Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.413
Filter
1.
J Med Chem ; 67(10): 8099-8121, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38722799

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic target for treating select cancers. There are two forms of NAMPT: intracellular NAMPT (iNAMPT, the rate-limiting enzyme in the mammalian NAD+ main synthetic pathway) and extracellular NAMPT (eNAMPT, a cytokine with protumorigenic function). Reported NAMPT inhibitors only inhibit iNAMPT and show potent activities in preclinical studies. Unfortunately, they failed to show efficacy due to futility and toxicity. We developed a series of FK866-based NAMPT-targeting PROTACs and identified LYP-8 as a potent and effective NAMPT degrader that simultaneously diminished iNAMPT and eNAMPT. Importantly, LYP-8 demonstrated superior efficacy and safety in mice when compared to the clinical candidate, FK866. This study highlights the importance and feasibility of applying PROTACs as a superior strategy for interfering with both the enzymatic function of NAMPT (iNAMPT) and nonenzymatic function of NAMPT (eNAMPT), which is difficult to achieve with conventional NAMPT inhibitors.


Subject(s)
Acrylamides , Drug Design , Nicotinamide Phosphoribosyltransferase , Piperidines , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Acrylamides/pharmacology , Acrylamides/chemistry , Acrylamides/chemical synthesis , Animals , Humans , Piperidines/pharmacology , Piperidines/chemistry , Mice , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Cytokines/metabolism , Cell Line, Tumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
2.
Bioorg Chem ; 147: 107394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691906

ABSTRACT

Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for treating non-small-cell lung cancer (NSCLC). However, there are no approved inhibitors for the C797S resistance mutation caused by the third-generation EGFR inhibitor (Osimertinib). Therefore, the development of fourth-generation EGFR inhibitors is urgent. In this study, we clarified the structure-activity relationship of several synthesized compounds as fourth-generation inhibitors against human triple (Del19/T790M/C797S) mutation. Representative compound 52 showed potent inhibitory activity against EGFRL858R/T790M/C797S with an IC50 of 0.55 nM and significantly inhibited the proliferation of the Ba/F3 cell line harboring EGFRL858R/T790M/C797S with an IC50 of 43.28 nM. Moreover, 52 demonstrated good pharmacokinetic properties and excellent in vivo efficacy. Overall, the compound 52 can be considered a promising candidate for overcoming EGFR C797S-mediated mutations.


Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/genetics , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Acrylamides/pharmacology , Acrylamides/chemistry , Acrylamides/chemical synthesis , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Aniline Compounds/pharmacology , Aniline Compounds/chemistry , Aniline Compounds/chemical synthesis , Aniline Compounds/therapeutic use , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Molecular Structure , Animals , Mice , Cell Line, Tumor , Mutation , Indoles , Pyrimidines
3.
Nat Commun ; 15(1): 4195, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760351

ABSTRACT

Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Ferritins , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Acrylamides/pharmacology , Acrylamides/therapeutic use , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Ferritins/metabolism , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Oxidative Phosphorylation/drug effects , Animals , Mice , Copper/metabolism , Autophagy/drug effects , Mice, Nude , Indoles , Pyrimidines
4.
Mol Cancer ; 23(1): 91, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715012

ABSTRACT

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Signal Transduction , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Drug Resistance, Neoplasm/genetics , Acrylamides/pharmacology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Aniline Compounds/pharmacology , Cell Line, Tumor , Animals , Mice , Apoptosis , Cell Movement/genetics , Xenograft Model Antitumor Assays , Male , Female , Indoles , Pyrimidines
5.
Bioorg Med Chem Lett ; 107: 129779, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38729317

ABSTRACT

Targeted protein degradation is mediated by small molecules that induce or stabilize protein-protein interactions between targets and the ubiquitin-proteasome machinery. Currently, there remains a need to expand the repertoire of viable E3 ligases available for hijacking. Notably, covalent chemistry has been employed to engage a handful of E3 ligases, including DCAF11. Here, we disclose a covalent PROTAC that enables DCAF11-dependent degradation, featuring a cyanoacrylamide warhead. Our findings underscore DCAF11 as an interesting candidate with a capacity to accommodate diverse electrophilic chemistries compatible with targeted protein degradation.


