ABSTRACT

Acanthamoeba sp. is a free living amoeba that causes severe, painful and fatal infections, viz. Acanthamoeba keratitis and granulomatous amoebic encephalitis among humans. Antimicrobial chemotherapy used against Acanthamoeba is toxic to human cells and show side effects as well. Infections due to Acanthamoeba also pose challenges towards currently used antimicrobial treatment including resistance and transformation of trophozoites to resistant cyst forms that can lead to recurrence of infection. Therapeutic agents targeting central nervous system infections caused by Acanthamoeba should be able to cross blood-brain barrier. Nanoparticles based drug delivery put forth an effective therapeutic method to overcome the limitations of currently used antimicrobial chemotherapy. In recent years, various researchers investigated the effectiveness of nanoparticles conjugated drug and/or naturally occurring plant compounds against both trophozoites and cyst form of Acanthamoeba. In the current review, a reasonable effort has been made to provide a comprehensive overview of various nanoparticles tested for their efficacy against Acanthamoeba. This review summarizes the noteworthy details of research performed to elucidate the effect of nanoparticles conjugated drugs against Acanthamoeba.


Subject(s)
Acanthamoeba/drug effects , Amebicides/administration & dosage , Nanoparticles/administration & dosage , Acanthamoeba/growth & development , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/parasitology , Amebiasis/drug therapy , Amebiasis/mortality , Amebiasis/parasitology , Amebicides/pharmacology , Amebicides/therapeutic use , Biguanides/administration & dosage , Biguanides/pharmacology , Biguanides/therapeutic use , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/mortality , Central Nervous System Protozoal Infections/parasitology , Chlorhexidine/administration & dosage , Chlorhexidine/pharmacology , Chlorhexidine/therapeutic use , Drug Delivery Systems , Immunocompetence , Immunocompromised Host , Infectious Encephalitis/drug therapy , Infectious Encephalitis/mortality , Infectious Encephalitis/parasitology , Nanoparticles/classification , Nanoparticles/therapeutic use , Trophozoites/drug effects
19.
Int J Antimicrob Agents ; 56(4): 106122, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32739477

ABSTRACT

Acanthamoebae are facultative parasites causing rare but serious infections such as keratitis and encephalitis and are also known as vectors for several bacterial pathogens, including legionellae and pseudomonads. Acanthamoeba cysts are particularly resilient and enable the amoebae to withstand desiccation and to resist disinfection and therapy. While the search for new therapeutic options has been intensified in the past years, hand and surface disinfectants as well as topical antiseptics for preventing infections have not been studied in detail to date. The aim of this study was to screen well-known and commonly used antimicrobial products in various formulations and different concentrations for their efficacy against Acanthamoeba trophozoites and cysts, including aliphatic alcohols, quaternary ammonium compounds (QACs), peracetic acid (PAA), potassium peroxymonosulfate sulfate (PPMS) and octenidine dihydrochloride (OCT). Of all products tested, OCT and QACs showed the highest efficacy, totally eradicating both trophozoites and cysts within 1 min. The determined 50% effective concentration (EC50) for cysts was 0.196 mg/mL for OCT and 0.119 mg/mL for QACs after 1 min of exposure. PAA and PPMS showed reliable cysticidal efficacies only with prolonged incubation times of 30 min and 60 min, respectively. Aliphatic alcohols generally had limited efficacy, and only against trophozoites. In conclusion, OCT and QACs are potent actives against Acanthamoeba trophozoites and cysts at concentrations used in commercially available products, within contact times suitable for surface and hand disinfection as well as topical antisepsis.


Subject(s)
Acanthamoeba Keratitis/prevention & control , Acanthamoeba/drug effects , Antiparasitic Agents/pharmacology , Disinfectants/pharmacology , Hand Disinfection , Trophozoites/drug effects , Acanthamoeba Keratitis/parasitology , Alcohols/pharmacology , Disinfection , Humans , Imines , Peracetic Acid/pharmacology , Pyridines/pharmacology , Quaternary Ammonium Compounds/pharmacology , Sulfuric Acids/pharmacology
20.
Acta Trop ; 211: 105618, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32628912

ABSTRACT

Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery depends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway. Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole compounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, antiparasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the pharmacokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles for the first time.


Subject(s)
Acanthamoeba/drug effects , Antifungal Agents/pharmacology , Azoles/pharmacology , Ergosterol/metabolism , Nanoparticles/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...