Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Hazard Mater ; 441: 129869, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36063709

ABSTRACT

The first synthetic review of the PAHs effects on microalgae in experimental studies and aquatic ecosystems is provided. Phytoplankton and phytobenthos from marine and freshwaters show a wide range of sensitivities to PAHs, and can accumulate, transfer and degrade PAHs. Different toxicological endpoints including growth, chlorophyll a, in vivo fluorescence yield, membrane integrity, lipid content, anti-oxidant responses and gene expression are reported for both freshwater and marine microalgal species exposed to PAHs in culture and in natural assemblages. Photosynthesis, the key process carried out by microalgae appears to be the most impacted by PAH exposure. The effect of PAHs is both dose- and species-dependent and influenced by environmental factors such as UV radiation, temperature, and salinity. Under natural conditions, PAHs are typically present in mixtures and the toxic effects induced by single PAHs are not necessarily extrapolated to mixtures. Natural microalgal communities appear more sensitive to PAH contamination than microalgae in monospecific culture. To further refine the ecological risks linked to PAH exposure, species-sensitivity distributions (SSD) were analyzed based on published EC50s (half-maximal effective concentrations during exposure). HC5 (harmful concentration for 5% of the species assessed) was derived from SSD to provide a toxicity ranking for each of nine PAHs. The most water-soluble PAHs naphthalene (HC5 = 650 µg/L), acenaphthene (HC5 = 274 µg/L), and fluorene (HC5 = 76.8 µg/L) are the least toxic to microalgae, whereas benzo[a]pyrene (HC5 = 0.834 µg/L) appeared as the more toxic. No relationship between EC50 and cell biovolume was established, which does not support assumptions that larger microalgal cells are less sensitive to PAHs, and calls for further experimental evidence. The global PAHs HC5 for marine species was on average higher than for freshwater species (26.3 and 1.09 µg/L, respectively), suggesting a greater tolerance of marine phytoplankton towards PAHs. Nevertheless, an important number of experimental exposure concentrations and reported toxicity thresholds are above known PAHs solubility in water. The precise and accurate assessment of PAHs toxicity to microalgae will continue to benefit from more rigorously designed experimental studies, including control of exposure duration and biometric data on test microalgae.


Subject(s)
Microalgae , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Acenaphthenes/metabolism , Acenaphthenes/pharmacology , Antioxidants/metabolism , Benzo(a)pyrene/metabolism , Chlorophyll A , Ecosystem , Fluorenes/metabolism , Fresh Water , Lipids , Phytoplankton , Polycyclic Aromatic Hydrocarbons/analysis , Water/pharmacology , Water Pollutants, Chemical/metabolism
2.
Chemosphere ; 303(Pt 2): 135001, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35605730

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are pollutants of critical environmental and public health concern and their elimination from contaminated sites is significant for the environment. Biodegradation studies have demonstrated the ability of bacteria in biofilm conformation to enhance the biodegradation of pollutants. In this study, we used our newly developed microfluidic platform to explore biofilm development, properties, and applications of fluid flow, as a new technique for screening PAHs-degrading biofilms. The optimization and evaluation of the flow condition in the microchannels were performed through computational fluid dynamics (CFD). The formation of biofilms by PAHs-degrading bacteria Pseudomonas sp. P26 and Gordonia sp. H19, as pure cultures and co-culture, was obtained in the developed microchips. The removal efficiencies of acenaphthene, fluoranthene and pyrene were determined by HPLC. All the biofilms formed in the microchips removed all tested PAHs, with the higher removal percentages observed with the Pseudomonas sp. P26 biofilm (57.4% of acenaphthene, 40.9% of fluoranthene, and 28.9% of pyrene). Pseudomonas sp. P26 biofilm removed these compounds more efficiently than planktonic cultures. This work proved that the conformation of biofilms enhances the removal rate. It also provided a new tool to rapid and low-cost screen for effective pollutant-degrading biofilms.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Acenaphthenes/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Biofilms , Environmental Pollutants/metabolism , Lab-On-A-Chip Devices , Microfluidics , Polycyclic Aromatic Hydrocarbons/analysis , Pyrenes/metabolism
3.
Nat Commun ; 10(1): 4935, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666516

