Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.701
Filter
1.
Bull Exp Biol Med ; 177(1): 74-78, 2024 May.
Article in English | MEDLINE | ID: mdl-38955854

ABSTRACT

Activated hepatic stellate cells differentiate into myofibroblasts, which synthesize and secrete extracellular matrix (ECM) leading to liver fibrosis. It was previously demonstrated that bulleyaconitine A (BLA), an alkaloid from Aconitum bulleyanum, inhibits proliferation and promotes apoptosis of human hepatic Lieming Xu-2 (LX-2) cells. In this study, we analyzed the effect of BLA on the production of ECM and related proteins by LX-2 cells activated with acetaldehyde (AA). The cells were randomized into the control group, AA group (cells activated with 400 µM AA), and BLA+AA group (cells cultured in the presence of 400 µM AA and 18.75 µg/ml BLA). In the BLA+AA group, the contents of collagens I and III and the expression of α-smooth muscle actin and transforming growth factor-ß1 (TGF-ß1) were statistically significantly higher than in the control, but lower than in the AA group. Expression of MMP-1 in the BLA+AA group was also significantly higher than in the AA group, but lower than in the control. Expression of TIMP-1 in the BLA+AA group was significantly higher than in the control, but lower than in the AA group. Thus, BLA suppressed activation and proliferation of LX-2 cells by inhibiting TGF-ß1 signaling pathway and decreasing the content of collagens I and III by reducing the MMP-1/TIMP-1 ratio.


Subject(s)
Acetaldehyde , Aconitine , Actins , Collagen Type I , Extracellular Matrix , Hepatic Stellate Cells , Tissue Inhibitor of Metalloproteinase-1 , Transforming Growth Factor beta1 , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Acetaldehyde/pharmacology , Acetaldehyde/analogs & derivatives , Aconitine/pharmacology , Aconitine/analogs & derivatives , Collagen Type I/metabolism , Collagen Type I/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Actins/metabolism , Actins/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Cell Line , Collagen Type III/metabolism , Collagen Type III/genetics , Cell Proliferation/drug effects , Aconitum/chemistry , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
2.
Fa Yi Xue Za Zhi ; 40(2): 186-191, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847035

ABSTRACT

OBJECTIVES: To explore the postmortem diffusion rule of Aconitum alkaloids and their metabolites in poisoned rabbits, and to provide a reference for identifying the antemortem poisoning or postmortem poisoning of Aconitum alkaloids. METHODS: Twenty-four rabbits were sacrificed by tracheal clamps. After 1 hour, the rabbits were administered with aconitine LD50 in decocting aconite root powder by intragastric administration. Then, they were placed supine and stored at 25 ℃. The biological samples from 3 randomly selected rabbits were collected including heart blood, peripheral blood, urine, heart, liver, spleen, lung and kidney tissues at 0 h, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h after intragastric administration, respectively. Aconitum alkaloids and their metabolites in the biological samples were analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS: At 4 h after intragastric administration, Aconitum alkaloids and their metabolites could be detected in heart blood, peripheral blood and major organs, and the contents of them changed dynamically with the preservation time. The contents of Aconitum alkaloids and their metabolites were higher in the spleen, liver and lung, especially in the spleen which was closer to the stomach. The average mass fraction of benzoylmesaconine metabolized in rabbit spleen was the highest at 48 h after intragastric administration. In contrast, the contents of Aconitum alkaloids and their metabolites in kidney were all lower. Aconitum alkaloids and their metabolites were not detected in urine. CONCLUSIONS: Aconitum alkaloids and their metabolites have postmortem diffusion in poisoned rabbits, diffusing from high-content organs (stomach) to other major organs and tissues as well as the heart blood. The main mechanism is the dispersion along the concentration gradient, while urine is not affected by postmortem diffusion, which can be used as the basis for the identification of antemortem and postmortem Aconitum alkaloids poisoning.


