Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.727
Filter
1.
J Neuroeng Rehabil ; 21(1): 94, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840208

ABSTRACT

BACKGROUND: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue. This study explored the relationships between gait characteristics derived from an inertial measurement unit (IMU) and patient-reported fatigue in the IDEA-FAST feasibility study. METHODS: Participants with IMIDs and NDDs (Parkinson's disease (PD), Huntington's disease (HD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (PSS), and inflammatory bowel disease (IBD)) wore a lower-back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physical fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using a generalised linear mixed-effects model (GLMM) and binary classification with machine learning. RESULTS: Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, the variability of the non-walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% (precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, and gait rhythm were the most interesting characteristics for future analysis. CONCLUSIONS: Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait measures and abnormal fatigue. However, factors such as the COVID-19 pandemic may have impacted gait behaviours. Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait and abnormal fatigue.


Subject(s)
Fatigue , Feasibility Studies , Gait , Mental Fatigue , Neurodegenerative Diseases , Walking , Humans , Male , Female , Middle Aged , Fatigue/diagnosis , Fatigue/physiopathology , Fatigue/etiology , Walking/physiology , Aged , Mental Fatigue/physiopathology , Mental Fatigue/diagnosis , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/diagnosis , Gait/physiology , Wearable Electronic Devices , Immune System Diseases/complications , Immune System Diseases/diagnosis , Adult , Accelerometry/instrumentation , Accelerometry/methods
2.
J Neuroeng Rehabil ; 21(1): 96, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845000

ABSTRACT

BACKGROUND: Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises. METHODS: We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg). Twelve healthy subjects performed these spine-related exercises, and wearable IMU data were collected for spine angle estimation and IMU location identification. RESULTS: Results demonstrated average mean absolute spinal angle estimation errors of 2.59 ∘ and average classification accuracy of 92.97%. The proposed system effectively identified IMU locations and assessed spine-related rehabilitation exercises while demonstrating robustness to individual differences and exercise variations. CONCLUSION: This inexpensive, convenient, and user-friendly approach to spine degeneration rehabilitation could potentially be implemented at home or provide remote assessment, offering a promising avenue to enhance patient outcomes and improve accessibility for spine-related rehabilitation. TRIAL REGISTRATION:  No. E2021013P in Shanghai Jiao Tong University.


Subject(s)
Exercise Therapy , Spine , Telerehabilitation , Humans , Male , Telerehabilitation/instrumentation , Adult , Female , Spine/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Wearable Electronic Devices , Young Adult , Accelerometry/instrumentation , Accelerometry/methods , Biomechanical Phenomena
3.
Aging Clin Exp Res ; 36(1): 108, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717552

ABSTRACT

INTRODUCTION: Wrist-worn activity monitors have seen widespread adoption in recent times, particularly in young and sport-oriented cohorts, while their usage among older adults has remained relatively low. The main limitations are in regards to the lack of medical insights that current mainstream activity trackers can provide to older subjects. One of the most important research areas under investigation currently is the possibility of extrapolating clinical information from these wearable devices. METHODS: The research question of this study is understanding whether accelerometry data collected for 7-days in free-living environments using a consumer-based wristband device, in conjunction with data-driven machine learning algorithms, is able to predict hand grip strength and possible conditions categorized by hand grip strength in a general population consisting of middle-aged and older adults. RESULTS: The results of the regression analysis reveal that the performance of the developed models is notably superior to a simple mean-predicting dummy regressor. While the improvement in absolute terms may appear modest, the mean absolute error (6.32 kg for males and 4.53 kg for females) falls within the range considered sufficiently accurate for grip strength estimation. The classification models, instead, excel in categorizing individuals as frail/pre-frail, or healthy, depending on the T-score levels applied for frailty/pre-frailty definition. While cut-off values for frailty vary, the results suggest that the models can moderately detect characteristics associated with frailty (AUC-ROC: 0.70 for males, and 0.76 for females) and viably detect characteristics associated with frailty/pre-frailty (AUC-ROC: 0.86 for males, and 0.87 for females). CONCLUSIONS: The results of this study can enable the adoption of wearable devices as an efficient tool for clinical assessment in older adults with multimorbidities, improving and advancing integrated care, diagnosis and early screening of a number of widespread diseases.