ABSTRACT

DNA gyrase is an essential enzyme involved in the homeostatic control of DNA supercoiling and the target of successful antibacterial compounds. Despite extensive studies, a detailed architecture of the full-length DNA gyrase from the model organism E. coli is still missing. Herein, we report the complete structure of the E. coli DNA gyrase nucleoprotein complex trapped by the antibiotic gepotidacin, using phase-plate single-particle cryo-electron microscopy. Our data unveil the structural and spatial organization of the functional domains, their connections and the position of the conserved GyrA-box motif. The deconvolution of two states of the DNA-binding/cleavage domain provides a better understanding of the allosteric movements of the enzyme complex. The local atomic resolution in the DNA-bound area reaching up to 3.0 Å enables the identification of the antibiotic density. Altogether, this study paves the way for the cryo-EM determination of gyrase complexes with antibiotics and opens perspectives for targeting conformational intermediates.


Subject(s)
DNA Gyrase/ultrastructure , Escherichia coli , Nucleoproteins/ultrastructure , Acenaphthenes/metabolism , Anti-Bacterial Agents/metabolism , Cryoelectron Microscopy , DNA Gyrase/metabolism , Heterocyclic Compounds, 3-Ring/metabolism , Models, Molecular , Multiprotein Complexes/ultrastructure , Nucleoproteins/metabolism , Single Molecule Imaging
4.
Chemosphere ; 219: 748-755, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30557732

ABSTRACT

A gram-negative bacterium designated as RTSB was isolated from a petroleum-contaminated soil competent of utilizing acenaphthene as the solitary source of carbon and energy. The strain RTSB was identified as a Sphingobacterium species based on the morphological, nutritional and biochemical features of the organism as well as 16S rRNA sequence analysis. By a combination of chromatographic and spectrometric techniques, different metabolites of the acenaphthene degradation pathway by the strain RTSB were isolated and identified, which indicate a novel acenaphthene degradation pathway involving 1-naphthoic acid. Characterization of different metabolites suggested transformation of acenaphthene to 1-naphthoic acid through 1-acenaphthenol, acenaphthenequinone and naphthalene-1,8-dicarboxylic acid in the upper pathway of degradation; while in the later, 1-naphthoic acid was processed via a novel meta-cleavage pathway, leading to the formation of trans-3-carboxy-2-hydroxybenzylidenepyruvic acid, and then to salicylic acid and catechol entering into the TCA cycle intermediates. This detailed study of acenaphthene degradation by a Sphingobacterium species describes a distinct pathway of acenaphthene degradation involving the novel metabolite trans-3-carboxy-2-hydroxybenzylidenepyruvic acid.


Subject(s)
Acenaphthenes/metabolism , Metabolic Networks and Pathways , Sphingobacterium/metabolism , Biodegradation, Environmental , Carboxylic Acids/metabolism , Naphthalenes/metabolism , Soil Microbiology
5.
Braz. j. microbiol ; 48(2): 314-325, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839384

ABSTRACT

Abstract This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25 °C, 30 °C, 35 °C, 37 °C, 38 °C, 40 °C and 45 °C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37 °C, 37 °C, 30 °C and 35 °C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Rivers/microbiology , Fluorenes/metabolism , Acenaphthenes/metabolism , South Africa , Temperature , Bacteria/classification , Biotransformation
6.
Braz J Microbiol ; 48(2): 314-325, 2017.
Article in English | MEDLINE | ID: mdl-27956015

ABSTRACT

This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25°C, 30°C, 35°C, 37°C, 38°C, 40°C and 45°C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37°C, 37°C, 30°C and 35°C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.


