Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575023

ABSTRACT

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Subject(s)
Droughts , Forests , Trees , Trees/physiology , Italy , Quercus/growth & development , Quercus/physiology , Climate Change , Pinus/physiology , Pinus/growth & development , Environmental Monitoring , Fraxinus/physiology , Fraxinus/growth & development , Acer/growth & development , Acer/physiology
2.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602711

ABSTRACT

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Subject(s)
Climate Change , Trees , Urbanization , Trees/growth & development , Acer/growth & development , Acer/physiology , Quercus/growth & development , Quercus/physiology , Forests , Cities
3.
BMC Plant Biol ; 22(1): 40, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35045819

ABSTRACT

BACKGROUND: Most plants encounter water stress at one or more different stages of their life cycle. The maintenance of genetic stability is the integral component of desiccation tolerance that defines the storage ability and long-term survival of seeds. Embryonic axes of desiccation-sensitive recalcitrant seeds of Acer pseudoplatnus L. were used to investigate the genotoxic effect of desiccation. Alkaline single-cell gel electrophoresis (comet assay) methodology was optimized and used to provide unique insights into the onset and repair of DNA strand breaks and 8-oxo-7,8-dihydroguanine (8-oxoG) formation during progressive steps of desiccation and rehydration. RESULTS: The loss of DNA integrity and impairment of damage repair were significant predictors of the viability of embryonic axes. In contrast to the comet assay, automated electrophoresis failed to detect changes in DNA integrity resulting from desiccation. Notably, no significant correlation was observed between hydroxyl radical (Ù OH) production and 8-oxoG formation, although the former is regarded to play a major role in guanine oxidation. CONCLUSIONS: The high-throughput comet assay represents a sensitive tool for monitoring discrete changes in DNA integrity and assessing the viability status in plant germplasm processed for long-term storage.


Subject(s)
Acer/genetics , Comet Assay/methods , DNA Repair , Oxidative Stress , Seeds/genetics , Acer/chemistry , Acer/growth & development , Buffers , DNA Fragmentation , DNA-Formamidopyrimidine Glycosylase/metabolism , Desiccation , Guanosine/analogs & derivatives , Guanosine/genetics , Guanosine/metabolism , Principal Component Analysis , Reactive Oxygen Species/metabolism , Reproducibility of Results , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism
4.
Plant Cell Environ ; 44(4): 1243-1256, 2021 04.
Article in English | MEDLINE | ID: mdl-32683699

ABSTRACT

Hydraulic redistribution (HR) can buffer drought events of tree individuals, however, its relevance for neighbouring trees remains unclear. Here, we quantified HR to neighbouring trees in single- and mixed-species combinations. We hypothesized that uptake of HR water positively correlates with root length, number of root tips and root xylem hydraulic conductivity and that neighbours in single-species combinations receive more HR water than in phylogenetic distant mixed-species combinations. In a split-root experiment, a sapling with its roots split between two pots redistributed deuterium labelled water from a moist to a dry pot with an additional tree each. We quantified HR water received by the sapling in the dry pot for six temperate tree species. After 7 days, one quarter of the water in roots (2.1 ± 0.4 ml), stems (0.8 ± 0.2 ml) and transpiration (1.0 ± 0.3 ml) of the drought stressed sapling originated from HR. The amount of HR water transpired by the receiving plant stayed constant throughout the experiment. While the uptake of HR water increased with root length, species identity did not affect HR as saplings of Picea abies ((L.) Karst) and Fagus sylvatica (L.) in single- and mixed-species combinations received the same amount of HR water.


Subject(s)
Forests , Trees/physiology , Acer/growth & development , Acer/physiology , Dehydration , Fagaceae/growth & development , Fagaceae/physiology , Plant Leaves/physiology , Plant Roots/growth & development , Plant Roots/physiology , Plant Transpiration , Pseudotsuga/growth & development , Pseudotsuga/physiology , Quercus/growth & development , Quercus/physiology , Trees/growth & development , Water/metabolism , Xylem/growth & development , Xylem/physiology
5.
BMC Plant Biol ; 20(1): 410, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883206

ABSTRACT

BACKGROUND: To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data. RESULTS: Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified. CONCLUSIONS: These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.


