Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.839
Filter
1.
Clin Oral Investig ; 28(6): 345, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809289

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effect of restorations made with a glass-hybrid restorative system (GHRS), a high-viscosity glass ionomer restorative material (HVGIC), a high-viscosity bulk-fill composite resin (HVB), a flowable bulk-fill composite resin (FB), and a nanohybrid composite resin (NH), which are commonly preferred in clinical applications on the fracture resistance of teeth in-vitro. MATERIALS AND METHODS: One hundred intact human premolar teeth were included in the study. The teeth were randomly divided into ten groups (n = 10). No treatment was applied to the teeth in Control group. Class II cavities were prepared on the mesial surfaces of the remaining ninety teeth in other groups. For restoration of the teeth, a GHRS, a HVGIC, a HVB, a FB, and a NH were used. Additionally, in four groups, teeth were restored using NH, GHRS, and HVGIC with open and closed-sandwich techniques. After 24 h, fracture resistance testing was performed. One-way ANOVA and Tukey HDS tests were used for statistical analysis of the data. RESULTS: The fracture resistance values of Control group were statistically significantly higher than those of GHRS, HVGIC, FB, NH, HVGIC-CS, GHRS-OS, and HVGIC-OS groups(p < 0.05). There was no statistically significant difference observed between the fracture resistance values of Control, HVB, and GHRS-CS groups (p > 0.05). CONCLUSION: It can be concluded that the use of HVB and the application of GHRS with a closed-sandwich technique may have a positive effect on the fracture resistance of teeth in the restoration of wide Class II cavities. CLINICAL RELEVANCE: The use of high-viscosity bulk-fill composite resin and the application of glass-hybrid restorative system with the closed-sandwich technique in the restoration of teeth with wide Class II cavities could increase the fracture resistance of the teeth.


Subject(s)
Bicuspid , Composite Resins , Dental Restoration, Permanent , Dental Stress Analysis , Glass Ionomer Cements , Materials Testing , Tooth Fractures , Composite Resins/chemistry , Humans , In Vitro Techniques , Dental Restoration, Permanent/methods , Glass Ionomer Cements/chemistry , Tooth Fractures/prevention & control , Viscosity , Surface Properties , Dental Cavity Preparation/methods , Acrylic Resins/chemistry
2.
BMC Oral Health ; 24(1): 619, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807138

ABSTRACT

PURPOSE: The aim of this in vitro study was to evaluate the changes the rheological properties of some soft lining materials, to compare the rheological properties and viscoelastic behaviour at different temperatures. MATERIALS AND METHODS: Five soft lining materials (acrylic and silicone based) were used. the storage modulus (G'), loss modulus (G"), tan delta (tan δ) and complex viscosity (η') were chosen and for each material, measurements were repeated at 23, 33 and 37  °C, using an oscillating rheometer. All data were statistically analyzed using the Mann Whitney U test, Kruskal Wallis test and Conover's Multiple Comparison test at the significance level of 0.05. RESULTS: Soft lining materials had different viscoelastic properties and most of the materials showed different rheological behavior at 23, 33 and 37  °C. At the end of the test (t¹5), at all the temperatures, Sofreliner Tough M had the highest storage modulus values while Visco Gel had the highest loss Tan delta values. CONCLUSIONS: There were significant changes in the rheological parameters of all the materials. Also temperature affected the initial rheological properties, and polymerization reaction of all the materials, depending on temperature increase. CLINICAL IMPLICATIONS: Temperature affected the initial rheological properties, and polymerization reaction of soft denture liner materials, and clinical inferences should be drawn from such studies conducted. It can be recommended to utilize viscoelastic acrylic-based temporary soft lining materials with lower storage modulus, higher tan delta value, and high viscosity in situations where pain complaint persists and tissue stress is extremely significant, provided that they are replaced often.