Subject(s)
Acenaphthenes/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Fluorenes/metabolism , Rivers/microbiology , Bacteria/classification , Biotransformation , South Africa , Temperature
7.
Chemosphere ; 153: 315-21, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27023119

ABSTRACT

The relationship between polycyclic aromatic hydrocarbons (PAHs) and hypertension remains a subject of debate. The aims of this study were to determine an association of concentrations of PAHs in housewives' hair with hypertension risk and the modification effect of single nucleotide polymorphisms (SNPs) related to Phase I metabolism of PAHs. We recruited 405 women for a cross-sectional study in Shanxi Province, China, including 170 with hypertension (the case group) and 235 without hypertension (the control group). We analyzed 26 individual PAHs in hair samples and the SNPs of the genes including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2, CYP1B1 and CYP2E1. Our results showed that seven PAHs in hair samples were measured with detection rate >70%. Only acenaphthylene was found to be associated with an increased risk of hypertension with adjustment for the potential confounders following Bonferroni correction, whereas others not. No SNPs of the concerned genes were found to be associated with the risk of hypertension. A multiple interaction effect of PAHs in housewives' hair and SNPs on hypertension risk was not observed. It was concluded that PAHs tended to contribute to the formation of hypertension.


Subject(s)
Acenaphthenes/analysis , Air Pollution, Indoor/adverse effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP2E1/genetics , Hair/metabolism , Hypertension/genetics , Acenaphthenes/metabolism , Adult , Aged , China , Cross-Sectional Studies , Female , Humans , Hypertension/diagnosis , Middle Aged , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Polymorphism, Single Nucleotide/genetics
8.
Xenobiotica ; 46(8): 683-702, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26586303

ABSTRACT

1. GSK2140944 is a novel bacterial topoisomerase inhibitor in development for the treatment of bacterial infections. The metabolism and disposition in healthy human subjects was investigated. 2. Six male subjects received [(14)C] GSK2140944 orally (2000 mg) and as a single 2-hour i.v. infusion (1000 mg). Urinary elimination (59%) was major by the i.v. route, whereas fecal elimination (53%) pre-dominated via the oral route. Accelerator mass spectrometry (AMS) was used for the analysis of plasma and bile samples due to the low level of radioactivity in samples (low specific activity of the doses). Unchanged GSK2140944 was the predominant circulating component (>60% DRM), with the main circulating metabolite M4 formed by oxidation of the triazaacenaphthylene moiety representing 10.8% (considered major) and 8.6% drug-related material by the oral and i.v. route, respectively. Approximately 50% of the oral dose was absorbed and eliminated mainly as unchanged GSK2140944 in urine (∼20% of dose). Elimination via metabolism (∼13% of dose) was relatively minor. The facile oxidation of GSK2140944 to metabolite M4 was believed to be a result of activation by adjacent electron withdrawing groups. 3. This study demonstrates the use of AMS to overcome radioprofiling challenges presented by low specific activity resulted from high doses administration.


Subject(s)
Acenaphthenes/metabolism , Anti-Bacterial Agents/metabolism , Heterocyclic Compounds, 3-Ring/metabolism , Topoisomerase Inhibitors/metabolism , Acenaphthenes/urine , Adult , Anti-Bacterial Agents/urine , Healthy Volunteers , Heterocyclic Compounds, 3-Ring/urine , Humans , Male , Tissue Distribution , Topoisomerase Inhibitors/urine
9.
Chem Res Toxicol ; 28(2): 268-78, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25642975

ABSTRACT

Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH)pollutants, were incubated at 50 µM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1,1A2, 2C9, and 3A4, and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and dioxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of1-acenaphthenol as a major product, with turnover rates of 6.7,4.5, and 3.6 nmol product formed/min/nmol P450 for P4502A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and dioxygenated products.P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min/nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (K(s) 1.8 and 0.16 µM,respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6a nd 2A13. Neither of these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and dioxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans.


Subject(s)
Acenaphthenes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Acenaphthenes/chemistry , Humans , Molecular Structure , Oxidation-Reduction
10.
Water Res ; 69: 100-109, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25437342

ABSTRACT

The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 µg L(-1) d(-1) and 1639 µg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers.