Subject(s)
Accelerometry , Hand Strength , Wrist , Humans , Hand Strength/physiology , Male , Female , Aged , Accelerometry/instrumentation , Accelerometry/methods , Middle Aged , Wrist/physiology , Wearable Electronic Devices , Aged, 80 and over , Machine Learning
4.
PLoS One ; 19(5): e0299943, 2024.
Article in English | MEDLINE | ID: mdl-38701085

ABSTRACT

Spending time outdoors is associated with increased time spent in physical activity, lower chronic disease risk, and wellbeing. Many studies rely on self-reported measures, which are prone to recall bias. Other methods rely on features and functions only available in some GPS devices. Thus, a reliable and versatile method to objectively quantify time spent outdoors is needed. This study sought to develop a versatile method to classify indoor and outdoor (I/O) GPS data that can be widely applied using most types of GPS and accelerometer devices. To develop and test the method, five university students wore an accelerometer (ActiGraph wGT3X-BT) and a GPS device (Canmore GT-730FL-S) on an elastic belt at the right hip for two hours in June 2022 and logged their activity mode, setting, and start time via activity diaries. GPS trackers were set to collect data every 5 seconds. A rule-based point cluster-based method was developed to identify indoor, outdoor, and in-vehicle time. Point clusters were detected using an application called GPSAS_Destinations and classification were done in R using accelerometer lux, building footprint, and park location data. Classification results were compared with the submitted activity diaries for validation. A total of 7,006 points for all participants were used for I/O classification analyses. The overall I/O GPS classification accuracy rate was 89.58% (Kappa = 0.78), indicating good classification accuracy. This method provides reliable I/O clarification results and can be widely applied using most types of GPS and accelerometer devices.


Subject(s)
Accelerometry , Exercise , Geographic Information Systems , Humans , Geographic Information Systems/instrumentation , Accelerometry/instrumentation , Accelerometry/methods , Male , Female , Exercise/physiology , Young Adult , Adult , Time Factors
5.
Int J Health Geogr ; 23(1): 12, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745292

ABSTRACT

BACKGROUND: Previous research indicates the start of primary school (4-5-year-old) as an essential period for the development of children's physical activity (PA) patterns, as from this point, the age-related decline of PA is most often observed. During this period, young children are exposed to a wider variety of environmental- and social contexts and therefore their PA is influenced by more diverse factors. However, in order to understand children's daily PA patterns and identify relevant opportunities for PA promotion, it is important to further unravel in which (social) contexts throughout the day, PA of young children takes place. METHODS: We included a cross-national sample of 21 primary schools from the Startvaardig study. In total, 248 children provided valid accelerometer and global positioning (GPS) data. Geospatial analyses were conducted to quantify PA in (social) environments based on their school and home. Transport-related PA was evaluated using GPS speed-algorithms. PA was analysed at different environments, time-periods and for week- and weekend days separately. RESULTS: Children accumulated an average of 60 min of moderate-to-vigorous PA (MVPA), both during week- and weekend days. Schools contributed to approximately half of daily MVPA during weekdays. During weekends, environments within 100 m from home were important, as well as locations outside the home-school neighbourhood. Pedestrian trips contributed to almost half of the daily MVPA. CONCLUSIONS: We identified several social contexts relevant for children's daily MVPA. Schools have the potential to significantly contribute to young children's PA patterns and are therefore encouraged to systematically evaluate and implement parts of the school-system that stimulate PA and potentially also learning processes. Pedestrian trips also have substantial contribution to daily MVPA of young children, which highlights the importance of daily active transport in school- and parental routines.


Subject(s)
Exercise , Schools , Humans , Exercise/physiology , Child, Preschool , Male , Female , Accelerometry/methods , Geographic Information Systems , Time Factors , Italy/epidemiology , Cross-Sectional Studies
6.
Clin Nutr ESPEN ; 61: 295-301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777447

