Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.837
Filter
1.
J Tradit Chin Med ; 44(3): 496-504, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767633

ABSTRACT

OBJECTIVE: To investigate the effects of Hippeastrum hybridum (HH) as a free radical scavenger, and an inhibitor of the two enzymes i-e Alpha-amylase (α-amylase) and acetylcholinesterase (AChE). METHODS: In this study, HH plant was preliminary analyzed for phytochemical screening and then tested for its antioxidant, anti-α-amylase, and anti-AChE efficiency via standard procedures. RESULTS: Phytochemical analysis shows the existence of different compounds; while Coumarins and quinones were absent. The total phenolic, flavonoid, and tannins content were found to be (78.52 ± 0.69) mg GAE/g, (2.01 ± 0.04) mg RUE/g, and (58.12 ± 0.23) mg TAE/g of plant extract respectively. 28.02% ± 0.02% alkaloid and 2.02% ± 0.05% saponins were present in the HH extract. The HH extract showed the anti-oxidant property with IC50 (50% inhibition) of (151.01 ± 0.13) (HH), (79.01 ± 0.04) (Ascorbic acid) for ferric reducing, (91.48 ± 0.13) (HH), (48.02 ± 0.11) (Ascorbic acid) against Ammonium molybdenum, (156.02 ± 0.31) (HH), (52.38 ± 0.21) (Ascorbic acid) against DPPH, 136.01 ± 0.21 (HH), 52.02± 0.31 (Ascorbic acid) against H2O2, and 154.12 ± 0.03 (HH), (40.05 ± 0.15) (Ascorbic acid) µg/mL against ABTS respectively. Statistical analysis indicated that HH caused a competitive type of inhibition of α-amylase (Vmax remained constant and Km increases from 10.65 to 84.37%) while Glucophage caused the un-competitive type of inhibition i-e both Km and Vmax decreased from 40.49 to 69.15% and 38.86 to 69.61% respectively. The Ki, (inhibition constant); KI, (dissociation constant), Km, (Michaelis-Menten constant), and IC50 were found to be 62, 364, 68.1, and 38.08 ± 0.22 for HH and 12, 101.05, 195, 34.01 ± 0.21 for Glucophage. Similarly, HH causes an anon-competitive type of inhibition of AChE i-e Km remains constant while Vmax decreases from 60.5% to 74.1%. The calculated Ki, KI, Km, and IC50 were found to be 32, 36.2, 0.05, and 18.117 ± 0.018. CONCLUSION: From the current results, it is concluded that HH extract contains bioactive compounds, and could be a good alternative to controlling oxidants, Alzheimer's and Type-II diabetic diseases.


Subject(s)
Acetylcholinesterase , Antioxidants , Cholinesterase Inhibitors , Plant Extracts , alpha-Amylases , Antioxidants/chemistry , Antioxidants/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
2.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731452

ABSTRACT

In this study, two "on-off" probes (BF2-cur-Ben and BF2-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF2-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (Km = 16 ± 1.6 µM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF2-cur-Ben forms more hydrogen bonds (seven, while BF2-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of Km values. These two probes could enable recognition of intracellular AChE and probe BF2-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF2-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.


Subject(s)
Acetylcholinesterase , Fluorescent Dyes , Zebrafish , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Humans , Limit of Detection , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry
3.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38701714

ABSTRACT

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cholinesterase Inhibitors , Drug Design , Quinazolines , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Rats , Structure-Activity Relationship , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Molecular Structure , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Dose-Response Relationship, Drug , Butyrylcholinesterase/metabolism , Male
4.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791458

ABSTRACT

Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.


Subject(s)
Acaricides , Acetylcholinesterase , Larva , Oils, Volatile , Piper , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Acetylcholinesterase/metabolism , Piper/chemistry , Larva/drug effects , Acaricides/pharmacology , Glutathione Transferase/metabolism , Amblyomma , Inactivation, Metabolic , Cholinesterase Inhibitors/pharmacology , Benzodioxoles/pharmacology , Esterases/metabolism , Allyl Compounds , Dioxoles
5.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792196

ABSTRACT

The search for selective anticholinergic agents stems from varying cholinesterase levels as Alzheimer's Disease progresses from the mid to late stage. In this computational study, we probed the selectivity of FDA-approved and metabolite compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with molecular-docking-based virtual screening. The results were evaluated using locally developed codes for the statistical methods. The docking-predicted selectivity for AChE and BChE was predominantly the consequence of differences in the volume of the active site and the narrower entrance to the bottom of the active site gorge of AChE.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Catalytic Domain , Cholinesterase Inhibitors , Molecular Docking Simulation , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , United States Food and Drug Administration , United States
6.
SAR QSAR Environ Res ; 35(5): 391-410, 2024 May.
Article in English | MEDLINE | ID: mdl-38769919

ABSTRACT

Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p-hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).