Subject(s)
Aconitum , Alkaloids , Liver , Tandem Mass Spectrometry , Animals , Rabbits , Aconitum/chemistry , Alkaloids/metabolism , Alkaloids/urine , Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Liver/metabolism , Kidney/metabolism , Lung/metabolism , Aconitine/analogs & derivatives , Aconitine/pharmacokinetics , Aconitine/urine , Aconitine/metabolism , Aconitine/analysis , Plant Roots/chemistry , Tissue Distribution , Spleen/metabolism , Postmortem Changes , Forensic Toxicology/methods , Myocardium/metabolism , Time Factors , Male
3.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836815

ABSTRACT

BACKGROUND: Smoking is a risk factor for liver cirrhosis; however, the underlying mechanisms remain largely unexplored. The α7 nicotinic acetylcholine receptor (α7nAChR) has recently been detected in nonimmune cells possessing immunoregulatory functions. We aimed to verify whether nicotine promotes liver fibrosis via α7nAChR. METHODS: We used osmotic pumps to administer nicotine and carbon tetrachloride to induce liver fibrosis in wild-type and α7nAChR-deficient mice. The severity of fibrosis was evaluated using Masson trichrome staining, hydroxyproline assays, and real-time PCR for profibrotic genes. Furthermore, we evaluated the cell proliferative capacity and COL1A1 mRNA expression in human HSCs line LX-2 and primary rat HSCs treated with nicotine and an α7nAChR antagonist, methyllycaconitine citrate. RESULTS: Nicotine exacerbated carbon tetrachloride-induced liver fibrosis in mice (+42.4% in hydroxyproline assay). This effect of nicotine was abolished in α7nAChR-deficient mice, indicating nicotine promotes liver fibrosis via α7nAChR. To confirm the direct involvement of α7nAChRs in liver fibrosis, we investigated the effects of genetic suppression of α7nAChR expression on carbon tetrachloride-induced liver fibrosis without nicotine treatment. Profibrotic gene expression at 1.5 weeks was significantly suppressed in α7nAChR-deficient mice (-83.8% in Acta2, -80.6% in Col1a1, -66.8% in Tgfb1), and collagen content was decreased at 4 weeks (-22.3% in hydroxyproline assay). The in vitro analysis showed α7nAChR expression in activated but not in quiescent HSCs. Treatment of LX-2 cells with nicotine increased COL1A1 expression (+116%) and cell proliferation (+10.9%). These effects were attenuated by methyllycaconitine citrate, indicating the profibrotic effects of nicotine via α7nAChR. CONCLUSIONS: Nicotine aggravates liver fibrosis induced by other factors by activating α7nAChR on HSCs, thereby increasing their collagen-producing capacity. We suggest the profibrotic effect of nicotine is mediated through α7nAChRs.


Subject(s)
Carbon Tetrachloride , Collagen Type I, alpha 1 Chain , Collagen Type I , Hepatic Stellate Cells , Liver Cirrhosis , Nicotine , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Nicotine/adverse effects , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Humans , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain/metabolism , Rats , Male , Cell Proliferation/drug effects , Aconitine/pharmacology , Aconitine/analogs & derivatives , Cell Line , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism , Mice, Knockout , Nicotinic Agonists/pharmacology
4.
Pestic Biochem Physiol ; 202: 105950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879305

ABSTRACT

Hypoaconitine (HA), a major secondary metabolite of aconite (a plant-derived rodenticide), is a highly toxic di-ester alkaloidal constituent. The toxicity of HA is intense with a low LD50. However, studies on its toxicity mechanism have mainly focused on cardiotoxicity, with few reports on the mechanism of hepatotoxicity. In this study, we combined metabolomics and network toxicology to investigate the effects of HA on the liver and analyzed the mechanisms by which it causes hepatotoxicity. The results of metabolomics studies indicated diethylphosphate, sphingosine-1-phosphate, glycerophosphorylcholine, 2,8-quinolinediol, guanidinosuccinic acid, and D-proline as differential metabolites after HA exposure. These metabolites are involved in eight metabolic pathways including arginine and proline metabolism, ether lipid metabolism, ß-alanine metabolism, sphingolipid metabolism, glutathione metabolism, and glycerophospholipid metabolism. Network toxicology analysis of HA may affect the HIF-1 signaling pathway, IL-17 signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and so on by regulating the targets of ALB, HSP90AA1, MMP9, CASP3, and so on. Integrating the results of metabolomics and network toxicology, it was concluded that HA may induce hepatotoxicity by triggering physiological processes such as oxidative stress, inflammatory response, and inducing apoptosis in hepatocytes.


