Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 87(14): e0283920, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33990298

ABSTRACT

Gas fermentation is a promising way to convert CO-rich gases to chemicals. We studied the use of synthetic cocultures composed of carboxydotrophic and propionigenic bacteria to convert CO to propionate. So far, isolated carboxydotrophs cannot directly ferment CO to propionate, and therefore, this cocultivation approach was investigated. Four distinct synthetic cocultures were constructed, consisting of Acetobacterium wieringae (DSM 1911T) and Pelobacter propionicus (DSM 2379T), Ac. wieringae (DSM 1911T) and Anaerotignum neopropionicum (DSM 3847T), Ac. wieringae strain JM and P. propionicus (DSM 2379T), and Ac. wieringae strain JM and An. neopropionicum (DSM 3847T). Propionate was produced by all the cocultures, with the highest titer (∼24 mM) being measured in the coculture composed of Ac. wieringae strain JM and An. neopropionicum, which also produced isovalerate (∼4 mM), butyrate (∼1 mM), and isobutyrate (0.3 mM). This coculture was further studied using proteogenomics. As expected, enzymes involved in the Wood-Ljungdahl pathway in Ac. wieringae strain JM, which are responsible for the conversion of CO to ethanol and acetate, were detected; the proteome of An. neopropionicum confirmed the conversion of ethanol to propionate via the acrylate pathway. In addition, proteins related to amino acid metabolism and stress response were highly abundant during cocultivation, which raises the hypothesis that amino acids are exchanged by the two microorganisms, accompanied by isovalerate and isobutyrate production. This highlights the importance of explicitly looking at fortuitous microbial interactions during cocultivation to fully understand coculture behavior. IMPORTANCE Syngas fermentation has great potential for the sustainable production of chemicals from wastes (via prior gasification) and flue gases containing CO/CO2. Research efforts need to be directed toward expanding the product portfolio of gas fermentation, which is currently limited to mainly acetate and ethanol. This study provides the basis for a microbial process to produce propionate from CO using synthetic cocultures composed of acetogenic and propionigenic bacteria and elucidates the metabolic pathways involved. Furthermore, based on proteomics results, we hypothesize that the two bacterial species engage in an interaction that results in amino acid exchange, which subsequently promotes isovalerate and isobutyrate production. These findings provide a new understanding of gas fermentation and a coculturing strategy for expanding the product spectrum of microbial conversion of CO/CO2.


Subject(s)
Acetobacterium/metabolism , Carbon Monoxide/metabolism , Deltaproteobacteria/metabolism , Propionates/metabolism , Acetobacterium/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coculture Techniques , Deltaproteobacteria/drug effects , Fermentation , Proteome/metabolism , Sodium Acetate/pharmacology
2.
Anim Sci J ; 85(1): 25-31, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23638678

ABSTRACT

Effect of the methane inhibitor, bromochloromethane (BCM) and dietary substrate, fumarate, on microbial community structure of acetogen bacteria in the bovine rumen was investigated through analysis of the formyltetrahydrofolate synthetase gene (fhs). The fhs sequences obtained from BCM-untreated, BCM-treated, fumarate-untreated and fumarate-treated bovine rumen were categorized into homoacetogens and nonhomoacetogenic bacteria by homoacetogen similarity scores. Phylogenetic tree analysis indicated that most of the fhs sequences categorized into homoacetogens were divided into nine clusters, which were in close agreement with a result shown in a self-organizing map. The diversity of the fhs sequences from the BCM-treated rumen was significantly different from those from BCM-non-treated rumen. Principal component analysis also showed that addition of BCM to the rumen altered the population structure of acetogenic bacteria significantly but the effect of fumarate was comparatively minor. These results indicate that BCM affects diversity of actogens in the bovine rumen, and changes in acetogenic community structure in response to methane inhibitors may be caused by different mechanisms.


Subject(s)
Acetobacterium/drug effects , Acetobacterium/enzymology , Bacterial Load/drug effects , Cattle/microbiology , Formate-Tetrahydrofolate Ligase/genetics , Fumarates/pharmacology , Genetic Variation/drug effects , Genetic Variation/genetics , Hydrocarbons, Halogenated/pharmacology , Phylogeny , Rumen/microbiology , Animals
3.
Anaerobe ; 14(1): 55-60, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18083050

ABSTRACT

Growth of Acetobacterium woodii and Clostridium sporogenes was studied in the presence of water-immiscible solvents. Nitrogen purging, vacuum distillation or distillation under nitrogen were all suitable as methods to remove oxygen from the solvents, since growth rates and yields of A. woodii were unaffected in the presence of tetradecane which had been degassed by these methods. Varying the solvent volume from 20% to 80% of the culture volume had little effect on growth rate of A. woodii. A.woodii was relatively sensitive to organic solvents since growth was inhibited by alkanes with logP(octanol/water) values below 7.1. C. sporogenes was less solvent sensitive, since it grew without inhibition when the logP of the solvent was > or = 6.6. Nevertheless, both A. woodii and C. sporogenes were more sensitive to solvent polarity than aerobic bacteria.


Subject(s)
Acetobacterium/drug effects , Alkanes/toxicity , Clostridium/drug effects , Solvents/toxicity , Acetobacterium/growth & development , Bioreactors , Clostridium/growth & development , Oxygen/metabolism
4.
Biodegradation ; 16(6): 539-47, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15865346

ABSTRACT

Substrates and nutrients are often added to contaminated soil or groundwater to enhance bioremediation. Nevertheless, this practice may be counterproductive in some cases where nutrient addition might relieve selective pressure for pollutant biodegradation. Batch experiments with a homoacetogenic pure culture of Acetobacterium paludosum showed that anaerobic RDX degradation is the fastest when auxiliary growth substrates (yeast extract plus fructose) and nitrogen sources (ammonium) are not added. This bacterium degraded RDX faster under autotrophic (H2-fed) than under heterotrophic conditions, even though heterotrophic growth was faster. The inhibitory effect of ammonium is postulated to be due to the repression of enzymes that initiate RDX degradation by reducing its nitro groups, based on the known fact that ammonia represses nitrate and nitrite reductases. This observation suggests that the absence of easily assimilated nitrogen sources, such as ammonium, enhances RDX degradation. Although specific end products of RDX degradation were not determined, the production of nitrous oxide (N2O) suggests that A. paludosum cleaved the triazine ring.


Subject(s)
Acetobacterium/metabolism , Triazines/metabolism , Acetobacterium/drug effects , Acetobacterium/growth & development , Biodegradation, Environmental/drug effects , Bioreactors , Carbon/metabolism , Minerals/metabolism , Nitrogen/metabolism , Nitrous Oxide/metabolism , Quaternary Ammonium Compounds/metabolism , Quaternary Ammonium Compounds/pharmacology , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...