Subject(s)
Groundwater/microbiology , Isotope Labeling , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollution/analysis , Acenaphthenes/metabolism , Biodegradation, Environmental , Carbon Isotopes , Fluorenes/metabolism , Naphthalenes/metabolism , Oxidation-Reduction , Oxygen/metabolism , Phenanthrenes/metabolism , Time Factors
11.
Microb Biotechnol ; 7(2): 114-29, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24325265

ABSTRACT

A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium.


Subject(s)
Fluorenes/metabolism , Metabolic Networks and Pathways , Polycyclic Aromatic Hydrocarbons/metabolism , Sphingomonadaceae/metabolism , Acenaphthenes/metabolism , Biotransformation , Chromatography, Liquid , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
12.
J Am Chem Soc ; 135(31): 11663-9, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23862760

ABSTRACT

Identifying cancer cells and quantifying cancer-related events in particular organelles in a rapid and sensitive fashion are important for early diagnosis and for studies on pathology and therapeutics of cancers. Herein a smart "off-on" cyclooxygenase-2-specific fluorescence probe (ANQ-IMC-6), able to report the presence of cancer cells and to image Golgi-related events, has been designed and evaluated. Cyclooxygenase-2 (COX-2) has been used as imaging target in the probe design, since this enzyme is a biomarker of virtually all cancer cell lines. In the free state in aqueous solution, ANQ-IMC-6 mainly exists in a folded conformation where probe fluorescence is quenched through photoinduced electron transfer between the fluorophore acenaphtho[1,2-b]quinoxaline (ANQ) and the recognition group, indomethacin (IMC). Fluorescence is turned on, by restraining the photoinduced electron transfer, when ANQ-IMC-6 is forced to adopt the unfolded state following binding to COX-2 in the Golgi apparatus of cancer cells. ANQ-IMC-6 provides high signal-to-background staining and has been successfully used to rapidly differentiate cancer cells from normal cells when using flow cytometry and one- and two-photon fluorescence microscopic imaging. Furthermore, ANQ-IMC-6 may be able to visualize dynamic changes of the Golgi apparatus during cancer cell apoptosis, with possible application to early diagnosis.


Subject(s)
Cyclooxygenase 2/metabolism , Fluorescent Dyes/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Acenaphthenes/chemistry , Acenaphthenes/metabolism , Cell Line, Tumor , Fluorescent Dyes/chemistry , Golgi Apparatus/metabolism , Humans , Indomethacin/chemistry , Indomethacin/metabolism , Models, Molecular , Optical Imaging/methods , Quinoxalines/chemistry , Quinoxalines/metabolism
13.
Br J Cancer ; 108(9): 1870-8, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23558901

ABSTRACT

BACKGROUND: Bcl-2-like members have been found to be inherently overexpressed in many types of haematologic malignancies. The small-molecule S1 is a BH3 mimetic and a triple inhibitor of Bcl-2, Mcl-1 and Bcl-XL. METHODS: The lethal dose 50 (LD(50)) values of S1 in five leukaemic cell lines and 41 newly diagnosed leukaemia samples were tested. The levels of Bcl-2 family members and phosphorylated Bcl-2 were semiquantitatively measured by western blotting. The interactions between Bcl-2 family members were tested by co-immunoprecipitation. The correlation between the LD(50) and expression levels of Bcl-2 family members, alone or in combination, was analysed. RESULTS: S1 exhibited variable sensitivity with LD(50) values ranging >2 logs in both established and primary leukaemic cells. The ratio of pBcl-2/(Bcl-2+Mcl-1) could predict the S1 response. Furthermore, we demonstrated that pBcl-2 antagonised S1 by sequestering the Bak and Bim proteins that were released from Mcl-1, andpBcl-2/Bak, pBcl-2/Bax and pBcl-2/Bim complexes cannot be disrupted by S1. CONCLUSION: A predictive index was obtained for the novel BH3 mimetic S1. The shift of proapoptotic proteins from being complexed with Mcl-1 to being complexed with pBcl-2 was revealed for the first time, which is the mechanism underlying the index value described herein.