Subject(s)
Acer/genetics , Metabolic Networks and Pathways , Metabolome , Plant Growth Regulators/metabolism , Plant Leaves/growth & development , Transcriptome , Acer/growth & development , Acer/metabolism , Gene Expression Profiling , Metabolic Networks and Pathways/genetics , Metabolomics , Plant Growth Regulators/genetics , Plant Leaves/genetics , Transcription, Genetic
6.
BMC Plant Biol ; 20(1): 309, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32615933

ABSTRACT

BACKGROUND: Tissue culture and rapid propagation technology is an important way to solve the difficulties of plant propagation. This experiment aims to explore the appropriate conditions at each stage of the red maple's tissue culture process and to obtain plantlets, thus providing a theoretical basis for the establishment of the red maple's tissue culture system. RESULTS: The results showed that the stem segment is the most suitable explant for inducing embryogenic callus. The MS (Murashige&Skoog) + 0.8 mg/L TDZ (Thidiazuron) + 1.0 mg/L 6-BA (6-Benzylaminopurine) + 0.5 mg/L IAA(Indole-3-acetic acid) + 35 g/L sucrose+ 7.5 g/L semi-fixed medium was the best for callus formation. When selecting type VI callus as embryonic callus induction material, MS + 0.6 mg/L TDZ + 0.5 mg/L 6-BA + 2.0 mg/L IAA + 35 g/L sucrose+ 7.5 g/L semi-fixed medium can get embryonic callus. The optimal medium for adventitious bud induction is MS + 1.0 mg/L TDZ + 3.0 mg/L 6-BA+ 0.2 mg/L NAA (1-Naphthaleneacetic acid) + 1.2 mg/L IAA + 35 g/L sucrose+ 7.5 g/L semi-fixed medium. The induction rate of adventitious roots in MS + 0.6 mg/L TDZ + 1.0 mg/L 6-BA+ 3 mg/L NAA + 35 g/L sucrose+ 7.5 g/L semi-fixed medium was the highest, reaching 76%. CONCLUSIONS: In the course of our research, we found that PGRs play an important role in the callus induction stage, and the effect of TDZ is particularly obvious; The callus cells grow and proliferate according to the "S" growth curve, and can be sub-cultured when the highest growth point is reached to maintain the rapid proliferation of the callus cells and to avoid inactivation of callus caused by tight niche.


Subject(s)
Acer/growth & development , Cambium/embryology , Plant Shoots/growth & development , Acer/embryology , Plant Roots/growth & development , Plant Shoots/embryology , Regeneration
7.
J Hazard Mater ; 392: 122280, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32066021

ABSTRACT

Two-year-old seedlings of Acer platanoides were cultivated during a three-month hydroponic experiment in modified Knop solution enriched with inorganic (As(III), As(V)) and organic (dimethylarsinic acid - DMA) arsenic forms at 0.06 mM, 0.6 mM and their combinations. The profile and content of low molecular weight organic acids (LMWOAs) and phenolic compounds were also determined in the rhizosphere, roots and leaves. Arsenic (As) treatment caused an elevated creation of the above mentioned metabolites, which was higher in leaves than in the rhizosphere or roots, and their overall content was correlated with the concentration of As in A. platanoides organs. The addition of all As forms strongly induced the exudation of citric and oxalic acids into the rhizosphere, while malonic, acetic, citric and malic acids were formed in the roots. The most differential profile of roots was confirmed for As(V) 0.06 mM (4-hydroxybenzoic (4-HBA), syringic, 2,5 dihydroxybenzoic (2,5-DHBA), caffeic, chlorogenic, ferulic, p-coumaric and sinapic acids and catechin). The obtained results indicate that the presence of particular As forms has a significant impact on the content and profile of exuded and created LMWOAs and phenolic compounds, and can also have a decisive influence on the activation of appropriate detoxification mechanisms.