Subject(s)
Aconitine , Liver , Metabolomics , Animals , Mice , Male , Aconitine/analogs & derivatives , Aconitine/toxicity , Liver/metabolism , Liver/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Signal Transduction/drug effects
5.
J Pharm Biomed Anal ; 246: 116222, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763106

ABSTRACT

Zhenwu Decoction (ZWD), a classic formula from Zhang Zhongjing's "Treatise on Typhoid Fever" in the Han Dynasty, consists of five traditional Chinese medicines: Aconiti Lateralis Radix Praeparata (ALRP), Paeoniae Radix Alba, Poria Cocos, Ginger, and Rhizoma Atractylodis Macrocephalae. To evaluate the chemical constituent consistency of ZWD before and after compatibility, an ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry was established to comprehensively study the constituents of ZWD. By normalizing the peak area, the pairwise compatibility of ALRP and the other four medicinal herbs, as well as the compatibility of the entire formula were studied, respectively. Multivariate statistical analysis was used to identify the differences. The processed data were analyzed by principal component analysis and supervised orthogonal partial least squared discriminant analysis, and an S-plot was generated to compare the differences in the chemical composition of the two types of decoction samples. The results showed that during the decoction process of ZWD, a total of seven components were recognized as differential compounds before and after compatibility of ZWD, namely 6-gingerol, zingerone, benzoylhypaconine, hypaconitine, benzoylaconine, paeoniflorin and fuziline. The results of this study provide basic data reference for understanding the law of ZWD compatibility and are valuable for the compatibility study of other herbal medicines.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods , Fatty Alcohols/analysis , Fatty Alcohols/chemistry , Principal Component Analysis , Catechols/analysis , Catechols/chemistry , Zingiber officinale/chemistry , Glucosides/analysis , Glucosides/chemistry , Monoterpenes/analysis , Monoterpenes/chemistry , Benzoates/analysis , Benzoates/chemistry , Bridged-Ring Compounds/analysis , Bridged-Ring Compounds/chemistry , Multivariate Analysis , Paeonia/chemistry , Aconitum/chemistry , Aconitine/analogs & derivatives
6.
Int Immunopharmacol ; 133: 112170, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38691919

ABSTRACT

Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor ß1 (TGF-ß1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1ß (interleukin-1ß) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.


Subject(s)
Aconitum , Acute Kidney Injury , Apoptosis , Kidney , Mitochondria , Rats, Sprague-Dawley , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Apoptosis/drug effects , Aconitum/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Male , Rats , Cell Line , Kidney/drug effects , Kidney/pathology , Gentamicins/toxicity , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Aconitine/analogs & derivatives , Aconitine/pharmacology , Aconitine/therapeutic use , Disease Models, Animal , Membrane Potential, Mitochondrial/drug effects , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Diterpenes
7.
Sci Rep ; 14(1): 9589, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38670979

ABSTRACT

Lysophosphoglycerides (LPLs) have been reported to accumulate in myocardium and serve as a cause of arrhythmias in acute myocardial ischemia. However, in this study we found that LPLs level in the ventricular myocardium was decreased by the onset of acute myocardial ischemia in vivo in rats. Decreasing of LPLs level in left ventricular myocardium, but not right, was observed within 26 min of left myocardial ischemia, regardless of whether arrhythmias were triggered. Lower LPLs level in the ventricular myocardium was also observed in aconitine-simulated ventricular fibrillation (P < 0.0001) and ouabain-simulated III° atrioventricular block (P < 0.0001). Shot-lasting electric shock, e.g., ≤ 40 s, decreased LPLs level, while long-lasting, e.g., 5 min, increased it (fold change = 2.27, P = 0.0008). LPLs accumulation was observed in long-lasting myocardial ischemia, e.g., 4 h (fold change = 1.20, P = 0.0012), when caspase3 activity was elevated (P = 0.0012), indicating increased cell death, but not coincided with higher frequent arrhythmias. In postmortem human ventricular myocardium, differences of LPLs level in left ventricular myocardium was not observed among coronary artery disease- and other heart diseases-caused sudden death and non-heart disease caused death. LPLs level manifested a remarkable increasing from postmortem 12 h on in rats, thus abolishing the potential for serving as biomarkers of sudden cardiac death. Token together, in this study we found that LPLs in ventricular myocardium were initially decreased by the onset of ischemia, LPLs accumulation do not confer arrhythmogenesis during acute myocardial ischemia. It is necessary to reassess the roles of LPLs in myocardial infarction.