Subject(s)
Acetylcholinesterase , Alpinia , Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Rhizome , Alpinia/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Rhizome/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , alpha-Glucosidases/metabolism , Quantitative Structure-Activity Relationship , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Humans
7.
Phytochemistry ; 223: 114114, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697240

ABSTRACT

Huperzia serrata, belonging to the Lycopodiaceae family, has been traditionally utilized for the management of treating rheumatic numbness, arthritic pain, dysmenorrhea, and contusions. This plant is a rich source of lycopodium alkaloids, some of which have demonstrated notable cholinesterase inhibitory activity. The objective of this study was to identify lycopodium alkaloids with cholinesterase inhibitory properties from H. serrata. The structures of these alkaloids were elucidated by HRESIMS, NMR (including a 1H-15N HMBC experiment), ECD methods and single-crystal X-ray diffraction. The inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were assessed using a modified Ellman's method. Consequently, sixteen lycopodium alkaloids (1-16), including ten previously undescribed ones named huperradines A-G and huperradines I-K (1-7 and 9-11), along with one previously undescribed naturally occurring compound, huperradine H (8), were isolated from H. serrata. Among these, compounds 7 and 1 exhibited potent and moderate AChE inhibition, with IC50 values of 0.876 ± 0.039 µM and 13.125 ± 0.521 µM, respectively. Our results suggest that huperradine G (7) may be a promising lead compound for the development of new AChE inhibitors for Alzheimer's disease.


Subject(s)
Acetylcholinesterase , Alkaloids , Butyrylcholinesterase , Cholinesterase Inhibitors , Huperzia , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Huperzia/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Molecular Structure , Lycopodium/chemistry , Structure-Activity Relationship , Dose-Response Relationship, Drug
8.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785995

ABSTRACT

Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Humans , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Ligands , Oximes/chemistry , Oximes/pharmacology , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholestenones/pharmacology , Cholestenones/chemistry , Kinetics , Sarin/chemistry , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Antidotes/pharmacology , Antidotes/chemistry , Cholesterol/metabolism , Cholesterol/chemistry , Organophosphorus Compounds
9.
Mar Drugs ; 22(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786605

ABSTRACT

Chemical investigation of marine fungus Nigrospora oryzae SYSU-MS0024 cultured on solid-rice medium led to the isolation of three new alkaloids, including a pair of epimers, nigrosporines A (1) and B (2), and a pair of enantiomers, (+)-nigrosporine C (+)-3, and (-)-nigrosporine C (-)-3, together with eight known compounds (4-11). Their structures were elucidated based on extensive mass spectrometry (MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses and compared with data in the literature. The absolute configurations of compounds 1-3 were determined by a combination of electronic circular dichroism (ECD) calculations, Mosher's method, and X-ray single-crystal diffraction technique using Cu Kα radiation. In bioassays, compound 2 exhibited moderate inhibition on NO accumulation induced by lipopolysaccharide (LPS) on BV-2 cells in a dose-dependent manner at 20, 50, and 100 µmol/L and without cytotoxicity in a concentration of 100.0 µmol/L. Moreover, compound 2 also showed moderate acetylcholinesterase (AChE) inhibitory activities with IC50 values of 103.7 µmol/L. Compound 5 exhibited moderate antioxidant activity with EC50 values of 167.0 µmol/L.