Subject(s)
Acer/drug effects , Arsenicals/administration & dosage , Acer/growth & development , Acer/metabolism , Acids/metabolism , Molecular Weight , Phenols/metabolism , Phytochemicals/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Rhizosphere , Seedlings/drug effects , Seedlings/growth & development
8.
Ecotoxicol Environ Saf ; 183: 109475, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31442810

ABSTRACT

Community-scale impacts of glyphosate-based herbicides on wetland plant communities and the magnitude of those impacts that should be considered biologically relevant are poorly understood. We contrast three different thresholds for setting biologically meaningful critical effect sizes for complex ANOVA study designs. We use each of the of the critical effect sizes to determine optimal α levels for assessment of how different concentrations of glyphosate-based herbicides affect wetland plant communities over two years of herbicide application (alone and in combination with agricultural fertilizers) and two subsequent years without herbicide (or fertilizer) application. The application of glyphosate-based herbicides was found to result in a decrease in macrophyte species richness, an increase in macrophyte species evenness, a decrease in macrophyte cover and a reduction in community similarity. There was little evidence that nutrient additions directly or indirectly affected plant community endpoints. The glyphosate effects were evident in the first year of herbicide application in 2009, and became more pronounced in the second year of herbicide application in 2010. However, when herbicides were not applied in 2011, recovery was observed in most endpoints, with the exception being species evenness, for which partial recovery was not observed until 2012. Optimal α levels differed among the three critical effect sizes for each ANOVA term and endpoint combination, however regardless of differences in α levels, conclusions were generally consistent across all critical effect sizes.


Subject(s)
Acer/drug effects , Betula/drug effects , Glycine/analogs & derivatives , Herbicides/toxicity , Picea/drug effects , Wetlands , Acer/growth & development , Agriculture , Betula/growth & development , Glycine/toxicity , Models, Theoretical , New Brunswick , Picea/growth & development , Glyphosate
9.
PLoS One ; 14(6): e0218884, 2019.
Article in English | MEDLINE | ID: mdl-31226157

ABSTRACT

In many woody dicot plant species, colder temperatures correlate with a greater degree of leaf dissection and with larger and more abundant leaf teeth (the serrated edges along margins). The measurement of site-mean characteristics of leaf size and shape (physiognomy), including leaf dissection and tooth morphology, has been an important paleoclimate tool for over a century. These physiognomic-based climate proxies require that all woody dicot plants at a site, regardless of species, change their leaf shape rapidly and predictably in response to temperature. Here we experimentally test these assumptions by growing five woody species in growth cabinets under two temperatures (17 and 25°C). In keeping with global site-based patterns, plants tend to develop more dissected leaves with more abundant and larger leaf teeth in the cool treatment. Overall, this upholds the assumption that leaf shape responds in a particular direction to temperature change. The assumption that leaf shape variables respond to temperature in the same way regardless of species did not hold because the responses varied by species. Leaf physiognomic models for inferring paleoclimate should take into account these species-specific responses.


Subject(s)
Acer/growth & development , Betula/growth & development , Betulaceae/growth & development , Plant Leaves/anatomy & histology , Quercus/growth & development , Acer/anatomy & histology , Betula/anatomy & histology , Betulaceae/anatomy & histology , Climate , Cold Temperature , Hot Temperature , Quercus/anatomy & histology , Seeds/growth & development , Species Specificity
10.
BMC Plant Biol ; 19(1): 240, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31170934

ABSTRACT

BACKGROUND: Red maple (Acer rubrum L.) is one of the most common and widespread trees with colorful leaves. We found a mutant with red, yellow, and green leaf phenotypes in different branches, which provided ideal materials with the same genetic relationship, and little interference from the environment, for the study of complex metabolic networks that underly variations in the coloration of leaves. We applied a combination of NGS and SMRT sequencing to various red maple tissues. RESULTS: A total of 125,448 unigenes were obtained, of which 46 and 69 were thought to be related to the synthesis of anthocyanins and carotenoids, respectively. In addition, 88 unigenes were presumed to be involved in the chlorophyll metabolic pathway. Based on a comprehensive analysis of the pigment gene expression network, the mechanisms of leaf color were investigated. The massive accumulation of Cy led to its higher content and proportion than other pigments, which caused the redness of leaves. Yellow coloration was the result of the complete decomposition of chlorophyll pigments, the unmasking of carotenoid pigments, and a slight accumulation of Cy. CONCLUSIONS: This study provides a systematic analysis of color variations in the red maple. Moreover, mass sequence data obtained by deep sequencing will provide references for the controlled breeding of red maple.