Subject(s)
Arrhythmias, Cardiac , Heart Ventricles , Myocardial Ischemia , Myocardium , Animals , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Rats , Male , Heart Ventricles/metabolism , Heart Ventricles/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/etiology , Humans , Myocardium/metabolism , Myocardium/pathology , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/etiology , Ventricular Fibrillation/pathology , Aconitine/analogs & derivatives , Disease Models, Animal , Ouabain/pharmacology , Ouabain/metabolism
8.
Chem Commun (Camb) ; 60(37): 4898-4901, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38629248

ABSTRACT

A heart-on-a-particle model based on multicompartmental microgel is proposed to simulate the heart microenvironment and study the cardiotoxicity of drugs. The relevant microgel was fabricated by a biocompatible microfluidic-based approach, where heart function-related HL-1 and HUVEC cells were arranged in separate compartments. Finally, the mechanism of aconitine-induced heart toxicity was elucidated using mass spectrometry and molecular biotechnology.


Subject(s)
Aconitine , Human Umbilical Vein Endothelial Cells , Lab-On-A-Chip Devices , Aconitine/chemistry , Humans , Cardiotoxicity/etiology , Cell Line , Particle Size , Cell Survival/drug effects
9.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1438-1445, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621927

ABSTRACT

Based on the sarcoma receptor coactivator(Src)/phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, the mechanism of action of bulleyaconitine A in the treatment of bone destruction of experimental rheumatoid arthritis(RA) was explored. Firstly, key targets of RA bone destruction were collected through GeneCards, PharmGKB, and OMIM databa-ses. Potential targets of bulleyaconitine A were collected using SwissTargetPrediction and PharmMapper databases. Next, intersection targets were obtained by the Venny 2.1.0 platform. Protein-protein interaction(PPI) network and topology analysis were managed by utilizing the STRING database and Cytoscape 3.8.0. Then, Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted in the DAVID database. AutoDock Vina was applied to predict the molecular docking and binding ability of bulleyaconitine A with key targets. Finally, a receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model was established in vitro. Quantitative real-time polymerase chain reaction(qRT-PCR) was used to detect the mRNA expression levels of related targets, and immunofluorescence and Western blot were adopted to detect the protein expression level of key targets. It displayed that there was a total of 29 drug-disease targets, and Src was the core target of bulleyaconitine A in anti-RA bone destruction. Furthermore, KEGG enrichment analysis revealed that bulleyaconitine A may exert an anti-RA bone destruction effect by regulating the Src/PI3K/Akt signaling pathway. The molecular docking results showed that bulleyaconitine A had better bin-ding ability with Src, phosphatidylinositol-4,5-diphosphate 3-kinase(PIK3CA), and Akt1. The result of the experiment indicated that bulleyaconitine A not only dose-dependently inhibited the mRNA expression levels of osteoclast differentiation-related genes cathepsin K(CTSK) and matrix metalloproteinase-9(MMP-9)(P<0.01), but also significantly reduced the expression of p-c-Src, PI3K, as well as p-Akt in vitro osteoclasts(P<0.01). In summary, bulleyaconitine A may inhibit RA bone destruction by regulating the Src/PI3K/Akt signaling pathway. This study provides experimental support for the treatment of RA bone destruction with bulleyaconitine A and lays a foundation for the clinical application of bulleyaconitine A.


Subject(s)
Aconitine/analogs & derivatives , Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Animals , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Molecular Docking Simulation , Signal Transduction , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
10.
Bioorg Chem ; 146: 107297, 2024 May.
Article in English | MEDLINE | ID: mdl-38503027

ABSTRACT

In our previous study, a screening of a variety of lycotonine-type diterpenoid alkaloids were screened for cardiotonic activity revealed that lycoctonine had moderate cardiac effect. In this study, a series of structurally diverse of lycoctonine were synthesized by modifying on B-ring, D-ring, E-ring, F-ring, N-atom or salt formation on lycoctonine skeleton. We evaluated the cardiotonic activity of the derivatives by isolated frog heart, aiming to identify some compounds with significantly enhanced cardiac effects, among which compound 27 with a N-isobutyl group emerged as the most promising cardiotonic candidate. Furthermore, the cardiotonic mechanism of compound 27 was preliminarily investigated. The result suggested that the cardiotonic effect of compound 27 is related to calcium channels. Patch clamp technique confirmed that the compound 27 had inhibitory effects on CaV1.2 and CaV3.2, with inhibition rates of 78.52 % ± 2.26 % and 79.05 % ± 1.59 % at the concentration of 50 µM, respectively. Subsequently, the protective effect of 27 on H9c2 cells injury induced by cobalt chloride was tested. In addition, compound 27 can alleviate CoCl2-induced myocardial injury by alleviating calcium overload. These findings suggest that compound 27 was a new structural derived from lycoctonine, which may serve as a new lead compound for the treatment of heart failure.