ABSTRACT

BACKGROUND & AIMS: Track and field sprinters must obtain an optimal body composition to improve sprint performance. To successfully change body composition, it is important to evaluate the estimated energy requirements (EER) and fluctuations in total energy expenditure (TEE). However, methods to accurately evaluate the EER and TEE in sprinters have not been fully investigated. The aim of this study was to compare currently used methods with the doubly labeled water (DLW) method, which is currently the gold standard for evaluating EER and TEE. METHODS: Ten male collegiate sprinters participated in the study. We evaluated TEEDLW and compared it with the EER calculated using two equations used by the National Institute of Health and Nutrition (NIHN) and the Japan Institute of Sports Sciences (JISS). In addition, we evaluated the TEE from the activity record (AR) and triaxial accelerometer (ACC). RESULTS: TEEDLW (3172 ± 415 kcal/day) was not significantly different from EERNIHN (p = 0.076) or EERJISS (p = 0.967). In addition, there were no significant differences between TEEDLW and TEEAR (p = 0.218). However, two accelerometer-derived equations used to evaluate TEE were found to have underestimated (2783 ± 377 kcal/day, p < 0.001) and overestimated (3405 ± 369 kcal/day, p = 0.009) the TEE. CONCLUSION: Our results suggest that EERNIHN and EERJISS may be useful in evaluating the EER of collegiate male sprinters on a group basis, and AR may be more accurate than ACC in evaluating the TEE. These results may be helpful when considering nutritional support for male collegiate sprinters.


Subject(s)
Accelerometry , Body Composition , Energy Metabolism , Humans , Male , Young Adult , Accelerometry/methods , Nutritional Requirements , Running/physiology , Water , Athletes , Energy Intake , Japan
7.
Clin Biomech (Bristol, Avon) ; 115: 106262, 2024 May.
Article in English | MEDLINE | ID: mdl-38744224

ABSTRACT

BACKGROUND: Falls among the elderly are a major societal problem. While observations of medium-distance walking using inertial sensors identified potential fall predictors, classifying individuals at risk based on single gait cycles remains elusive. This challenge stems from individual variability and step-to-step fluctuations, making accurate classification difficult. METHODS: We recruited 44 participants, equally divided into high and low fall-risk groups. A smartphone secured on their second sacral spinous process recorded data during indoor walking. Features were extracted at each gait cycle from a 6-dimensional time series (tri-axial angular velocity and tri-axial acceleration) and classified using the gradient boosting decision tree algorithm. FINDINGS: Mean accuracy across five-fold cross-validation was 0.936. "Age" was the most influential individual feature, while features related to acceleration in the gait direction held the highest total relative importance when aggregated by axis (0.5365). INTERPRETATION: Combining acceleration, angular velocity data, and the gradient boosting decision tree algorithm enabled accurate fall risk classification in the elderly, previously challenging due to lack of discernible features. We reveal the first-ever identification of three-dimensional pelvic motion characteristics during single gait cycles in the high-risk group. This novel method, requiring only one gait cycle, is valuable for individuals with physical limitations hindering repetitive or long-distance walking or for use in spaces with limited walking areas. Additionally, utilizing readily available smartphones instead of dedicated equipment has potential to improve gait analysis accessibility.


Subject(s)
Accidental Falls , Gait , Machine Learning , Humans , Accidental Falls/prevention & control , Aged , Gait/physiology , Female , Male , Algorithms , Walking/physiology , Acceleration , Risk Assessment/methods , Accelerometry/methods , Smartphone , Aged, 80 and over , Biomechanical Phenomena , Decision Trees , Middle Aged
8.
Comput Biol Med ; 176: 108544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723395

ABSTRACT

BACKGROUND: Advancement in mental health care requires easily accessible, efficient diagnostic and treatment assessment tools. Viable biomarkers could enable objectification and automation of the diagnostic and treatment process, currently dependent on a psychiatric interview. Available wearable technology and computational methods make it possible to incorporate heart rate variability (HRV), an indicator of autonomic nervous system (ANS) activity, into potential diagnostic and treatment assessment frameworks as a biomarker of disease severity in mental disorders, including schizophrenia and bipolar disorder (BD). METHOD: We used a commercially available electrocardiography (ECG) chest strap with a built-in accelerometer, i.e. Polar H10, to record R-R intervals and physical activity of 30 hospitalized schizophrenia or BD patients and 30 control participants through ca. 1.5-2 h time periods. We validated a novel approach to data acquisition based on a flexible, patient-friendly and cost-effective setting. We analyzed the relationship between HRV and the Positive and Negative Syndrome Scale (PANSS) test scores, as well as the HRV and mobility coefficient. We also proposed a method of rest period selection based on R-R intervals and mobility data. The source code for reproducing all experiments is available on GitHub, while the dataset is published on Zenodo. RESULTS: Mean HRV values were lower in the patient compared to the control group and negatively correlated with the results of the PANSS general subcategory. For the control group, we also discovered the inversely proportional dependency between the mobility coefficient, based on accelerometer data, and HRV. This relationship was less pronounced for the treatment group. CONCLUSIONS: HRV value itself, as well as the relationship between HRV and mobility, may be promising biomarkers in disease diagnostics. These findings can be used to develop a flexible monitoring system for symptom severity assessment.