Subject(s)
Acer/physiology , Gene Expression Profiling/instrumentation , Pigmentation/genetics , Transcriptome , Acer/genetics , Acer/growth & development , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology
11.
Chemosphere ; 229: 589-601, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31100630

ABSTRACT

The study aimed to evaluate the physiological mechanisms underlying differences in metals and metalloid uptake and tolerance of two tree species cultivated in mining waste material. Two-year old Acer platanoides L. and Tilia cordata Mill. were cultivated in mining sludge characterized by high pH, salinity and an extremely high concentration of As. Both species were able to develop leaves from leafless seedlings, however, their total biomass was greatly reduced in comparison to control plants, following the severe disturbances in chlorophyll content. Phytoextraction abilities were observed for T. cordata for Ba, Nb, Rb and Se, and phytostabilisation was stated for Pd, Ru, Sc and Sm for both species, Ba and Nd for A. platonoides and Be for T. cordata only. Metal exclusion was observed for the majority of detected elements indicating an intense limitation of metal transport to photosynthetic tissue. A diversified uptake of elements was accompanied by a species-specific pattern of physiological reaction during the cultivation in sludge. Organic ligands (glutatnione and low-molecular-weight organic acids) were suppressed in A. platanoides, and enhanced biosynthesis of phenolic compounds was observed for both species, being more pronounced in T. cordata. Despite its higher accumulation of key metabolites for plant reaction to oxidative stress, such as phenolic acids, flavonoids and organic ligands, T. cordata exhibited relatively lower tolerance to sludge, probably due to the increased uptake and translocation rate of toxic metal/loids to aerial organs and/or restricted accumulation of salicylic acid which is known to play a decisive role in mechanisms of plant tolerance.


Subject(s)
Acer/growth & development , Mining , Soil Pollutants/pharmacokinetics , Tilia/growth & development , Acer/drug effects , Arsenic/analysis , Arsenic/pharmacokinetics , Biodegradation, Environmental , Chlorophyll/metabolism , Metals/pharmacokinetics , Metals/toxicity , Photosynthesis/drug effects , Photosynthesis/physiology , Plant Leaves/drug effects , Plant Leaves/growth & development , Seedlings/drug effects , Seedlings/growth & development , Soil Pollutants/analysis , Soil Pollutants/toxicity , Species Specificity , Tilia/drug effects , Trees/drug effects , Trees/growth & development
12.
Sci Total Environ ; 663: 537-547, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30721845

ABSTRACT

Alkaline residuals, such as wood ash and lime mud generated from pulp and paper mills, could be recycled as liming agents in sugar maple (Acer saccharum Marsh.) forests affected by soil acidification. The objectives of this study were (1) to evaluate soil chemistry, in particular soil acidity, after the application of three alkaline residuals from the pulp and paper industry, and (2) to determine if these alkaline residuals altered soil greenhouse gas (GHG) emissions as a result of the change in soil pH or due to their chemical composition. Soil properties and GHG fluxes were monitored for two years after alkaline residuals were applied to six forest sites dominated by sugar maple in southeastern Quebec, Canada. Each site received six treatments: wood ash applied at 5, 10 and 20 t ha-1, lime mud (7.5 t ha-1), a mixture of slaker grits and green liquor sludge (7 t ha-1) and an unamended control. These treatments had acid-neutralizing power from 0 to 9 t ha-1. All alkaline residuals buffered soil acidity as a function of their neutralizing power, and more neutralization occurred in the forest floor layer than in the underlying mineral soil. In the forest floor, the alkaline residual treatments significantly increased pH by more than one unit, nearly doubled the base saturation, and reduced exchangeable acidity, Al and Fe concentrations compared to control plots. The CO2 and N2O fluxes were lower after application of alkaline residuals, and this was related to the soil pH increase and the type of alkaline residual applied. Lime mud was more effective at reducing GHG fluxes than other alkaline residuals. We conclude that these alkaline residuals can effectively counteract soil acidity in sugar maple forests without increasing soil GHG emissions, at least in the short term.