Subject(s)
Acrylamides , Humans , Acrylamides/chemistry , Acrylamides/pharmacology , Acrylamides/chemical synthesis , Molecular Structure , Proteolysis/drug effects , Drug Discovery , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Structure-Activity Relationship
6.
Respir Res ; 25(1): 215, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764025

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS: We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS: Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS: BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.


Subject(s)
Autophagy , Betulinic Acid , Carcinoma, Non-Small-Cell Lung , Drug Synergism , ErbB Receptors , Lung Neoplasms , Pentacyclic Triterpenes , Protein Kinase Inhibitors , Animals , Humans , Mice , A549 Cells , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Gefitinib/pharmacology , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Pyrimidines , Signal Transduction/drug effects , Triterpenes/pharmacology , Xenograft Model Antitumor Assays/methods
7.
Cancer Invest ; 42(5): 425-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38818695

ABSTRACT

Addressing recurrent cervical cancer poses a substantial challenge. Osimertinib, an FDA-approved EGFR inhibitor, has emerged as a promising option. Our study examined its potential to enhance paclitaxel's efficacy against cervical cancer. Osimertinib effectively hindered cancer cell growth and induced apoptosis across multiple cell lines. Combined with paclitaxel, it exhibited synergy in suppressing cervical cancer cells. Importantly, osimertinib's inhibitory effect was EGFR-independent; it targeted Mnk phosphorylation, reducing eIF4E activity. In mice, the combined osimertinib-paclitaxel treatment surpassed individual drugs in inhibiting cancer growth. These preclinical findings suggest osimertinib's repurposing as a means to improve paclitaxel's effectiveness in cervical cancer treatment.


Subject(s)
Acrylamides , Aniline Compounds , Paclitaxel , Uterine Cervical Neoplasms , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Humans , Acrylamides/pharmacology , Acrylamides/therapeutic use , Female , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Animals , Mice , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Cell Line, Tumor , MAP Kinase Signaling System/drug effects , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Drug Synergism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Indoles , Pyrimidines
8.
Rev Mal Respir ; 41(6): 451-454, 2024 Jun.
Article in French | MEDLINE | ID: mdl-38796386

ABSTRACT

Targeted therapies are the standard first-line treatment for metastatic lung adenocarcinoma with certain molecular abnormalities. These abnormalities are particularly common in Southeast Asia and French Polynesia. A 51-year-old Tahitian female non-smoker was diagnosed in 2018 with stage IV lung adenocarcinoma harboring a p.L858R EGFR mutation. She received gefitinib as first-line treatment. Due to locoregional progression and the presence of a resistance mutation (p.T790M of EFGR), she received osimertinib as second-line treatment, after which chemotherapy was proposed as 3rd-line treatment. An additional biopsy detected not only the previously known EGFR mutation, but also a BRAF p.V600E mutation. Following disease progression during chemotherapy, the patient received targeted therapies combining dabrafenib, trametinib and osimertinib. Due to a dissociated response after four months of treatment, a 5th line of paclitaxel bevacizumab was initiated. Subsequent to additional progression and given the ALK rearrangement shown on the re-biopsy, 6th-line treatment with alectinib was proposed. As the response was once again dissociated, a final line was proposed before stopping active treatments due to their toxicity and overall deterioration in the patient's state of health. This exceptional case is characterized by resistance to anti-EGFR through the successive and cumulative acquisition of two new oncogene addictions. The authors underline the importance of re-biopsy at each progression, leading (if at all feasible) to yet around round of targeted therapy.