Subject(s)
Acrylic Resins , Materials Testing , Rheology , Temperature , Viscosity , Acrylic Resins/chemistry , Elasticity , Denture Liners , Elastic Modulus , Dental Cavity Lining , Silicones/chemistry , Polymerization , Humans , Oscillometry
3.
Pak J Pharm Sci ; 37(2): 405-416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767108

ABSTRACT

To develop a new kind of famotidine-resin microcapsule for gastric adhesion sustained release by screening out suitable excipients and designing reasonable prescriptions to improve patient drug activities to achieve the expected therapeutic effect. The famotidine drug resin was prepared using the water bath method with carbomer 934 used as coating material. Microcapsules were prepared using the emulsified solvent coating method and appropriate excipients were used to prepare famotidine sustained release suspension. Pharmacokinetics of the developed microcapsules were studied in the gastrointestinal tract of rats. The self-made sustained-release suspension of famotidine hydrochloride effectively reduced the blood concentration and prolonged the action time. The relative bioavailability of the self-made suspension of the famotidine hydrochloride to the commercially available famotidine hydrochloride was 146.44%, with an average retention time of about 5h longer, which indicated that the new suspension had acceptable adhesion properties. The findings showed that the newly developed famotidine-resin microcapsule increased the bioavailability of the drug with a significant sustained-release property.


Subject(s)
Biological Availability , Delayed-Action Preparations , Famotidine , Famotidine/pharmacokinetics , Famotidine/administration & dosage , Famotidine/chemistry , Famotidine/pharmacology , Animals , Rats , Male , Excipients/chemistry , Suspensions , Capsules , Drug Liberation , Acrylic Resins/chemistry , Histamine H2 Antagonists/pharmacokinetics , Histamine H2 Antagonists/administration & dosage , Histamine H2 Antagonists/pharmacology , Histamine H2 Antagonists/chemistry , Adhesiveness , Drug Compounding , Acrylates
4.
Int J Biol Macromol ; 268(Pt 2): 131972, 2024 May.
Article in English | MEDLINE | ID: mdl-38697436

ABSTRACT

Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.


Subject(s)
Acrylic Resins , Alginates , Electric Conductivity , Hydrogels , Sodium Chloride , Alginates/chemistry , Acrylic Resins/chemistry , Hydrogels/chemistry , Sodium Chloride/chemistry , Wearable Electronic Devices , Freezing , Biocompatible Materials/chemistry , Humans
5.
Can Vet J ; 65(5): 443-450, 2024 May.
Article in English | MEDLINE | ID: mdl-38694731

ABSTRACT

Linguoverted mandibular canine teeth (LMC) is a common malocclusion in dogs. Several inclined bite-plane techniques using acrylic resin have been introduced to correct LMC in dogs. Although these techniques have suggested modifications to overcome shortcomings, there are still limitations; e.g., high technical sensitivity, as the viscous acrylic resin must still be fabricated in the oral cavity. The authors developed a novel method for small-breed dogs that uses a doughy acrylic resin form to achieve an easy intraoral design and extraoral fabrication. Eight small-breed dogs were presented to evaluate and treat malocclusion causing palatal trauma. First, a Class-1 malocclusion with linguoversion of the mandibular canine teeth (6 dogs with unilateral LMC and 2 dogs with bilateral) was diagnosed based on oral examination. Dogs were treated with the new method using a doughy acrylic resin form for 6 to 7 wk and had posttreatment follow-up 1 y after the procedure. All treated canine teeth were in correct positions 1 y after the appliances were removed. Key clinical message: The authors believe that the new method using a doughy acrylic resin form could be a good alternative for veterinarians to use when treating LMC.


Un nouveau dispositif orthodontique en acrylique pour le traitement des canines mandibulaires linguoverties chez les petits chiens. Les canines mandibulaires linguoverties (LMC) sont une malocclusion courante chez le chien. Plusieurs techniques de plan de morsure incliné utilisant de la résine acrylique ont été introduites pour corriger la LMC chez le chien. Bien que ces techniques aient suggéré des modifications pour surmonter les lacunes, elles présentent encore des limites; par exemple, une sensibilité technique élevée, car la résine acrylique visqueuse doit encore être fabriquée dans la cavité buccale. Les auteurs ont développé une nouvelle méthode pour les chiens de petite race qui utilise une forme pâteuse de résine acrylique pour obtenir une conception intra-orale et une fabrication extra-orale faciles. Huit chiens de petite race ont été présentés pour évaluer et traiter une malocclusion provoquant un traumatisme palatin. Tout d'abord, une malocclusion de classe 1 avec linguoversion des canines mandibulaires (6 chiens avec LMC unilatérale et 2 chiens avec bilatérale) a été diagnostiquée sur la base d'un examen oral. Les chiens ont été traités avec la nouvelle méthode en utilisant une forme pâteuse de résine acrylique pendant 6 à 7 semaines et ont fait l'objet d'un suivi post-traitement 1 an après la procédure. Toutes les canines traitées étaient dans la bonne position un an après le retrait des appareils.Message clinique clé:Les auteurs estiment que la nouvelle méthode utilisant une forme pâteuse de résine acrylique pourrait être une bonne alternative que les vétérinaires pourraient utiliser lors du traitement du LMC.(Traduit par Dr Serge Messier).