Subject(s)
Air Pollution/prevention & control , Fertilizers/analysis , Forestry/methods , Forests , Greenhouse Gases/analysis , Industrial Waste/analysis , Soil/chemistry , Acer/growth & development , Hydrogen-Ion Concentration , Industry , Paper , Quebec
13.
Sci Total Environ ; 658: 1523-1530, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30678010

ABSTRACT

Trees are important components of urban landscapes because of the ecosystem services they provide. However, the effects of urbanization, particularly high temperatures, can benefit chronic insect pests and threaten ecosystem services offered by urban trees. Urban forest fragments are an often-overlooked component of the greater urban forest which may help to mitigate the damaging effects of urbanization. Melanaspis tenebricosa (gloomy scale) is a common pest of Acer rubrum (red maple) that becomes more abundant because of the urban heat island effect. We conducted observational and manipulative field experiments to test the hypothesis that trees in urban forest fragments would be cooler than those in surrounding ornamental landscapes and would thus have fewer M. tenebricosa, particularly in a hot mid-latitude city. Trees in forest fragments were 1.3° cooler and had three orders of magnitude fewer M. tenebricosa than trees in ornamental landscapes in Raleigh, NC USA. However, there was no difference in M. tenebricosa density between forest and landscape trees in Newark, DE and Philadelphia, PA USA which are 3.95 degrees of latitude higher, and nearer to the northern range extent. Trees in landscapes and forest fragments did not differ in predawn water potential, a measure of water stress, but likely differed in soil composition and moisture. We used potted trees to control for these differences and found that M. tenebricosa density still increased three times more in landscapes than forests suggesting temperature and not tree stress is the dominant factor. Taken together our results indicate two things. First, that trees growing in urban forest fragments are buffered from a chronic urban tree pest due to lower temperatures. Second, that temperature-driven differences in M. tenebricosa density which we saw in Raleigh could predict future density of the pest in higher latitude cities as the climate warms.


Subject(s)
Acer/physiology , Forests , Global Warming , Hemiptera/physiology , Trees/physiology , Acer/growth & development , Animals , Cities , Climate Change , Food Chain , Herbivory , Hot Temperature , North Carolina , Population Dynamics , Trees/growth & development , Urbanization
14.
Equine Vet J ; 51(5): 701-704, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30629759

ABSTRACT

BACKGROUND: Several pasture management strategies have been proposed to avoid hypoglycin A (HGA) intoxication in horses, but their efficacy has never been investigated. OBJECTIVES: To evaluate the effect of mowing and herbicidal spraying on HGA content of sycamore seedlings and the presence of HGA in seeds and seedlings processed within haylage and silage. STUDY DESIGN: Experimental study. METHODS: Groups of seedlings were mowed (n = 6), sprayed with a dimethylamine-based (n = 2) or a picolinic acid-based herbicide (n = 1). Seedlings were collected before intervention, and at 48 h, 1 and 2 weeks after. Cut grass in the vicinity of mowed seedlings was collected pre-cutting and after 1 week. Seeds and seedling (n = 6) samples processed within haylage and silage were collected. HGA concentration in samples was measured using a validated LC-MS-based method. RESULTS: There was no significant decline in HGA content in either mowed or sprayed seedlings; indeed, mowing induced a temporary significant rise in HGA content of seedlings. HGA concentration increased significantly (albeit to low levels) in grass cut with the seedlings by 1 week. HGA was still present in sycamore material after 6-8 months storage within either hay or silage. MAIN LIMITATIONS: Restricted number of herbicide compounds tested. CONCLUSIONS: Neither mowing nor herbicidal spraying reduces HGA concentration in sycamore seedlings up to 2 weeks after intervention. Cross contamination is possible between grass and sycamore seedlings when mowed together. Mowing followed by collection of sycamore seedlings seems the current best option to avoid HGA toxicity in horses grazing contaminated pasture. Pastures contaminated with sycamore material should not be used to produce processed hay or silage as both seedlings and seeds present in the bales still pose a risk of intoxication.


Subject(s)
Acer/chemistry , Horse Diseases/chemically induced , Hypoglycins/metabolism , Seedlings/chemistry , Acer/growth & development , Acer/metabolism , Agriculture , Animals , Horse Diseases/prevention & control , Horses , Hypoglycins/chemistry , Hypoglycins/toxicity , Myotoxicity/veterinary , Seedlings/growth & development , Seedlings/metabolism
15.
Pest Manag Sci ; 75(7): 1971-1978, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30609246