Subject(s)
Anaplastic Lymphoma Kinase , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Oncogene Addiction , Proto-Oncogene Proteins B-raf , Humans , Female , Middle Aged , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Proto-Oncogene Proteins B-raf/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Oncogene Addiction/genetics , Mutation , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology , Gefitinib/therapeutic use , Gefitinib/pharmacology , Acrylamides/therapeutic use , Acrylamides/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Indoles , Pyrimidines
9.
BMC Med ; 22(1): 174, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658988

ABSTRACT

BACKGROUND: Osimertinib has become standard care for epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC) patients whereas drug resistance remains inevitable. Now we recognize that the interactions between the tumor and the tumor microenvironment (TME) also account for drug resistance. Therefore, we provide a new sight into post-osimertinib management, focusing on the alteration of TME. METHODS: We conducted a retrospective study on the prognosis of different treatments after osimertinib resistance. Next, we carried out in vivo experiment to validate our findings using a humanized mouse model. Furthermore, we performed single-cell transcriptome sequencing (scRNA-seq) of tumor tissue from the above treatment groups to explore the mechanisms of TME changes. RESULTS: Totally 111 advanced NSCLC patients have been enrolled in the retrospective study. The median PFS was 9.84 months (95% CI 7.0-12.6 months) in the osimertinib plus anti-angiogenesis group, significantly longer than chemotherapy (P = 0.012) and osimertinib (P = 0.003). The median OS was 16.79 months (95% CI 14.97-18.61 months) in the osimertinib plus anti-angiogenesis group, significantly better than chemotherapy (P = 0.026), the chemotherapy plus osimertinib (P = 0.021), and the chemotherapy plus immunotherapy (P = 0.006). The efficacy of osimertinib plus anlotinib in the osimertinib-resistant engraft tumors (R-O+A) group was significantly more potent than the osimertinib (R-O) group (P<0.05) in vitro. The combinational therapy could significantly increase the infiltration of CD4+ T cells (P<0.05), CD25+CD4+ T cells (P<0.001), and PD-1+CD8+ T cells (P<0.05) compared to osimertinib. ScRNA-seq demonstrated that the number of CD8+ T and proliferation T cells increased, and TAM.mo was downregulated in the R-O+A group compared to the R-O group. Subtype study of T cells explained that the changes caused by combination treatment were mainly related to cytotoxic T cells. Subtype study of macrophages showed that proportion and functional changes in IL-1ß.mo and CCL18.mo might be responsible for rescue osimertinib resistance by combination therapy. CONCLUSIONS: In conclusion, osimertinib plus anlotinib could improve the prognosis of patients with a progressed disease on second-line osimertinib treatment, which may ascribe to increased T cell infiltration and TAM remodeling via VEGF-VEGFR blockage.


Subject(s)
Acrylamides , Angiogenesis Inhibitors , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Pyrimidines , Carcinoma, Non-Small-Cell Lung/drug therapy , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology , Acrylamides/therapeutic use , Acrylamides/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Retrospective Studies , Drug Resistance, Neoplasm/drug effects , Female , Male , Animals , Mice , Middle Aged , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Aged , Tumor Microenvironment/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Adult , Indoles/therapeutic use , Indoles/administration & dosage
10.
Colloids Surf B Biointerfaces ; 238: 113881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608460

ABSTRACT

Hydrogels as wound dressing have attracted extensive attention in past decade because they can provide moist microenvironment to promote wound healing. Herein, this research designed a multifunctional hydrogel with antibacterial property and antioxidant activity fabricated from quaternary ammonium bearing light emitting quaternized TPE-P(DAA-co-DMAPMA) (QTPDD) and poly(aspartic hydrazide) (PAH). The protocatechuic aldehyde (PCA) grafted to the hydrogel through dynamic bond endowed the hydrogel with antioxidant activity and the tranexamic acid (TXA) was loaded to enhance the hemostatic performance. The hydrogel possesses preferable gelation time for injectable application, good antioxidant property and tissue adhesion, improved hemostatic performance fit for wound repairing. Furthermore, the hydrogel has excellent antimicrobial property to both E. coli and S. aureus based on quaternary ammonium structure. The hydrogel also showed good biocompatibility and the in vivo experiments proved this hydrogel can promote the wound repairing rate. This study suggests that TXA/hydrogel with quaternary ammonium structure and dynamic grafted PCA have great potential in wound healing applications.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Escherichia coli , Hydrogels , Staphylococcus aureus , Wound Healing , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Mice , Microbial Sensitivity Tests , Polymers/chemistry , Polymers/pharmacology , Acrylamides/chemistry , Acrylamides/pharmacology , Peptides/pharmacology , Peptides/chemistry
11.
J Med Chem ; 67(9): 7283-7300, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38676656