Subject(s)
Acenaphthenes/pharmacology , Apoptosis/drug effects , Leukemia/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrroles/pharmacology , bcl-X Protein/antagonists & inhibitors , Acenaphthenes/adverse effects , Acenaphthenes/metabolism , Apoptosis Regulatory Proteins/metabolism , BH3 Interacting Domain Death Agonist Protein , Cell Line, Tumor , Hematologic Neoplasms/metabolism , Humans , Lethal Dose 50 , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrroles/adverse effects , Pyrroles/metabolism , bcl-X Protein/metabolism
14.
Res Microbiol ; 164(2): 155-63, 2013.
Article in English | MEDLINE | ID: mdl-23178176

ABSTRACT

Utilization of an enrichment technique led to isolation of a bacterium from municipal waste-contaminated soil in which acenaphthene was used as the sole source of carbon and energy. The isolate was identified as Acinetobacter sp. strain AGAT-W based on morphological, nutritional and biochemical characteristics and 16S rRNA sequence analysis. Characterization of metabolites by HPLC and GC-MS suggested hydroxylation of acenaphthene to 1-acenaphthenol, which was subsequently transformed to catechol via acenaphthenequinone, naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid and salicylic acid before entering into the tricarboxylic acid cycle. Detection of key enzymes, viz., 1-acenaphthenol dehydrogenase, salicylaldehyde dehydrogenase and catechol 1,2-dioxygenase, in the cell-free extract of Acinetobacter sp. further supported the proposed degradation pathway. This study proposes a metabolic pathway involved in acenaphthene assimilation in strain AGAT-W.


Subject(s)
Acenaphthenes/metabolism , Acinetobacter/genetics , Acinetobacter/metabolism , Metabolic Networks and Pathways , Acinetobacter/classification , Acinetobacter/isolation & purification , Biotransformation , Carbon/metabolism , Chromatography, High Pressure Liquid , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Energy Metabolism , Gas Chromatography-Mass Spectrometry , Models, Biological , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
15.
Environ Sci Pollut Res Int ; 19(5): 1515-23, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21997282

ABSTRACT

PURPOSE: Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil. MATERIALS AND METHODS: The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid-vapor and solid-vapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis. RESULTS AND DISCUSSION: DDPB affects both liquid-vapor and solid-vapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas-liquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas-liquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid-vapor volatilization of PAHs. CONCLUSIONS: The overall effect of the two simultaneous effects of DDPB on liquid-vapor and solid-vapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Pyridinium Compounds/chemistry , Soil Pollutants/chemistry , Surface-Active Agents/chemistry , Acenaphthenes/chemistry , Acenaphthenes/metabolism , Micelles , Phenanthrenes/chemistry , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Pyridinium Compounds/metabolism , Soil , Soil Pollutants/metabolism , Surface-Active Agents/metabolism , Volatilization
16.
Water Res ; 45(15): 4459-69, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21741669

ABSTRACT

Three independent techniques were used to assess the biodegradation of monoaromatic hydrocarbons and low-molecular weight polyaromatic hydrocarbons in the alluvial aquifer at the site of a former cokery (Flémalle, Belgium). Firstly, a stable carbon isotope-based field method allowed quantifying biodegradation of monoaromatic compounds in situ and confirmed the degradation of naphthalene. No evidence could be deduced from stable isotope shifts for the intrinsic biodegradation of larger molecules such as methylnaphthalenes or acenaphthene. Secondly, using signature metabolite analysis, various intermediates of the anaerobic degradation of (poly-) aromatic and heterocyclic compounds were identified. The discovery of a novel metabolite of acenaphthene in groundwater samples permitted deeper insights into the anaerobic biodegradation of almost persistent environmental contaminants. A third method, microcosm incubations with 13C-labeled compounds under in situ-like conditions, complemented techniques one and two by providing quantitative information on contaminant biodegradation independent of molecule size and sorption properties. Thanks to stable isotope labels, the sensitivity of this method was much higher compared to classical microcosm studies. The 13C-microcosm approach allowed the determination of first-order rate constants for 13C-labeled benzene, naphthalene, or acenaphthene even in cases when degradation activities were only small. The plausibility of the third method was checked by comparing 13C-microcosm-derived rates to field-derived rates of the first approach. Further advantage of the use of 13C-labels in microcosms is that novel metabolites can be linked more easily to specific mother compounds even in complex systems. This was achieved using alluvial sediments where 13C-acenaphthyl methylsuccinate was identified as transformation product of the anaerobic degradation of acenaphthene.