Subject(s)
Aconitine/analogs & derivatives , Alkaloids , Cardiotonic Agents , Cardiotonic Agents/pharmacology , Aconitine/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Calcium Channels , Calcium
11.
Toxicon ; 242: 107693, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38519012

ABSTRACT

Aconitine is the main active component of Aconitum plants. Although aconitine has effects that include strengthening the heart, analgesia, anti-tumor, and immune-regulating effects, aconitine has both efficacy and toxicity, especially cardiotoxicity. Severe effects can include arrhythmia and cardiac arrest, which limits the clinical application of aconitine-containing traditional Chinese medicine. Ginsenoside Rb1(Rb1) is mainly found in plants, such as ginseng and Panax notoginseng, and has cardiovascular-protective and anti-arrhythmia effects. This study aimed to investigate the detoxifying effects of Rb1 on aconitine cardiotoxicity and the electrophysiological effect of Rb1 on aconitine-induced arrhythmia in rats. Pathological analysis, myocardial enzymatic indexes, and Western blotting were used to investigate the ameliorating effect of Rb1 on aconitine cardiotoxicity. Optical mapping was used to evaluate the effect of Rb1 on action potential and calcium signaling after aconitine-induced arrhythmia. Rb1 inhibited pathological damage caused by aconitine, decreased myocardial enzyme levels, and restored the balance of apoptotic protein expression by reducing the expression of Bax and cleaved caspase 3 and increasing the expression of Bcl-2, thereby reducing myocardial damage caused by aconitine. Rb1 also reduced the increase in heart rate caused by aconitine, accelerated action potential conduction and calcium signaling, and reduced the dispersion of action potential and calcium signal conduction. Rb1 reduced the cardiotoxicity of aconitine by attenuating aconitine-induced myocardial injury and inhibiting the aconitine-induced retardation of ventricular action potential and calcium signaling in rats.


Subject(s)
Aconitine , Calcium Signaling , Cardiotoxicity , Ginsenosides , Animals , Ginsenosides/pharmacology , Aconitine/analogs & derivatives , Cardiotoxicity/prevention & control , Rats , Calcium Signaling/drug effects , Male , Action Potentials/drug effects , Rats, Sprague-Dawley , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/prevention & control , Myocardium/metabolism , Myocardium/pathology
12.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473899

ABSTRACT

Allapinin has antiarrhythmic activity and can be used to prevent and treat various supraventricular and ventricular arrhythmias. Nevertheless, it is highly toxic and has a number of side effects associated with non-specific accumulation in various tissues. The complex of this substance with the monoammonium salt of glycyrrhizic acid (Al:MASGA) has less toxicity and improved antiarrhythmic activity. However, the encapsulation of Al:MASGA in polyelectrolyte microcapsules (PMC) for prolonged release will reduce the residual adverse effects of this drug. In this work, the possibility of encapsulating the allapinin-MASGA complex in polyelectrolyte microcapsules based on polyallylamine and polystyrene sulfonate was investigated. The encapsulation methods of the allapinin-MASGA in polyelectrolyte microcapsules by adsorption and coprecipitation were compared. It was found that the coprecipitation method did not result in the encapsulation of Al:MASGA. The sorption method facilitated the encapsulation of up to 80% of the original substance content in solution in PMC. The release of the encapsulated substance was further investigated, and it was shown that the release of the encapsulated Al:MASGA was independent of the substance content in the capsules, but at pH 5, a two-fold decrease in the rate of drug release was observed.