Subject(s)
Dog Diseases , Malocclusion , Animals , Dogs , Dog Diseases/therapy , Male , Malocclusion/veterinary , Malocclusion/therapy , Female , Acrylic Resins/therapeutic use , Cuspid , Orthodontic Appliances/veterinary
6.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690698

ABSTRACT

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Subject(s)
Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
7.
J Contemp Dent Pract ; 25(3): 241-244, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690697

ABSTRACT

AIM: The current study was designed to assess the linear dimensional changes and adaptability of two heat-cured denture base resins using various cooling methods. MATERIALS AND METHODS: To prepare a total of 90 acrylic resin samples (45 acrylic resin samples for each material), four rectangular stainless-steel plates measuring 25 × 25 × 10 mm were fabricated. For both groups, the material was put into the mold at the dough stage. Group I - SR Triplex Hot Heat Cure acrylic; group II - DPI Heat Cure acrylic. Both groups used the same curing procedure. One of the following three techniques was used to cool the material (15 samples from each material) once the curing cycle was finished: (A) water bath, (b) quenching, and (C) air. A traveling microscope was used to measure the distance between the markings on the acrylic samples. The data was recorded and statistically analyzed. RESULTS: In SR Triplex Hot heat cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.242 ± 0.05), followed by the air technique (0.168 ± 0.11) and the least was found in the water bath technique (0.146 ± 0.01). In DPI Heat Cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.284 ± 0.09), followed by the air technique (0.172 ± 0.18) and the least was found in the water bath technique (0.158 ± 0.10). There was a statistically significant difference found between these three cooling techniques. On comparison of adaptability, the water bath technique, the marginal gap SR Triplex Hot was 0.012 ± 0.02 and DPI Heat Cure was 0.013 ± 0.02. In the quenching technique, the marginal gap SR Triplex Hot was 0.019 ± 0.04 and DPI Heat Cure was 0.016 ± 0.04. In the air technique, the marginal gap SR Triplex Hot was 0.017 ± 0.01 and DPI Heat Cure was 0.019 ± 0.01. CONCLUSION: The present study concluded that among the different cooling methods, the water bath technique had the least linear dimensional change, followed by the air and quenching techniques. When comparing the materials, DPI Heat Cure acrylic resin showed a greater linear dimensional change than SR Triplex Hot heat cure acrylic resin. CLINICAL SIGNIFICANCE: During polymerization, heat-cured acrylic resins experience dimensional changes. Shrinkage and expansion are dimensional changes that occur in heat-cured acrylic resins and have an impact on the occlusal relationship and denture fit. However, the denture base's material qualities and the different temperature variations it experiences during production may have an impact on this. How to cite this article: Kannaiyan K, Rathod A, Bhushan P, et al. Assessment of Adaptability and Linear Dimensional Changes of Two Heat Cure Denture Base Resin with Different Cooling Techniques: An In Vitro Study. J Contemp Dent Pract 2024;25(3):241-244.


Subject(s)
Acrylic Resins , Denture Bases , Hot Temperature , Materials Testing , Acrylic Resins/chemistry , In Vitro Techniques , Cold Temperature , Dental Materials/chemistry
8.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696132

ABSTRACT

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Subject(s)
Aminolevulinic Acid , Breast Neoplasms , Gold , Photochemotherapy , Photosensitizing Agents , Humans , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/pharmacology , Gold/chemistry , Gold/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Acrylic Resins/chemistry , Female , Folic Acid/chemistry , Cell Survival/drug effects
9.
Clin Oral Investig ; 28(6): 312, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748326