ABSTRACT

The epidermal growth factor receptor (EGFR) tertiary C797S mutation is an important cause of resistance to Osimertinib, which seriously hinders the clinical application of Osimertinib. Developing proteolysis-targeting chimeras (PROTACs) targeting EGFR mutants can offer a promising strategy to overcome drug resistance. In this study, some novel PROTACs targeting C797S mutation were designed and synthesized based on a new EGFR inhibitor and displayed a potent degradation effect in H1975-TM cells harboring EGFRL858R/T790M/C797S. The representative compound C6 exhibited a DC50 of 10.2 nM against EGFRL858R/T790M/C797S and an IC50 of 10.3 nM against H1975-TM. Furthermore, C6 also showed potent degradation activity against various main EGFR mutants, including EGFRDel19/T790M/C797S. Mechanistic studies revealed that the protein degradation was achieved through the ubiquitin-proteasome system. Finally, C6 inhibited tumor growth in the H1975-TM xenograft tumor model effectively and safely. This study identifies a novel and potent EGFR PROTAC to overcome Osimertinib resistance mediated by C797S mutation.


Subject(s)
Antineoplastic Agents , Drug Design , ErbB Receptors , Mutation , Protein Kinase Inhibitors , Proteolysis , ErbB Receptors/metabolism , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Humans , Animals , Proteolysis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Mice, Nude , Acrylamides/pharmacology , Acrylamides/chemical synthesis , Acrylamides/chemistry , Drug Resistance, Neoplasm/drug effects , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Aniline Compounds/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Mice, Inbred BALB C , Structure-Activity Relationship , Proteolysis Targeting Chimera , Indoles , Pyrimidines
12.
Proc Natl Acad Sci U S A ; 121(19): e2315597121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687786

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.


Subject(s)
Acetates , Elapid Venoms , Indoles , Keto Acids , Necrosis , Snake Bites , Animals , Snake Bites/drug therapy , Mice , Humans , Acrylamides/pharmacology , Phospholipases A2/metabolism , Naja , Elapidae , Keratinocytes/drug effects , Skin/drug effects , Skin/pathology , Drug Repositioning
13.
Biochem Pharmacol ; 224: 116207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621425

ABSTRACT

Osimertinib is a novel epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), acting as the first-line medicine for advanced EGFR-mutated NSCLC. Recently, the acquired resistance to osimertinib brings great challenges to the advanced treatment. Therefore, it is in urgent need to find effective strategy to overcome osimertinib acquired resistance. Here, we demonstrated that SREBP pathway-driven lipogenesis was a key mediator to promote osimertinib acquired resistance, and firstly found Tanshinone IIA (Tan IIA), a natural pharmacologically active constituent isolated from Salvia miltiorrhiza, could overcome osimertinib-acquired resistance in vitro and in vivo via inhibiting SREBP pathway-mediated lipid lipogenesis by using LC-MS based cellular lipidomics analysis, quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, flow cytometry, small interfering RNAs transfection, and membrane fluidity assay et al. The results showed that SREBP1/2-driven lipogenesis was highly activated in osimertinib acquired resistant NSCLC cells, while knockdown or inhibition of SREBP1/2 could restore the sensitivity of NSCLC to osimertinib via altered the proportion of saturated phospholipids and unsaturated phospholipids in osimertinib acquired-resistant cells. Furthermore, Tanshinone IIA (Tan IIA) could reverse the acquired resistance to osimertinib in lung cancer. Mechanically, Tan IIA inhibited SREBP signaling mediated lipogenesis, changed the profiles of saturated phospholipids and unsaturated phospholipids, and thus promoted osimertinib acquired resistant cancer cells to be attacked by oxidative stress-induced damage and reduce the cell membrane fluidity. The reversal effect of Tan IIA on osimertinib acquired resistant NSCLC cells was also confirmed in vivo, which is helpful for the development of strategies to reverse osimertinib acquired resistance.