Subject(s)
Accelerometry , Heart Rate , Schizophrenia , Humans , Heart Rate/physiology , Male , Accelerometry/instrumentation , Accelerometry/methods , Female , Adult , Middle Aged , Schizophrenia/physiopathology , Electrocardiography , Psychotic Disorders/physiopathology , Psychotic Disorders/diagnosis , Bipolar Disorder/physiopathology , Bipolar Disorder/diagnosis , Severity of Illness Index
9.
PLoS One ; 19(5): e0290912, 2024.
Article in English | MEDLINE | ID: mdl-38739600

ABSTRACT

This cross-sectional study aimed to identify and validate cut-points for measuring physical activity using Axivity AX6 accelerometers positioned at the shank in older adults. Free-living physical activity was assessed in 35 adults aged 55 and older, where each participant wore a shank-mounted Axivity and a waist-mounted ActiGraph simultaneously for 72 hours. Optimized cut-points for each participant's Axivity data were determined using an optimization algorithm to align with ActiGraph results. To assess the validity between the physical activity assessments from the optimized Axivity cut-points, a leave-one-out cross-validation was conducted. Bland-Altman plots with 95% limits of agreement, intraclass correlation coefficients (ICC), and mean differences were used for comparing the systems. The results indicated good agreement between the two accelerometers when classifying sedentary behaviour (ICC = 0.85) and light physical activity (ICC = 0.80), and moderate agreement when classifying moderate physical activity (ICC = 0.67) and vigorous physical activity (ICC = 0.70). Upon removal of a significant outlier, the agreement was slightly improved for sedentary behaviour (ICC = 0.86) and light physical activity (ICC = 0.82), but substantially improved for moderate physical activity (ICC = 0.81) and vigorous physical activity (ICC = 0.96). Overall, the study successfully demonstrated the capability of the resultant cut-point model to accurately classify physical activity using Axivity AX6 sensors placed at the shank.


Subject(s)
Accelerometry , Exercise , Humans , Aged , Male , Female , Accelerometry/instrumentation , Accelerometry/methods , Exercise/physiology , Middle Aged , Cross-Sectional Studies , Sedentary Behavior
10.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793858

ABSTRACT

Inertial signals are the most widely used signals in human activity recognition (HAR) applications, and extensive research has been performed on developing HAR classifiers using accelerometer and gyroscope data. This study aimed to investigate the potential enhancement of HAR models through the fusion of biological signals with inertial signals. The classification of eight common low-, medium-, and high-intensity activities was assessed using machine learning (ML) algorithms, trained on accelerometer (ACC), blood volume pulse (BVP), and electrodermal activity (EDA) data obtained from a wrist-worn sensor. Two types of ML algorithms were employed: a random forest (RF) trained on features; and a pre-trained deep learning (DL) network (ResNet-18) trained on spectrogram images. Evaluation was conducted on both individual activities and more generalized activity groups, based on similar intensity. Results indicated that RF classifiers outperformed corresponding DL classifiers at both individual and grouped levels. However, the fusion of EDA and BVP signals with ACC data improved DL classifier performance compared to a baseline DL model with ACC-only data. The best performance was achieved by a classifier trained on a combination of ACC, EDA, and BVP images, yielding F1-scores of 69 and 87 for individual and grouped activity classifications, respectively. For DL models trained with additional biological signals, almost all individual activity classifications showed improvement (p-value < 0.05). In grouped activity classifications, DL model performance was enhanced for low- and medium-intensity activities. Exploring the classification of two specific activities, ascending/descending stairs and cycling, revealed significantly improved results using a DL model trained on combined ACC, BVP, and EDA spectrogram images (p-value < 0.05).