Subject(s)
Alkaloids , Ascomycota , Cholinesterase Inhibitors , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Animals , Mice , Ascomycota/chemistry , Cell Line , Nitric Oxide/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Molecular Structure , Acetylcholinesterase/metabolism , Magnetic Resonance Spectroscopy/methods , Lipopolysaccharides/pharmacology
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 428-434, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790099

ABSTRACT

Objective To establish a colloidal gold immunochromatography and develop the corresponding test strip for detecting organophosphorus compounds including omethoate, phoxim, dipterex, and parathion in fruits, vegetables and drinking water. Methods Artificial antigen molecules of organophosphorus compounds were synthesized using N-hydroxysuccinimide esters. Acetylcholinesterase antigen was prepared and purified, and the serum containing the corresponding antibody was prepared, purified, and labeled. The working parameters of the test strip were optimized, and the performance evaluation of it was conducted. Results The titer of the antisera ranged from 1:32 to 1:64, with a protein content of approximately 2 mg/mL. The purified polyclonal antibodies displayed target bands at relative molecular masses (Mr) of 25 000 and 55 000, indicating satisfactory purity. The reaction time of the test strips was between 5 to 10 minutes, with a detection limit for samples at 200 ng/mL. Both specificity and accuracy were satisfactory, and the test strip remained valid for 6 months. Conclusion A simple and rapid colloidal gold immunochromatography is established successfully for detecting several organophosphorus compounds and may be useful for on-site preliminary screening of samples in large quantities.


Subject(s)
Chromatography, Affinity , Gold Colloid , Organophosphorus Compounds , Pesticides , Gold Colloid/chemistry , Organophosphorus Compounds/analysis , Chromatography, Affinity/methods , Pesticides/analysis , Animals , Vegetables/chemistry , Fruit/chemistry , Acetylcholinesterase
11.
Dokl Biochem Biophys ; 516(1): 58-65, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722403

ABSTRACT

The objectives of this study were to investigate the anti-fatigue effects of Paris polyphylla polysaccharide component 1 (PPPm-1) and explore its mechanisms. A mouse model of exercise-induced fatigue was established by weight-bearing swimming to observe the effects of different concentrations of PPPm-1 on weight-bearing swimming time. The anti-fatigue effect of PPPm-1 was determined by the effects of contraction amplitude, contraction rate, and diastolic rate of the frog gastrocnemius muscle in vivo before and after infiltration with 5 mg/mL PPPm-1. The effects of PPPm-1 on the contents of blood lactate, serum urea nitrogen, hepatic glycogen, muscle glycogen in the exercise fatigue model of mice, and acetylcholine (ACh) content and acetylcholinesterase (AChE) activity at the junction of the frog sciatic nerve-gastrocnemius under normal physiological, and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of the frog gastrocnemius were determined by enzyme-linked immunosorbent assay (ELISA), to investigate the anti-fatigue mechanisms of PPPm-1. The results showed that PPPm-1 could significantly prolong the weight-bearing swimming time in mice (P < 0.01), decrease the contents of blood lactate and serum urea nitrogen, increase the contents of the hepatic glycogen and muscle glycogen of mice after exercise fatigue compared with those of the control group, and there was extremely significant difference in most indicators (P < 0.01). The 5 mg/mL of PPPm-1 could significantly promote the contraction amplitude, contraction rate, and relaxation rate of the gastrocnemius muscle in the frogs, and the content of ACh at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01), but it had obvious inhibitory effetc on the activity of AChE at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01). PPPm-1 could increase the Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of gastrocnemius in the frogs (for Ca2+-Mg2+-ATPase, P < 0.01). The above results suggested that the PPPm-1 had a good anti-fatigue effect, and its main mechanisms were related to improving endurance and glycogen reserve, reducing glycogen consumption, lactate and serum urea nitrogen accumulation, and promoting Ca2+ influx.


Subject(s)
Muscle, Skeletal , Polysaccharides , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle Fatigue/drug effects , Male , Sodium-Potassium-Exchanging ATPase/metabolism , Swimming , Glycogen/metabolism , Acetylcholinesterase/metabolism , Fatigue/drug therapy , Blood Urea Nitrogen , Acetylcholine/metabolism , Muscle Contraction/drug effects , Ca(2+) Mg(2+)-ATPase/metabolism
12.
Int J Hyg Environ Health ; 259: 114386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703462