Subject(s)
Abietanes , Acrylamides , Drug Resistance, Neoplasm , Lipogenesis , Lung Neoplasms , Mice, Nude , Humans , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Abietanes/pharmacology , Animals , Acrylamides/pharmacology , Lipogenesis/drug effects , Mice , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Xenograft Model Antitumor Assays/methods , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Male , Female , Indoles , Pyrimidines
14.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658677

ABSTRACT

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Subject(s)
Acrylamides , Drug Resistance, Neoplasm , ErbB Receptors , Indoles , Lung Neoplasms , Mutation , Pyrimidines , Transcription Factors , Humans , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line, Tumor , Acrylamides/pharmacology , Acrylamides/therapeutic use , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Gefitinib/pharmacology , Hippo Signaling Pathway , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , TEA Domain Transcription Factors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems
15.
Target Oncol ; 19(3): 423-433, 2024 May.
Article in English | MEDLINE | ID: mdl-38613731

ABSTRACT

BACKGROUND: Although osimertinib is a promising therapeutic agent for advanced epidermal growth factor receptor (EGFR) mutation-positive lung cancer, the incidence of pneumonitis is particularly high among Japanese patients receiving the drug. Furthermore, the safety and efficacy of subsequent anticancer treatments, including EGFR-tyrosine kinase inhibitor (TKI) rechallenge, which are to be administered after pneumonitis recovery, remain unclear. OBJECTIVE: This study investigated the safety of EGFR-TKI rechallenge in patients who experienced first-line osimertinib-induced pneumonitis, with a primary focus on recurrent pneumonitis. PATIENTS AND METHODS: We retrospectively reviewed the data of patients with EGFR mutation-positive lung cancer who developed initial pneumonitis following first-line osimertinib treatment across 34 institutions in Japan between August 2018 and September 2020. RESULTS: Among the 124 patients included, 68 (54.8%) patients underwent EGFR-TKI rechallenge. The recurrence rate of pneumonitis following EGFR-TKI rechallenge was 27% (95% confidence interval [CI] 17-39) at 12 months. The cumulative incidence of recurrent pneumonitis was significantly higher in the osimertinib group than in the first- and second-generation EGFR-TKI (conventional EGFR-TKI) groups (hazard ratio [HR] 3.1; 95% CI 1.3-7.5; p = 0.013). Multivariate analysis revealed a significant association between EGFR-TKI type (osimertinib or conventional EGFR-TKI) and pneumonitis recurrence, regardless of severity or status of initial pneumonitis (HR 3.29; 95% CI 1.12-9.68; p = 0.03). CONCLUSIONS: Osimertinib rechallenge after initial pneumonitis was associated with significantly higher recurrence rates than conventional EGFR-TKI rechallenge.


Subject(s)
Acrylamides , Aniline Compounds , ErbB Receptors , Lung Neoplasms , Pneumonia , Protein Kinase Inhibitors , Humans , Acrylamides/therapeutic use , Acrylamides/pharmacology , Male , Female , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/adverse effects , Aged , Pneumonia/chemically induced , Retrospective Studies , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Middle Aged , Aged, 80 and over , Japan , Indoles , Pyrimidines
16.
Phytomedicine ; 129: 155612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38669968