ABSTRACT

BACKGROUND: The flatheaded appletree borer (Chrysobothris femorata Olivier) (FHAB) is a native pest of fruit, shade and nut trees throughout the United States. Use of cover crops is an effective pest management tool for some key insect pests in vegetable and cereal production systems, but its impact in woody ornamental production systems has not been investigated. The goal of this study was to evaluate the effectiveness of a winter cover crop for management of FHAB in nursery production. Red maple trees (Acer rubrum L.) grown under four treatment regimes (cover crop, cover crop + insecticide, bare row and bare row + insecticide) were evaluated for damage by FHAB and impact on tree growth parameters. RESULTS: The cover crop reduced FHAB damage, with results equivalent to standard imidacloprid treatments. The reduction in FHAB attacks in cover crop treatments may be due to microclimate changes at preferred oviposition sites, trunk camouflage or interference with access to oviposition sites. Tree growth was reduced in the cover crop treatments due to competition for resources. CONCLUSION: Physical blockage of oviposition sites by cover crops and subsequent microclimate changes protected against FHAB damage. Therefore, cover crops can be an alternative to chemical insecticides. © 2019 Society of Chemical Industry.


Subject(s)
Acer/parasitology , Coleoptera/physiology , Pest Control, Biological/methods , Acer/growth & development , Animals , Insect Control/methods , Insecticides , Medicago , Neonicotinoids , Nitro Compounds , Oviposition , Triticum
16.
Tree Physiol ; 39(3): 417-426, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30239951

ABSTRACT

The introduction of species contributes to both ecological restoration and regional economics, while serving as a potential strategy to conserve species under rapid climate change. Despite an anticipated significant increase in temperature at high latitudes by the end of the 21st century, very few experimental migration trials have been conducted regarding large climate range changes. We employed a provenance trial by introducing a temperate sugar maple (Acer saccharum Marsh) of three provenances with a mean annual temperature of 3.0 °C in Manitoba, 4.2 °C in Quebec and 9.4 °C in Ontario, Canada, to 15.8 °C at an introduced site in subtropical China. We measured survival, growth, summer photosynthesis in the field and stress-resistance responses under a temperature gradient in growth chambers with first-year seedlings. We found that the Ontario provenance had the highest propensity for survival and growth, followed by the Quebec provenance, while the Manitoba provenance had the lowest. The photosynthetic parameters of the seedlings changed over time of the day, with the Ontario provenance having a higher photosynthesis rate and stomatal conductance than the Quebec and Manitoba provenances. Furthermore, the growth chamber results revealed that the Ontario provenance had the best physiological adjustment for self-protection from heat stress, followed by the Quebec and Manitoba provenances. Our results suggested that the change in climate range drove the survival and growth of introduced seedlings and that the tolerance to summer heat stress through physiological mechanisms was responsible for the success of species introduction, from a cold to a warm climate.


Subject(s)
Acer/physiology , Hot Temperature/adverse effects , Photosynthesis , Thermotolerance , Acer/growth & development , Canada , China , Climate Change , Introduced Species , Longevity , Seasons , Stress, Physiological
17.
Glob Chang Biol ; 25(2): 420-430, 2019 02.
Article in English | MEDLINE | ID: mdl-30506555

ABSTRACT

Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow-covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5-year snow-removal experiment whereby snow was removed for the first 4-5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional-scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%-95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow-covered forests.


Subject(s)
Forests , Freezing , Global Warming , Snow , Soil , Trees/growth & development , Acer/growth & development , Climate Change , New Hampshire
18.
Environ Entomol ; 47(4): 881-889, 2018 08 11.
Article in English | MEDLINE | ID: mdl-29771321

ABSTRACT

This project investigated associational interactions (associational resistance or susceptibility) between native and non-native trees commonly found in urban landscapes in the southeastern United States. Non-native plants offer limited ecological services because few native herbivore species are capable of feeding on them. In a 2-yr field study, abundance and species richness of caterpillars, plant damage, and herbivore natural enemies were evaluated in plots where a native red maple (Acer rubrum L. [Sapindales: Aceraceae]) was planted singly (no neighbors) or interplanted with either non-native non-congeneric crepe myrtles (Lagerstroemia indica L. [Myrtales: Lythraceae]), non-native congeneric Norway maples (Acer platanoides L. [Sapindales: Aceraceae]), or other red maples. Dryocampa rubicunda Fabricius (Lepidoptera: Saturniidae) accounted for most of the damage and caterpillar abundance. There were few significant differences between treatment groups in the establishment year of 2014, but in 2015 there was greater tree defoliation, caterpillar abundance, and caterpillar species richness when red maples were surrounded by crepe myrtles. We describe this as a biological fence effect in which the presence of crepe myrtle causes caterpillars to accumulate on the focal red maples over multiple generations. Red maples interplanted with Norway maple neighbors hosted an intermediate abundance and species richness of caterpillars compared to red maples interplanted with crepe myrtles and those with other red maples, indicating a spillover of herbivores to the related maple. No significant trends in insect natural enemy abundance or diversity between treatment groups were detected. These results highlight the necessity of considering plant associational interactions in context of species origin to alleviate pest outbreaks and develop sustainable landscape designs.