ABSTRACT

BACKGROUND: Organophosphate, pyrethroid, and neonicotinoid insecticides have resulted in adrenal and gonadal hormone disruption in animal and in vitro studies; limited epidemiologic evidence exists in humans. We assessed relationships of urinary insecticide metabolite concentrations with adrenal and gonadal hormones in adolescents living in Ecuadorean agricultural communities. METHODS: In 2016, we examined 522 Ecuadorian adolescents (11-17y, 50.7% female, 22% Indigenous; ESPINA study). We measured urinary insecticide metabolites, blood acetylcholinesterase activity (AChE), and salivary testosterone, dehydroepiandrosterone (DHEA), 17ß-estradiol, and cortisol. We used general linear models to assess linear (ß = % hormone difference per 50% increase of metabolite concentration) and curvilinear relationships (ß2 = hormone difference per unit increase in squared ln-metabolite) between ln-metabolite or AChE and ln-hormone concentrations, stratified by sex, adjusting for anthropometric, demographic, and awakening response variables. Bayesian Kernel Machine Regression was used to assess non-linear associations and interactions. RESULTS: The organophosphate metabolite malathion dicarboxylic acid (MDA) had positive associations with testosterone (ßboys = 5.88% [1.21%, 10.78%], ßgirls = 4.10% [-0.02%, 8.39%]), and cortisol (ßboys = 6.06 [-0.23%, 12.75%]. Para-nitrophenol (organophosphate) had negatively-trending curvilinear associations, with testosterone (ß2boys = -0.17 (-0.33, -0.003), p = 0.04) and DHEA (ß2boys = -0.49 (-0.80, -0.19), p = 0.001) in boys. The neonicotinoid summary score (ßboys = 5.60% [0.14%, 11.36%]) and the neonicotinoid acetamiprid-N-desmethyl (ßboys = 3.90% [1.28%, 6.58%]) were positively associated with 17ß-estradiol, measured in boys only. No associations between the pyrethroid 3-phenoxybenzoic acid and hormones were observed. In girls, bivariate response associations identified interactions of MDA, Para-nitrophenol, and 3,5,6-trichloro-2-pyridinol (organophosphates) with testosterone and DHEA concentrations. In boys, we observed an interaction of MDA and Para-nitrophenol with DHEA. No associations were identified for AChE. CONCLUSIONS: We observed evidence of endocrine disruption for specific organophosphate and neonicotinoid metabolite exposures in adolescents. Urinary organophosphate metabolites were associated with testosterone and DHEA concentrations, with stronger associations in boys than girls. Urinary neonicotinoids were positively associated with 17ß-estradiol. Longitudinal repeat-measures analyses would be beneficial for causal inference.


Subject(s)
Biomarkers , Insecticides , Humans , Adolescent , Female , Male , Ecuador , Insecticides/urine , Insecticides/blood , Biomarkers/urine , Biomarkers/blood , Child , Hydrocortisone/urine , Dehydroepiandrosterone/urine , Dehydroepiandrosterone/blood , Estradiol/blood , Estradiol/urine , Agriculture , Acetylcholinesterase/blood , Acetylcholinesterase/metabolism , Testosterone/blood , Testosterone/urine , Saliva/chemistry , Malathion/urine
13.
Behav Brain Res ; 468: 115025, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38710451

ABSTRACT

Prenatal stress (PS), in both humans and animals, presents a potential risk to the mother and her fetus throughout gestation. PS is always associated with physiological changes that alter embryonic development and predispose the individual to lifelong health problems, including susceptibility to mental illness. This study aims to identify the harmful effects of prenatal restraint stress (PRS), commonly employed to induce stress painlessly and without any lasting debilitation during gestation. This stress is applied to pregnant Swiss albino mice from E7.5 to delivery for three hours daily. Our results show that PS affects dams' weight gain during the gestational period; moreover, the PS dams prefer passive nursing, exhibit a lower percentage of licking and grooming, and impair other maternal behaviors, including nesting and pup retrieval. Concerning the offspring, this stress induces neurobehavioral impairments, including a significant increase in the time of recovery of the young stressed pups in the surface righting reflex, the latency to avoid the cliff in the cliff avoidance test, longer latencies to accomplish the task in negative geotaxis, and a lower score in swimming development. These alterations were accompanied by increased Malondialdehyde activity (MDA) at PND17 and 21 and downregulation of AchE activity in the whole brain of pups on postnatal days 7 and 9. These findings demonstrated that PS causes deleterious neurodevelopmental impairments that can alter various behaviors later in life.