Subject(s)
Accelerometry , Algorithms , Machine Learning , Photoplethysmography , Humans , Photoplethysmography/methods , Accelerometry/methods , Male , Adult , Signal Processing, Computer-Assisted , Female , Human Activities , Galvanic Skin Response/physiology , Wearable Electronic Devices , Young Adult
11.
Sensors (Basel) ; 24(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793873

ABSTRACT

The intensity gradient is a new cutpoint-free metric that was developed to quantify physical activity (PA) measured using accelerometers. This metric was developed for use with the ENMO (Euclidean norm minus one) metric, derived from raw acceleration data, and has not been validated for use with count-based accelerometer data. In this study, we determined whether the intensity gradient could be reproduced using count-based accelerometer data. Twenty participants (aged 7-22 years) wore a GT1M, an ActiGraph (count-based), and a GT9X, ActiGraph (raw accelerations) accelerometer during both in-lab and at-home protocols. We found strong agreement between GT1M and GT9X counts during the combined in-lab activities (mean bias = 2 counts) and between minutes per day with different intensities of activity (e.g., sedentary, light, moderate, and vigorous) classified using cutpoints (mean bias < 5 min/d at all intensities). We generated bin sizes that could be used to generate IGs from the count data (mean bias = -0.15; 95% LOA [-0.65, 0.34]) compared with the original IG. Therefore, the intensity gradient could be used to analyze count data. The count-based intensity gradient metric will be valuable for re-analyzing historical datasets collected using older accelerometer models, such as the GT1M.


Subject(s)
Accelerometry , Exercise , Humans , Child , Accelerometry/methods , Adolescent , Female , Male , Exercise/physiology , Young Adult
12.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794023

ABSTRACT

Accelerometers worn by animals produce distinct behavioral signatures, which can be classified accurately using machine learning methods such as random forest decision trees. The objective of this study was to identify accelerometer signal separation among parsimonious behaviors. We achieved this objective by (1) describing functional differences in accelerometer signals among discrete behaviors, (2) identifying the optimal window size for signal pre-processing, and (3) demonstrating the number of observations required to achieve the desired level of model accuracy,. Crossbred steers (Bos taurus indicus; n = 10) were fitted with GPS collars containing a video camera and tri-axial accelerometers (read-rate = 40 Hz). Distinct behaviors from accelerometer signals, particularly for grazing, were apparent because of the head-down posture. Increasing the smoothing window size to 10 s improved classification accuracy (p < 0.05), but reducing the number of observations below 50% resulted in a decrease in accuracy for all behaviors (p < 0.05). In-pasture observation increased accuracy and precision (0.05 and 0.08 percent, respectively) compared with animal-borne collar video observations.


Subject(s)
Accelerometry , Behavior, Animal , Machine Learning , Animals , Cattle , Accelerometry/methods , Behavior, Animal/physiology , Video Recording/methods , Male , Signal Processing, Computer-Assisted
13.
Int J Behav Nutr Phys Act ; 21(1): 48, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671485

ABSTRACT

BACKGROUND: Sedentary behavior (SB) is a recognized risk factor for many chronic diseases. ActiGraph and activPAL are two commonly used wearable accelerometers in SB research. The former measures body movement and the latter measures body posture. The goal of the current study is to quantify the pattern and variation of movement (by ActiGraph activity counts) during activPAL-identified sitting events, and examine associations between patterns and health-related outcomes, such as systolic and diastolic blood pressure (SBP and DBP). METHODS: The current study included 314 overweight postmenopausal women, who were instructed to wear an activPAL (at thigh) and ActiGraph (at waist) simultaneously for 24 hours a day for a week under free-living conditions. ActiGraph and activPAL data were processed to obtain minute-level time-series outputs. Multilevel functional principal component analysis (MFPCA) was applied to minute-level ActiGraph activity counts within activPAL-identified sitting bouts to investigate variation in movement while sitting across subjects and days. The multilevel approach accounted for the nesting of days within subjects. RESULTS: At least 90% of the overall variation of activity counts was explained by two subject-level principal components (PC) and six day-level PCs, hence dramatically reducing the dimensions from the original minute-level scale. The first subject-level PC captured patterns of fluctuation in movement during sitting, whereas the second subject-level PC delineated variation in movement during different lengths of sitting bouts: shorter (< 30 minutes), medium (30 -39 minutes) or longer (> 39 minute). The first subject-level PC scores showed positive association with DBP (standardized ß ^ : 2.041, standard error: 0.607, adjusted p = 0.007), which implied that lower activity counts (during sitting) were associated with higher DBP. CONCLUSION: In this work we implemented MFPCA to identify variation in movement patterns during sitting bouts, and showed that these patterns were associated with cardiovascular health. Unlike existing methods, MFPCA does not require pre-specified cut-points to define activity intensity, and thus offers a novel powerful statistical tool to elucidate variation in SB patterns and health. TRIAL REGISTRATION: ClinicalTrials.gov NCT03473145; Registered 22 March 2018; https://clinicaltrials.gov/ct2/show/NCT03473145 ; International Registered Report Identifier (IRRID): DERR1-10.2196/28684.