Subject(s)
Acer/growth & development , Food Chain , Herbivory , Lagerstroemia/growth & development , Moths/physiology , Animals , Florida , Forestry , Introduced Species , Larva/growth & development , Larva/physiology , Moths/growth & development , Trees/growth & development
19.
J Plant Physiol ; 223: 72-83, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29550567

ABSTRACT

Approximately 20% of plant species, including silver maple (Acer saccharinum L.), produce seeds that are sensitive to desiccation, which is reflected in their poor storage potential and viability. In the search for a compound that can improve seed recalcitrance, freshly harvested seeds were soaked in either 2.5 mM reduced glutathione (GSH) or water and desiccated to comparable water levels of 55-20%. We examined the impact of a doubled endogenous level of glutathione on the seed germination capacity, the activity of enzymes involved in glutathione metabolism, the cell membrane components and integrity, reactive oxygen species, and ascorbate levels. GSH treatment resulted in slower dehydration and a higher germination capacity. The increased glutathione was mainly consumed by glutathione S-transferase, leading to more efficient detoxification, and by dehydroascorbate reductase (DHAR), accelerating the ascorbate regeneration. As a result, the cellular environment became more reduced, and protection of the membrane structures was enhanced. The ameliorated membrane integrity was manifested via a lower electrolyte leakage and a lower lipid peroxide level despite the higher level of hydrogen peroxide (H2O2) detected in the GSH-treated seeds. The degradation of phospholipids (PLs) was less intense and related to the phosphatidylinositol (PI) level, which is the precursor of the phospholipase D cofactor, whereas in water-soaked seeds, PL degradation was promoted by H2O2. The germination capacity of the dehydrated seeds depended primarily on the level of H2O2, lipid hydroxyperoxides, electrolyte leakage, GSH, the half-cell reduction potential of glutathione, PI, and the activity of DHAR and γ-glutamylcysteine synthetase. Interestingly, H2O2 affected all of the parameters. The germination of GSH-boosted seeds was strongly impacted by the pool of ascorbate, the half-cell reduction potential of ascorbate, and the glutathione peroxidase activity. In general, germination was DHAR activity-dependent. A strong negative correlation was detected in the water-soaked seeds, whereas a strong positive correlation was detected in the GSH-treated seeds. The enhanced level of glutathione likely improved the efficiency of the ascorbate-glutathione cycle, confirming its effect on seed germinability after dehydration.


Subject(s)
Acer/growth & development , Acer/metabolism , Desiccation , Germination/drug effects , Glutathione/metabolism , Seeds/growth & development , Ascorbic Acid/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Water/metabolism
20.
Int J Biometeorol ; 62(6): 949-959, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29404687

ABSTRACT

It has been widely reported that the urban environment alters leaf and flowering phenophases; however, it remains unclear if land pavement is correlated with these alterations. In this paper, two popular deciduous urban trees in northern China, ash (Fraxinus chinensis) and maple (Acer truncatum), were planted in pervious and impervious pavements at three spacings (0.5 m × 0.5 m, 1.0 m × 1.0 m, and 2.0 m × 2.0 m apart). The beginning and end dates of the processes of leaf budburst and senescence were recorded in spring and fall of 2015, respectively. The results show that leaf budburst and senescence were significantly advanced in pavement compared to non-pavement lands. The date of full leaf budburst was earlier by 0.7-9.3 days for ash and by 0.3-2.3 days for maple under pavements than non-pavements, respectively. As tree spacing increases, the advanced days of leaf budburst became longer. Our results clearly indicate that alteration of leaf phenophases is attributed to land pavement, which should be taken into consideration in urban planning and urban plant management.


Subject(s)
Acer/growth & development , Fraxinus/growth & development , Microclimate , Plant Leaves/growth & development , China , City Planning , Manufactured Materials , Seasons , Temperature , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...