Subject(s)
Maternal Behavior , Oxidative Stress , Prenatal Exposure Delayed Effects , Restraint, Physical , Stress, Psychological , Animals , Pregnancy , Female , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Mice , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Oxidative Stress/physiology , Maternal Behavior/physiology , Malondialdehyde/metabolism , Animals, Newborn , Brain/metabolism , Male , Acetylcholinesterase/metabolism , Behavior, Animal/physiology , Reflex, Righting/physiology , Avoidance Learning/physiology
14.
Chemosphere ; 358: 142162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697568

ABSTRACT

This study investigates the combined impact of microplastics (MP) and Chlorpyriphos (CPF) on sea urchin larvae (Paracentrotus lividus) under the backdrop of ocean warming and acidification. While the individual toxic effects of these pollutants have been previously reported, their combined effects remain poorly understood. Two experiments were conducted using different concentrations of CPF (EC10 and EC50) based on previous studies from our group. MP were adsorbed in CPF to simulate realistic environmental conditions. Additionally, water acidification and warming protocols were implemented to mimic future ocean conditions. Sea urchin embryo toxicity tests were conducted to assess larval development under various treatment combinations of CPF, MP, ocean acidification (OA), and temperature (OW). Morphometric measurements and biochemical analyses were performed to evaluate the effects comprehensively. Results indicate that combined stressors lead to significant morphological alterations, such as increased larval width and reduced stomach volume. Furthermore, biochemical biomarkers like acetylcholinesterase (AChE), glutathione S-transferase (GST), and glutathione reductase (GRx) activities were affected, indicating oxidative stress and impaired detoxification capacity. Interestingly, while temperature increase was expected to enhance larval growth, it instead induced thermal stress, resulting in lower growth rates. This underscores the importance of considering multiple stressors in ecological assessments. Biochemical biomarkers provided early indications of stress responses, complementing traditional growth measurements. The study highlights the necessity of holistic approaches when assessing environmental impacts on marine ecosystems. Understanding interactions between pollutants and environmental stressors is crucial for effective conservation strategies. Future research should delve deeper into the impacts at lower biological levels and explore adaptive mechanisms in marine organisms facing multiple stressors. By doing so, we can better anticipate and mitigate the adverse effects of anthropogenic pollutants on marine biodiversity and ecosystem health.


Subject(s)
Biomarkers , Climate Change , Larva , Paracentrotus , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Larva/drug effects , Larva/growth & development , Biomarkers/metabolism , Paracentrotus/drug effects , Glutathione Transferase/metabolism , Microplastics/toxicity , Acetylcholinesterase/metabolism , Oxidative Stress/drug effects , Seawater/chemistry , Glutathione Reductase/metabolism
15.
Sci Total Environ ; 934: 173282, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759926

ABSTRACT

Acetylcholinesterase (AChE) has emerged as a significant biological recognition element in the biosensor field, particularly for the detection of insecticides. Nevertheless, the weak thermostability of AChE restricts its utilization due to the complexities associated with production, storage, and application environments. By evaluating the binding affinity between representative AChE and insecticides, an AChE from Culex pipiens was screened out, which displayed a broad-spectrum and high sensitivity to insecticides. The C. pipiens AChE (CpA) was subsequently expressed in Escherichia coli (E. coli) as a soluble active protein. Furthermore, a three-point mutant, M4 (A340P/D390E/S581P), was obtained using a semi-rational design strategy that combined molecular dynamics (MD) simulation and computer-aided design, which exhibited a four-fold increase in half-life at 40 °C compared to the wild-type (WT) enzyme. The mutant M4 also demonstrated an optimal temperature of 50 °C and a melting temperature (Tm) of 51.2 °C. Additionally, the sensitivity of WT and M4 to acephate was examined, revealing a 50-fold decrease in the IC50 value of M4. The mechanism underlying the improvement in thermal performance was elucidated through secondary structure analysis and MD simulations, indicating an increase in the proportion of protein helices and local structural rigidity. MD analysis of the protein-ligand complexes suggested that the enhanced sensitivity of M4 could be attributed to frequent specific contacts between the organophosphorus (OP) group of acephate and the key active site residue Ser327. These findings have expanded the possibilities for the development of more reliable and effective industrial enzyme preparations and biosensors.