Subject(s)
Principal Component Analysis , Sedentary Behavior , Sitting Position , Wearable Electronic Devices , Humans , Female , Middle Aged , Accelerometry/instrumentation , Accelerometry/methods , Blood Pressure/physiology , Actigraphy/instrumentation , Actigraphy/methods , Aged , Overweight , Postmenopause/physiology , Exercise/physiology , Movement
14.
Front Public Health ; 12: 1288262, 2024.
Article in English | MEDLINE | ID: mdl-38560447

ABSTRACT

The 24-h movement behavior of preschoolers comprises a spectrum of activities, including moderate-to-vigorous intensity physical activity (MVPA), light-intensity physical activity (LPA), screen-based sedentary behavior (SCSB), non-screen-based sedentary behavior (NSCSB), and sleep. While previous research has shed light on the link between movement behaviors and children's mental health, the specific impacts on the unique demographic of Chinese preschoolers remain underexplored. This study significantly contributes to the literature by exploring how 24-h movement behavior affects the mental health of preschoolers in a Chinese context. The study involved205 Chinese preschool children (117 boys and 88 girls) between the ages of 3 and 6 years wore accelerometers to measure their LPA, MVPA, and sedentary behavior (SB), while their parents reported the time spent on sleep and SCSB. The parents also completed the Strength and Difficulties Questionnaire to assess their children's mental health. The study used compositional regression and isotemporal substitution models to examine the relationship between the various components of 24-h movement behavior and mental health. The results showed that greater NCSSB compared to MVPA, LPA, sleep, and SCSB was associated with good prosocial behavior and lower scores on externalizing problems. This highlights the potential of NSCSB as a beneficial component in the daily routine of preschoolers for fostering mental well-being. Replacing 15 min of sleep and SCSB with 15 min of NSCSB was associated with a decrease of 0.24 and 0.15 units, respectively, in externalizing problems. Reallocating 15 min of sleep to NSCSB was linked to an increase of 0.11 units in prosocial behavior. There were no significant substitution effects between LPA and MVPA time with any other movement behavior on prosocial behavior and externalizing problems. Given the positive associations observed, further longitudinal studies are necessary to explore the link between 24-h movement behavior and mental health in preschool children.


Subject(s)
Accelerometry , Mental Health , Male , Female , Humans , Child, Preschool , Child , Accelerometry/methods , Exercise , Sedentary Behavior , Time Factors
15.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676029

ABSTRACT

The increasing use of inertial measurement units (IMU) in biomedical sciences brings new possibilities for clinical research. The aim of this paper is to demonstrate the accuracy of the IMU-based wearable Syde® device, which allows day-long and remote continuous gait recording in comparison to a reference motion capture system. Twelve healthy subjects (age: 23.17 ± 2.04, height: 174.17 ± 6.46 cm) participated in a controlled environment data collection and performed a series of gait tasks with both systems attached to each ankle. A total of 2820 strides were analyzed. The results show a median absolute stride length error of 1.86 cm between the IMU-based wearable device reconstruction and the motion capture ground truth, with the 75th percentile at 3.24 cm. The median absolute stride horizontal velocity error was 1.56 cm/s, with the 75th percentile at 2.63 cm/s. With a measurement error to the reference system of less than 3 cm, we conclude that there is a valid physical recovery of stride length and horizontal velocity from data collected with the IMU-based wearable Syde® device.