Subject(s)
Aconitine/analogs & derivatives , Glycyrrhizic Acid , Sodium Chloride , Polyelectrolytes , Capsules/chemistry , Sodium Chloride, Dietary
13.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467717

ABSTRACT

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Subject(s)
AMP-Activated Protein Kinases , Aconitine , Cardiotoxicity , Histone Deacetylases , Animals , Mice , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Histone Deacetylases/metabolism , AMP-Activated Protein Kinases/metabolism , Male , Humans , Aconitum/chemistry , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Drugs, Chinese Herbal/pharmacology
14.
Free Radic Biol Med ; 214: 206-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38369076

ABSTRACT

Benzoylaconitine is a natural product in the treatment of cardiovascular disease. However, its pharmacological effect, direct target protein, and molecular mechanisms for the treatment of heart failure are unclear. In this study, benzoylaconitine inhibited Ang II-induced cell hypertrophy and fibrosis in rat primary cardiomyocytes and rat fibroblasts, while attenuating cardiac function and cardiac remodeling in TAC mice. Using the limited proteolysis-mass spectrometry (LiP-MS) method, the angiotensin-converting enzyme 2 (ACE2) was confirmed as a direct binding target of benzoylaconitine for the treatment of heart failure. In ACE2-knockdown cells and ACE2-/- mice, benzoylaconitine failed to ameliorate cardiomyocyte hypertrophy, fibrosis, and heart failure. Online RNA-sequence analysis indicated p38/ERK-mediated mitochondrial reactive oxygen species (ROS) and nuclear factor kappa B (NF-κB) activation are the possible downstream molecular mechanisms for the effect of BAC-ACE2 interaction. Further studies in ACE2-knockdown cells and ACE2-/- mice suggested that benzoylaconitine targeted ACE2 to suppress p38/ERK-mediated mitochondrial ROS and NF-κB pathway activation. Our findings suggest that benzoylaconitine is a promising ACE2 agonist in regulating mitochondrial ROS release and inflammation activation to improve cardiac function in the treatment of heart failure.


Subject(s)
Aconitine/analogs & derivatives , Heart Failure , NF-kappa B , Rats , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Angiotensin-Converting Enzyme 2/genetics , Reactive Oxygen Species/metabolism , Peptidyl-Dipeptidase A/metabolism , Angiotensin II/metabolism , Heart Failure/drug therapy , Heart Failure/genetics , Myocytes, Cardiac/metabolism , Fibrosis , Hypertrophy
15.
Chem Biodivers ; 21(2): e202301656, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38217357

ABSTRACT

Aconitum spp. are important medicinal plants mentioned in Ayurveda as Ativisa or Vatsanabha. The present study aims to evaluate anti-rheumatic potential in seven Aconitum species and correlation with aconitine and hypaconitine content. Anti-rheumatic potential was analyzed through in vitro xanthine oxidase inhibition, anti-inflammatory and ROS scavenging assays; and quantification of aconitine and hypaconitine with RP-HPLC method validated as per ICH guidelines. The findings reveal that A. palmatum possessed the most promising response (IC50 =12.68±0.15 µg/ml) followed by A. ferox (IC50 =12.912±1.87 µg/ml) for xanthin oxidase inhibition. We observed a wide variation in aconitine and hypaconitine content ranging from 0.018 %-1.37 % and 0.0051 %-0.077 % respectively on dry weight basis. Aconitine and hypaconitine showed moderate positive correlation (r=0.68 and 0.59 respectively) with anti-rheumatic potential. The study identifies potential alternative species of Aconitum that can help in sustainable availability of quality raw material.


Subject(s)
Aconitine/analogs & derivatives , Aconitum , Drugs, Chinese Herbal , Aconitine/pharmacology , Aconitine/analysis , Sikkim , Himalayas , Chromatography, High Pressure Liquid/methods , India
16.
Mini Rev Med Chem ; 24(2): 159-175, 2024.
Article in English | MEDLINE | ID: mdl-36994982

ABSTRACT

Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.


Subject(s)
Aconitum , Alkaloids , Drugs, Chinese Herbal , Humans , Aconitine/pharmacology , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors , Alkaloids/pharmacology , Alkaloids/therapeutic use
17.
Talanta ; 269: 125402, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37979510