Subject(s)
Acetylcholinesterase , Culex , Insecticides , Acetylcholinesterase/metabolism , Acetylcholinesterase/genetics , Culex/enzymology , Culex/genetics , Animals , Phosphoramides , Molecular Dynamics Simulation , Organothiophosphorus Compounds , Enzyme Stability
16.
Chem Biol Interact ; 396: 111061, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38763347

ABSTRACT

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Nerve Agents , Oximes , Humans , Oximes/pharmacology , Oximes/chemistry , Kinetics , Nerve Agents/chemistry , Nerve Agents/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Molecular Dynamics Simulation , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
17.
Chem Biol Interact ; 396: 111028, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38729282

ABSTRACT

Homocysteine (Hcy) is an independent cardiovascular disease (CVD) risk factor, whose mechanisms are poorly understood. We aimed to explore mild hyperhomocysteinemia (HHcy) effects on oxidative status, inflammatory, and cholinesterase parameters in aged male Wistar rats (365 days old). Rats received subcutaneous Hcy (0.03 µmol/g body weight) twice daily for 30 days, followed by euthanasia, blood collection and heart dissection 12 h after the last injection. Results revealed increased dichlorofluorescein (DCF) levels in the heart and serum, alongside decreased antioxidant enzyme activities (superoxide dismutase, catalase, glutathione peroxidase), reduced glutathione (GSH) content, and diminished acetylcholinesterase (AChE) activity in the heart. Serum butyrylcholinesterase (BuChE) levels also decreased. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) protein content decreased in both cytosolic and nuclear fractions, while cytosolic nuclear factor kappa B (NFκB) p65 increased in the heart. Additionally, interleukins IL-1ß, IL-6 and IL-10 showed elevated expression levels in the heart. These findings could suggest a connection between aging and HHcy in CVD. Reduced Nrf2 protein content and impaired antioxidant defenses, combined with inflammatory factors and altered cholinesterases activity, may contribute to understanding the impact of Hcy on cardiovascular dynamics. This study sheds light on the complex interplay between HHcy, oxidative stress, inflammation, and cholinesterases in CVD, providing valuable insights for future research.


Subject(s)
Hyperhomocysteinemia , Inflammation , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Wistar , Animals , Male , NF-E2-Related Factor 2/metabolism , Hyperhomocysteinemia/metabolism , Rats , Inflammation/metabolism , Aging/metabolism , Cardiovascular System/metabolism , Cholinesterases/metabolism , Cholinesterases/blood , Acetylcholinesterase/metabolism , Myocardium/metabolism , Butyrylcholinesterase/metabolism
18.
Drug Dev Res ; 85(4): e22214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816986

ABSTRACT

In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and ß-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.


Subject(s)
Acetylcholinesterase , Amyloid Precursor Protein Secretases , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Humans , Structure-Activity Relationship , Aspartic Acid Endopeptidases/antagonists & inhibitors , Acetamides/chemical synthesis , Acetamides/pharmacology , Acetamides/chemistry , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732097

ABSTRACT

The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.


Subject(s)
Neuroprotective Agents , Olive Oil , Phenols , Olive Oil/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Spain , Cyclooxygenase 2/metabolism , Acetylcholinesterase/metabolism , Chromatography, High Pressure Liquid , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/chemistry
20.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732252

ABSTRACT

Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aß), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aß or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aß 1-42, Aß 1-40, Aß 1-28, and Aß 25-35. AChE and p53 activities increased upon A549 cell treatment with Aß, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aß effects. Aß increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aß on those activities. Moreover, the negative effect of Aß on cell viability was diminished by cell co-treatment with ACh.


Subject(s)
Acetylcholine , Acetylcholinesterase , Amyloid beta-Peptides , Carcinoma, Non-Small-Cell Lung , Cell Survival , Lung Neoplasms , Protein Kinase C , Tumor Suppressor Protein p53 , p38 Mitogen-Activated Protein Kinases , Humans , Amyloid beta-Peptides/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Tumor Suppressor Protein p53/metabolism , Acetylcholine/metabolism , Acetylcholine/pharmacology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Cell Survival/drug effects , Protein Kinase C/metabolism , Acetylcholinesterase/metabolism , Cell Line, Tumor , A549 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...