Subject(s)
Environmental Monitoring/methods , Hydrocarbons, Aromatic/chemistry , Acenaphthenes/chemistry , Acenaphthenes/metabolism , Anaerobiosis , Biodegradation, Environmental , Carbon Isotopes , Hydrocarbons, Aromatic/metabolism , Succinates/chemistry , Water Supply
17.
J Environ Qual ; 40(2): 653-6, 2011.
Article in English | MEDLINE | ID: mdl-21520772

ABSTRACT

The subcellular process and distribution of polycyclic aromatic hydrocarbons (PAHs) in arbuscular mycorrhizal plants remains to be elucidated. This work used a greenhouse experiment to show that, accompanied by the apoplastic and symplastic water movement through the root, acenaphthene (ACE) as a representative PAH passed through the cell-wall boundary, dissolved in the cell solution, and partition organelles in arbuscular mycorrhizal roots of ryegrass (Lolium multiflorum Lam.). The observed concentrations of ACE in organelles were 0.6 to 4.4 times higher than in the cell walls. The cell wall and organelles were the dominant storage domains for ACE in the root, and the distribution of ACE in cells of mycorrhizal ryegrass roots was, in descending order, cell organelles (40.8-70.8%) > cell wall (19.7-3.8%) cell solution (9.6-20.5%).


Subject(s)
Cell Wall/metabolism , Lolium , Mycorrhizae/metabolism , Organelles/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Polycyclic Aromatic Hydrocarbons/metabolism , Acenaphthenes/metabolism , Biodegradation, Environmental , Lolium/anatomy & histology , Lolium/metabolism , Lolium/microbiology , Mycorrhizae/chemistry , Organelles/chemistry , Plant Roots/chemistry
18.
Cell Death Differ ; 17(11): 1795-804, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20489726

ABSTRACT

Persistently hyperphosphorylated Akt contributes to human oncogenesis and resistance to therapy. Triciribine (TCN) phosphate (TCN-P), the active metabolite of the Akt phosphorylation inhibitor TCN, is in clinical trials, but the mechanism by which TCN-P inhibits Akt phosphorylation is unknown. Here we show that in vitro, TCN-P inhibits neither Akt activity nor the phosphorylation of Akt S473 and T308 by mammalian target of rapamycin or phosphoinositide-dependent kinase 1. However, in intact cells, TCN inhibits EGF-stimulated Akt recruitment to the plasma membrane and phosphorylation of Akt. Surface plasmon resonance shows that TCN, but not TCN, binds Akt-derived pleckstrin homology (PH) domain (K(D): 690 nM). Furthermore, nuclear magnetic resonance spectroscopy shows that TCN-P, but not TCN, binds to the PH domain in the vicinity of the PIP3-binding pocket. Finally, constitutively active Akt mutants, Akt1-T308D/S473D and myr-Akt1, but not the transforming mutant Akt1-E17K, are resistant to TCN and rescue from its inhibition of proliferation and induction of apoptosis. Thus, the results of our studies indicate that TCN-P binds to the PH domain of Akt and blocks its recruitment to the membrane, and that the subsequent inhibition of Akt phosphorylation contributes to TCN-P antiproliferative and proapoptotic activities, suggesting that this drug may be beneficial to patients whose tumors express persistently phosphorylated Akt.