ABSTRACT

The accurate analysis of ultra-trace (e.g. <10-4 ng/mL) substances in complex matrices is a burdensome but vital problem in pharmaceutical analysis, with important implications for precise quality control of drugs, discovery of innovative medicines and elucidation of pharmacological mechanisms. Herein, an innovative constant-flow perfusion nano-electrospray ionization (PnESI) technique was developed firstly features significant quantitative advantages in high-sensitivity ambient MS analysis of complex matrix sample. More importantly, double-labeled addition enrichment quantitation strategies of gas-liquid microextraction (GLME) were proposed for the first time, allowing highly selective extraction and enrichment of specific target analytes in a green and ultra-efficient (>1000-fold) manner. Using complex processed Aconitum herbs as example, PnESI-MS directly enabled the qualitative and absolute quantitative analysis of the processed Aconitum extracts and characterized the target toxic diester alkaloids with high sensitivity, high stability, wide linearity range, and strong resistance to matrix interference. Further, GLME device was applied to obtain the highly specific enrichment of the target diester alkaloids more than 1000-fold, and accurate absolute quantitation of trace aconitine, mesaconitine, and hypaconitine in the extracts of Heishunpian, Zhichuanwu and Zhicaowu was accomplished (e.g., 0.098 pg/mL and 0.143 pg/mL), with the quantitation results well below the LODs of aconitines from any analytical instruments available. This study built a systematic strategy for accurate quantitation of ultra-trace substances in complex matrix sample and expected to provide a technological revolution in many fields of pharmaceutical research.


Subject(s)
Aconitum , Alkaloids , Aconitine/analysis , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Alkaloids/analysis , Perfusion , Aconitum/chemistry , Quality Control
18.
Chem Biodivers ; 21(2): e202301761, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38117633

ABSTRACT

Natural products and their derivatives are a precious treasure in the pursuit of potent anti-inflammatory drugs. In this work, we measured the toxicity of 78 LA derivatives at 20 µM using MTT, then we evaluated the NO release of compounds without obvious toxicity in LPS-induced RAW.264.7 by Griess reagent, we identified three compounds, namely compounds 6, 19, 70, which exhibited promising anti-inflammatory potential. These compounds exhibited IC50 values of 10.34±2.05 µM, 18.18±4.80 µM and 15.66±0.88 µM. In addition, through ELISA kits, compounds 6, 19, 70 significantly reduce the production of inflammatory factors (TNF-α, IL-6, IL-1ß). Real-time PCR and western blot analysis showed that compounds 6, 19, 70 inhibited the mRNA and protein expression of iNOS and COX-2. Notably, compound 6 exhibited the most potent inhibitory activity. In vitro, it inhibits LPS-induced phosphorylation of NF-κB p65, IκBα, ERK1/2, JNK, and p38 MAPKs in RAW264.7 cells. In vivo, compound 6 potently inhibits the secretion of inflammatory mediators and neutrophil activation in ALI mice. Our findings suggest that compound 6 may be a potential anti-inflammatory drug.


Subject(s)
Aconitine/analogs & derivatives , Lipopolysaccharides , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , RAW 264.7 Cells , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism
20.
J Med Case Rep ; 17(1): 554, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129927

ABSTRACT

BACKGROUND: We report a case of a clinical challenge lasting for 12 months, with severe and unresolved clinical features involving several medical disciplines. CASE PRESENTATION: A 53-year-old Caucasian male, who had been previously healthy apart from a moderate renal impairment, was hospitalized 12 times during a 1-year period for a recurrent complex of neurological, cardiovascular, and gastrointestinal symptoms and signs, without any apparent etiology. On two occasions, he suffered a cardiac arrest and was successfully resuscitated. Following the first cardiac arrest, a cardiac defibrillator was inserted. During the 12th admission to our hospital, aconitine poisoning was suspected after a comprehensive multidisciplinary evaluation and confirmed by serum and urine analyses. Later, aconitine was also detected in a hair segment, indicating exposure within the symptomatic period. After the diagnosis was made, no further episodes occurred. His cardiac defibrillator was later removed, and he returned to work. A former diagnosis of epilepsy was also abandoned. Criminal intent was suspected, and his wife was sentenced to 11 years in prison for attempted murder. To make standardized assessments of the probability for aconitine poisoning as the cause of the eleven prior admissions, an "aconitine score" was established. The score is based on neurological, cardiovascular, gastrointestinal, and other clinical features reported in the literature. We also make a case for the use of hair analysis to confirm suspected poisoning cases evaluated after the resolution of clinical features. CONCLUSION: This report illustrates the medical challenge raised by cases of covert poisoning. In patients presenting with symptoms and signs from several organ systems without apparent cause, poisoning should always be suspected. To solve such cases, insight into the effects of specific toxic agents is needed. We present an "aconitine score" that may be useful in cases of suspected aconitine poisoning.


Subject(s)
Aconitine , Arrhythmias, Cardiac , Heart Arrest , Paresthesia , Humans , Male , Middle Aged , Aconitine/poisoning , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/therapy , Heart , Heart Arrest/chemically induced , Heart Arrest/therapy , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...