Subject(s)
Ankle , Gait , Wearable Electronic Devices , Humans , Gait/physiology , Male , Ankle/physiology , Female , Adult , Young Adult , Biomechanical Phenomena/physiology , Accelerometry/instrumentation , Accelerometry/methods , Gait Analysis/methods , Gait Analysis/instrumentation
16.
Sensors (Basel) ; 24(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38676136

ABSTRACT

The accurate estimation of energy expenditure from simple objective accelerometry measurements provides a valuable method for investigating the effect of physical activity (PA) interventions or population surveillance. Methods have been evaluated previously, but none utilize the temporal aspects of the accelerometry data. In this study, we investigated the energy expenditure prediction from acceleration measured at the subjects' hip, wrist, thigh, and back using recurrent neural networks utilizing temporal elements of the data. The acceleration was measured in children (N = 33) performing a standardized activity protocol in their natural environment. The energy expenditure was modelled using Multiple Linear Regression (MLR), stacked long short-term memory (LSTM) networks, and combined convolutional neural networks (CNN) and LSTM. The correlation and mean absolute percentage error (MAPE) were 0.76 and 19.9% for the MLR, 0.882 and 0.879 and 14.22% for the LSTM, and, with the combined LSTM-CNN, the best performance of 0.883 and 13.9% was achieved. The prediction error for vigorous intensities was significantly different (p < 0.01) from those of the other intensity domains: sedentary, light, and moderate. Utilizing the temporal elements of movement significantly improves energy expenditure prediction accuracy compared to other conventional approaches, but the prediction error for vigorous intensities requires further investigation.


Subject(s)
Accelerometry , Energy Metabolism , Neural Networks, Computer , Humans , Accelerometry/methods , Energy Metabolism/physiology , Male , Female , Child , Exercise/physiology , Linear Models , Memory, Short-Term/physiology
17.
J Vet Med Sci ; 86(6): 631-635, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38684414

ABSTRACT

The sleep-wake cycle represents a crucial physiological process essential for maintaining homeostasis and promoting individual growth. In dogs, alterations in sleep patterns associated with age and dog's correlation with temperament factors, such as nervousness, have been reported, and there is an increasing demand for precise monitoring of sleep and physical activity in dogs. The present study aims to develop an analysis method for measuring sleep-wake patterns and physical activity in dogs by utilizing an accelerometer and a smartphone. By analyzing time series data collected from the accelerometer attached to the dog's collar, a comprehensive sleep and activity analysis model was constructed. This model classified the activity level into seven classes and effectively highlighted the variations in sleep-activity patterns. Two classes with lower activity levels were considered as sleep, while other five levels were regarded as wake based on the rate of occurrence. This protocol of data acquisition and analysis provides a methodology that enables accurate and extended evaluation of both sleep and physical activity in dogs.


Subject(s)
Accelerometry , Sleep , Smartphone , Animals , Dogs/physiology , Sleep/physiology , Accelerometry/veterinary , Accelerometry/methods , Male , Female , Wakefulness/physiology , Monitoring, Physiologic/veterinary , Monitoring, Physiologic/methods , Motor Activity/physiology
18.
IEEE J Biomed Health Inform ; 28(6): 3401-3410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648143

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder that can cause a significant impairment in physical and cognitive functions. Gait disturbances are also reported as a symptom of AD. Previous works have used Convolutional Neural Networks (CNNs) to analyze data provided by motion sensors that monitor Alzheimer's patients. However, these works have not explored continual learning algorithms that allow the CNN to configure itself as it receives new data from these sensors. This work proposes a method aimed at enabling CNNs to learn from a continuous stream of data from motion sensors without having full access to previous data. The CNN identifies the stage of AD from the analysis of data provided by motion sensors. The work includes an experimentation with data captured by accelerometers that monitored the activity of 35 Alzheimer's patients for a week in a daycare center. The CNN achieves an accuracy of 86,94%, 86,48% and 84,37% for 2, 3 and 4 experiences respectively. The proposal provides advantages to working with a continuous stream of data so that the CNN are constantly self-configuring without the intervention of a human. The work can be considered as promising and helpful in finding deep learning solutions in medical cases in which patients are constantly monitored.