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) continues to be a major global health challenge, ranking as a top cause of cancer-related mortality. Alarmingly, the five-year survival rate for CRC patients hovers around a mere 10-30 %. The disruption of fibroblast growth factor receptor (FGFRs) signaling pathways is significantly implicated in the onset and advancement of CRC, presenting a promising target for therapeutic intervention in CRC management. Further investigation is essential to comprehensively elucidate FGFR1's function in CRC and to create potent therapies that specifically target FGFR1. PURPOSE: This study aims to demonstrate the oncogenic role of FGFR1 in colorectal cancer and to explore the potential of ß,ß-dimethylacrylalkannin (ß,ß-DMAA) as a therapeutic option to inhibit FGFR1. METHODS: In this research, we employed a comprehensive suite of techniques including tissue array, kinase profiling, computational docking, knockdown assay to predict and explore the inhibitor of FGFR1. Furthermore, we utilized kinase assay, pull-down, cell proliferation tests, and Patient derived xenograft (PDX) mouse models to further investigate a novel FGFR1 inhibitor and its impact on the growth of CRC. RESULTS: In our research, we discovered that FGFR1 protein is markedly upregulated in colorectal cancer tissues, suggesting a significant role in regulating cellular proliferation, particularly in patients with colorectal cancer. Furthermore, we conducted a computational docking, kinase profiling analysis, simulation and identified that ß,ß-DMAA could directly bind with FGFR1 within ATP binding pocket domain. Cell-based assays confirmed that ß,ß-DMAA effectively inhibited the proliferation of colon cancer cells and also triggered cell cycle arrest, apoptosis, and altered FGFR1-mediated signaling pathways. Moreover, ß,ß-DMAA effectively attenuated the development of PDX tumors in mice that were FGFR1-positive, with no notable toxicity observed. In summary, our study highlights the pivotal role of FGFR1 in colorectal cancer, suggesting that inhibiting FGFR1 activity could be a promising strategy for therapeutic intervention. We present strong evidence that targeting FGFR1 with ß,ß-DMAA is a viable approach for the management of colorectal cancer. Given its low toxicity and high efficacy, ß,ß-DMAA, as an FGFR1 inhibitor, warrants further investigation in clinical settings for the treatment of FGFR1-positive tumors.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Receptor, Fibroblast Growth Factor, Type 1 , Xenograft Model Antitumor Assays , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Colorectal Neoplasms/drug therapy , Humans , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Molecular Docking Simulation , Antineoplastic Agents, Phytogenic/pharmacology , Female , Acrylamides/pharmacology , Apoptosis/drug effects
17.
Cancer Genet ; 284-285: 34-42, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626533

ABSTRACT

Circular RNAs (circRNAs) play an important role in the development of acquired resistance to many anticancer drugs. We developed the Non-Small-Cell Lung Cancer (NSCLC) cell lines with acquired resistance to osimertinib, a third-generation of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), and evaluated the different expression profiles of circRNAs in osimertinib-sensitive and -resistant NSCLC cell lines using RNA sequencing (RNA-Seq). The expression of selected differentially expressed circRNAs was verified using quantitative real-time PCR (qRT-PCR) in paired osimertinib-sensitive and -resistant NSCLC cell lines, and in plasma samples of osimertinib-sensitive and -resistant NSCLC patients. We found that circMYBL1(has_circ_0136924) was downregulated after acquired resistance to osimertinib, inhibiting circMYBL1 expression facilitated the proliferation, migration, and invasion in osimertinib-sensitive NSCLC cells. CircMYBL1 may be a novel molecular biomarker and therapeutic target for osimertinib-resistant NSCLC.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , RNA, Circular , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Acrylamides/therapeutic use , Acrylamides/pharmacology , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , RNA, Circular/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Indoles , Pyrimidines
18.
Exp Mol Med ; 56(5): 1137-1149, 2024 May.
Article in English | MEDLINE | ID: mdl-38689087

ABSTRACT

Osimertinib, a selective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), effectively targets the EGFR T790M mutant in non-small cell lung cancer (NSCLC). However, the newly identified EGFR C797S mutation confers resistance to osimertinib. In this study, we explored the role of pyruvate dehydrogenase kinase 1 (PDK1) in osimertinib resistance. Patients exhibiting osimertinib resistance initially displayed elevated PDK1 expression. Osimertinib-resistant cell lines with the EGFR C797S mutation were established using A549, NCI-H292, PC-9, and NCI-H1975 NSCLC cells for both in vitro and in vivo investigations. These EGFR C797S mutant cells exhibited heightened phosphorylation of EGFR, leading to the activation of downstream oncogenic pathways. The EGFR C797S mutation appeared to increase PDK1-driven glycolysis through the EGFR/AKT/HIF-1α axis. Combining osimertinib with the PDK1 inhibitor leelamine helped successfully overcome osimertinib resistance in allograft models. CRISPR-mediated PDK1 knockout effectively inhibited tumor formation in xenograft models. Our study established a clear link between the EGFR C797S mutation and elevated PDK1 expression, opening new avenues for the discovery of targeted therapies and improving our understanding of the roles of EGFR mutations in cancer progression.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Mutation , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Humans , Acrylamides/pharmacology , Acrylamides/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Animals , Cell Line, Tumor , Mice , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Male , Indoles , Pyrimidines
19.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 22-28, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650160