Subject(s)
Acenaphthenes/metabolism , Acenaphthenes/pharmacology , Cell Membrane/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribonucleotides/metabolism , Ribonucleotides/pharmacology , 3-Phosphoinositide-Dependent Protein Kinases , Animals , Apoptosis , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Fluorescent Antibody Technique , Gene Amplification , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Magnetic Resonance Spectroscopy , Membrane Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation/drug effects , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/chemistry , Signal Transduction , Surface Plasmon Resonance , TOR Serine-Threonine Kinases/metabolism
19.
Chemosphere ; 79(10): 1003-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20378150

ABSTRACT

The effect and persistence of six organic xenobiotics was tested under sulfate-, iron-, and nitrate-reducing conditions in primary sewage sludge suspensions. The xenobiotics tested were acenaphthene, phenanthrene, di(2-ethylhexyl)phthalate (DEHP), 4-nonylphenol (4-NP), linear alkylbenzene sulfonate (LAS), and 1,2,4-trichlorobenzene (1,2,4-TCB) added to initial analytical concentrations of 54-117 mgL(-1). The suspensions were incubated at 30 degrees C for 15 weeks and rates of sulfate, iron, and nitrate reduction were estimated from the time course of hydrogen sulfide accumulation, Fe(II) accumulation, and nitrate depletion, respectively. Chemical analysis showed that the xenobiotics were persistent under the different electron acceptor regimes for the duration of the experiment. This was partly attributed to low bioavailability and microbial toxicity of the xenobiotics. Rates of anaerobic respiration in control suspensions (without added xenobiotics) showed a weekly reduction potential of 0.84 mM SO(4)(2-), 0.92 mM Fe(III), and 9.25 mM NO(3)(-). All three processes were completely inhibited by 1,2,4-TCB (54 mgL(-1)) whereas there was no significant (P<0.05) toxicity of phenanthrene (109 mgL(-1)) and DEHP (105 mgL(-1)). Sulfate reduction was inhibited completely by LAS (105 mgL(-1)), 76% by acenaphthene (54 mgL(-1)) and 57% by 4-NP (117 mgL(-1)), and likewise iron reduction was inhibited 62% by LAS and 55% by 4-NP (the latter though at P<0.10). Nitrate reduction was not significantly inhibited by acenaphthene and 4-NP and furthermore was resistant to LAS toxicity (105 mgL(-1)). Nitrate reduction also had the highest potential for mineralization of organic matter and thus was the most robust of the tested anaerobic processes in the sewage sludge suspensions.


Subject(s)
Iron/metabolism , Nitrates/metabolism , Sewage/chemistry , Sulfates/metabolism , Xenobiotics/toxicity , Acenaphthenes/chemistry , Acenaphthenes/metabolism , Acenaphthenes/toxicity , Benzenesulfonates/chemistry , Benzenesulfonates/metabolism , Benzenesulfonates/toxicity , Biodegradation, Environmental , Chlorobenzenes/chemistry , Chlorobenzenes/metabolism , Chlorobenzenes/toxicity , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/metabolism , Diethylhexyl Phthalate/toxicity , Hydrogen Sulfide/metabolism , Iron/chemistry , Nitrates/chemistry , Phenanthrenes/chemistry , Phenanthrenes/metabolism , Phenanthrenes/toxicity , Phenols/chemistry , Phenols/metabolism , Phenols/toxicity , Sewage/microbiology , Sulfates/chemistry , Time Factors , Xenobiotics/chemistry , Xenobiotics/metabolism
20.
Biodegradation ; 20(6): 837-43, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19543983

ABSTRACT

Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene --> naphthalene-1,8-dicarboxylic acid --> 1-naphthoic acid --> 1,2-dihydroxynaphthalene --> salicylic acid --> catechol --> cis,cis-muconic acid.


Subject(s)
Acenaphthenes/metabolism , Catechols/metabolism , Naphthols/metabolism , Stenotrophomonas/metabolism , Acenaphthenes/chemistry , Biodegradation, Environmental/drug effects , Chromatography, High Pressure Liquid , Culture Media , Hydrocarbons, Aromatic/pharmacology , Phylogeny , Spectrometry, Mass, Electrospray Ionization , Stenotrophomonas/enzymology , Stenotrophomonas/growth & development , Stenotrophomonas/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...