Subject(s)
Accelerometry , Algorithms , Alzheimer Disease , Deep Learning , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnosis , Accelerometry/methods , Aged , Male , Female , Signal Processing, Computer-Assisted , Neural Networks, Computer , Aged, 80 and over
19.
Ann Work Expo Health ; 68(5): 443-465, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38597679

ABSTRACT

Measuring the physical demands of work is important in understanding the relationship between exposure to these job demands and their impact on the safety, health, and well-being of working people. However, work is changing and our knowledge of job demands should also evolve in anticipation of these changes. New opportunities exist for noninvasive long-term measures of physical demands through wearable motion sensors, including inertial measurement units, heart rate monitors, and muscle activity monitors. Inertial measurement units combine accelerometers, gyroscopes, and magnetometers to provide continuous measurement of a segment's motion and the ability to estimate orientation in 3-dimensional space. There is a need for a system-thinking perspective on how and when to apply these wearable sensors within the context of research and practice surrounding the measurement of physical job demands. In this paper, a framework is presented for measuring the physical work demands that can guide designers, researchers, and users to integrate and implement these advanced sensor technologies in a way that is relevant to the decision-making needs for physical demand assessment. We (i) present a literature review of the way physical demands are currently being measured, (ii) present a framework that extends the International Classification of Functioning to guide how technology can measure the facets of work, (iii) provide a background on wearable motion sensing, and (iv) define 3 categories of decision-making that influence the questions that we can ask and measures that are needed. By forming questions within these categories at each level of the framework, this approach encourages thinking about the systems-level problems inherent in the workplace and how they manifest at different scales. Applying this framework provides a systems approach to guide study designs and methodological approaches to study how work is changing and how it impacts worker safety, health, and well-being.


Subject(s)
Wearable Electronic Devices , Humans , Wearable Electronic Devices/standards , Accelerometry/instrumentation , Accelerometry/methods , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Workload , Occupational Health , Ergonomics/methods , Heart Rate/physiology
20.
Int J Behav Nutr Phys Act ; 21(1): 43, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654342

ABSTRACT

BACKGROUND: The development of validated "fit-for-purpose" rapid assessment tools to measure 24-hour movement behaviours in children aged 0-5 years is a research priority. This study evaluated the test-retest reliability and concurrent validity of the open-ended and closed-ended versions of the Movement Behaviour Questionnaire for baby (MBQ-B) and child (MBQ-C). METHODS: 300 parent-child dyads completed the 10-day study protocol (MBQ-B: N = 85; MBQ-C: N = 215). To assess validity, children wore an accelerometer on the non-dominant wrist (ActiGraph GT3X+) for 7 days and parents completed 2 × 24-hour time use diaries (TUDs) recording screen time and sleep on two separate days. For babies (i.e., not yet walking), parents completed 2 × 24-hour TUDs recording tummy time, active play, restrained time, screen time, and sleep on days 2 and 5 of the 7-day monitoring period. To assess test-retest reliability, parents were randomised to complete either the open- or closed-ended versions of the MBQ on day 7 and on day 10. Test-retest intraclass correlation coefficients (ICC's) were calculated using generalized linear mixed models and validity was assessed via Spearman correlations. RESULTS: Test-retest reliability for the MBQ-B was good to excellent with ICC's ranging from 0.80 to 0.94 and 0.71-0.93 for the open- and closed-ended versions, respectively. For both versions, significant positive correlations were observed between 24-hour diary and MBQ-B reported tummy time, active play, restrained time, screen time, and sleep (rho = 0.39-0.87). Test-retest reliability for the MBQ-C was moderate to excellent with ICC's ranging from 0.68 to 0.98 and 0.44-0.97 for the open- and closed-ended versions, respectively. For both the open- and closed-ended versions, significant positive correlations were observed between 24-hour diary and MBQ-C reported screen time and sleep (rho = 0.44-0.86); and between MBQ-C reported and device-measured time in total activity and energetic play (rho = 0.27-0.42). CONCLUSIONS: The MBQ-B and MBQ-C are valid and reliable rapid assessment tools for assessing 24-hour movement behaviours in infants, toddlers, and pre-schoolers. Both the open- and closed-ended versions of the MBQ are suitable for research conducted for policy and practice purposes, including the evaluation of scaled-up early obesity prevention programs.


Subject(s)
Parents , Sleep , Humans , Infant , Female , Male , Reproducibility of Results , Child, Preschool , Surveys and Questionnaires/standards , Sleep/physiology , Accelerometry/methods , Accelerometry/instrumentation , Child Behavior , Screen Time , Movement , Infant, Newborn , Sedentary Behavior , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL
...