ABSTRACT

This study aimed to evaluate the physiological role of NAMPT associated with MDPC-23 odontoblast cell proliferation. Cell viability was measured using the (DAPI) staining, caspase activation analysis and immunoblotting were performed. Visfatin promoted MDPC-23 odontoblast cell growth in a dose-dependent manner. Furthermore, the up-regulation of Visfatin promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers in MDPC-23 cells. However, FK-866 cell growth in a dose-dependent manner induced nuclear condensation and fragmentation. FK-866-treated cells showed H&E staining and increased apoptosis compared to control cells. The expression of anti-apoptotic factors components of the mitochondria-dependent intrinsic apoptotic pathway significantly decreased following FK-866 treatment. The expression of pro-apoptotic increased upon FK-866 treatment. In addition, FK-866 activated caspase-3 and PARP to induce cell death. In addition, after treating FK-866 for 72 h, the 3/7 activity of MDPC-23 cells increased in a concentration-dependent manner, and the IHC results also confirmed that Caspase-3 increased in a concentration-dependent. Therefore, the presence or absence of NAMPT expression in dentin cells was closely related to cell proliferation and formation of extracellular substrates.


Subject(s)
Apoptosis , Cell Proliferation , Nicotinamide Phosphoribosyltransferase , Odontoblasts , Nicotinamide Phosphoribosyltransferase/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Odontoblasts/drug effects , Odontoblasts/cytology , Odontoblasts/metabolism , Animals , Mice , Cell Line , Cytokines/metabolism , Caspase 3/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Acrylamides/pharmacology , Odontogenesis/drug effects
20.
Cancer Treat Res Commun ; 39: 100801, 2024.
Article in English | MEDLINE | ID: mdl-38447474

ABSTRACT

INTRODUCTION: Previous studies have identified an interaction between protein kinase inhibitors (PKIs) and proton pump inhibitors (PPIs) in patients with lung cancer. This type of interaction may reduce the efficacy of PKIs. However, the effect of PKI-PPI interaction on patient mortality remains controversial. This study set out to determine the impact of PKI-PPI interaction on overall survival for lung cancer patients. MATERIALS AND METHODS: This study was conducted using data from the French National Health Care Database from January 1, 2011 to December 31, 2021. We identified patients with: (i) an age equal to or greater than 18 years; (ii) lung cancer; and (iii) at least one reimbursement for one of the following drugs: erlotinib, gefitinib, afatinib and osimertinib. Patients were followed-up between the first date of PKI reimbursement and either December 31, 2021 or if they died, the date on which death occurred. The cumulative exposure to PPI duration during PKI treatment was calculated as the ratio between the number of concomitant exposure days to PKI and PPI and the number of exposure days to PKI. A survival analysis using a Cox proportional hazards model was then performed to assess the risk of death following exposure to a PKI-PPI interaction. RESULTS: 34,048 patients received at least one reimbursement for PKIs of interest in our study: 26,133 (76.8 %) were exposed to erlotinib; 3,142 (9.2 %) to gefitinib; 1,417 (4.2 %) to afatinib; and 3,356 (9.9 %) to osimertinib. Patients with concomitant exposure to PKI-PPI interaction during 20 % or more of the PKI treatment period demonstrated an increased risk of death (HR, 1.60 [95 % CI, 1.57-1.64]) compared to other patients. When this cut-off varied from 10 % to 80 %, the estimated HR ranged from 1.46 [95 % CI, 1.43-1.50] to 2.19 [95 % CI, 2.12-2.25]. DISCUSSION/CONCLUSION: In our study, an elevated risk of death was observed in patients exposed to PKI-PPI interaction. Finally, we were able to identify a dose-dependent effect for this interaction. This deleterious effect of osimertinib and PPI was revealed for the first time in real life conditions.


Subject(s)
Lung Neoplasms , Protein Kinase Inhibitors , Proton Pump Inhibitors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/adverse effects , Male , Female , Aged , Middle Aged , Cohort Studies , Afatinib/therapeutic use , Afatinib/pharmacology , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/adverse effects , Acrylamides/therapeutic use , Acrylamides/pharmacology , Aged, 80 and over , Drug Interactions , France/epidemiology , Adult , Gefitinib/therapeutic use , Gefitinib/pharmacology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...