ABSTRACT

OBJECTIVES: Material chemistry and workflow variables associated with the fabrication of dental devices may affect the biocompatibility of the dental devices. The purpose of this study was to compare digital and conventional workflow procedures in the manufacturing of acrylic-based occlusal devices by assessing the cytotoxic potential of leakage products. METHODS: Specimens were manufactured by 3D printing (stereolithography and digital light processing), milling, and autopolymerization. Print specimens were also subjected to different post-curing methods. To assess biocompatibility, a human tongue epithelial cell line was exposed to material-based extracts. Cell viability was measured by MTT assay while Western blot assessed the expression level of selected cytoprotective proteins. RESULTS: Extracts from the Splint 2.0 material printed with DLP technology and post-cured with the Asiga Flash showed the clearest loss of cell viability. The milled and autopolymerized materials also showed a significant reduction in cell viability. However, by storing the autopolymerized material in dH2O for 12 h, no significant viability loss was observed. Increased levels of cytoprotective proteins were seen in cells exposed to extracts from the print materials and the autopolymerized material. Similarly to the effect on viability loss, storing the autopolymerized material in dH2O for 12 h reduced this effect. CONCLUSIONS/CLINICAL RELEVANCE: Based on the biocompatibility assessments, clinical outcomes of acrylic-based occlusal device materials may be affected by the choice of manufacturing technique and workflow procedures.


Subject(s)
Biocompatible Materials , Cell Survival , Materials Testing , Printing, Three-Dimensional , Humans , Biocompatible Materials/chemistry , In Vitro Techniques , Acrylic Resins/chemistry , Cell Line , Blotting, Western
10.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735940

ABSTRACT

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Subject(s)
Biocompatible Materials , Composite Resins , Molecular Docking Simulation , Molecular Dynamics Simulation , Silicon Dioxide , Composite Resins/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry
11.
ACS Biomater Sci Eng ; 10(5): 3343-3354, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38695560

ABSTRACT

Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.


Subject(s)
Hydrogels , Polyethylene Glycols , Sulfhydryl Compounds , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylene Glycols/chemistry , Animals , Mice , Sulfhydryl Compounds/chemistry , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Swine , Cross-Linking Reagents/chemistry , Rheology , Humans , Acrylic Resins
12.
Chemosphere ; 358: 142215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701865

ABSTRACT

The existence of microplastics (MPs) in water is a significant global concern since they have the potential to pose a threat to human health. Therefore, there is a need to develop a sustainable treatment technology for MPs removal, as the conventional methods are inadequate to address this problem. Coagulation is a typical process in treatment plants that can capture MPs before releasing them into the environment. In this work, the removal behaviors of polyamide (PA), polystyrene (PS), and polyethylene (PE) MPs were systematically investigated through coagulation processes using aluminum sulfate (Al2(SO4)3) and Moringa oleifera (MO) seeds extract. Subsequently, the coagulation performance of Al2(SO4)3 was improved by the separate addition of anionic polyacrylamide (APAM) and naturally derived MO. Results showed that Al2(SO4)3 in combination with APAM had better performance than Al2(SO4)3 or MO alone. In the Al2(SO4)3+APAM system, the removal efficiencies were 93.47%, 81.25%, and 29.48% for PA, PS, and PE MPs, respectively. Furthermore, the effectiveness of the Al2(SO4)3 and MO blended system was approximately similar to the Al2(SO4)3+APAM system. However, the required amount of Al2(SO4)3 was decreased to 50% in the Al2(SO4)3+MO system compared to the optimal dosage in the Al2(SO4)3 system alone. The combination of 40 mg/L of Al2(SO4)3 and 60 mg/L of MO resulted in removal efficiencies of 92.99%, 80.48%, and 28.94% for PA, PS, and PE MPs, respectively. The high efficacy of these enhanced methods was due to the synergic effects of charge neutralization and agglomeration adsorption, which were validated through zeta potential assessments and visual analysis using scanning electron microscopy (SEM) images. In the case of experimental conditions, initial pH had little impact on removal efficiency, while NaCl salinity and stirring speed directly affected MPs removal. Consequently, this research took a step toward finding a green strategy to remove MPs from water systems.


Subject(s)
Acrylic Resins , Microplastics , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Acrylic Resins/chemistry , Water Purification/methods , Moringa oleifera/chemistry , Anions/chemistry , Adsorption , Polystyrenes/chemistry
13.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728854

ABSTRACT

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Staphylococcus aureus , Titanium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Titanium/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Microbial Sensitivity Tests , Povidone/chemistry , Surface Properties
14.
J Orthop Surg Res ; 19(1): 274, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698396

ABSTRACT

OBJECTIVE: There are few effective osteoarthritis (OA) therapies. A novel injectable polyacrylamide hydrogel (iPAAG) previously demonstrated efficacy and safety up to week 26 in an open-label study of knee OA. Here we report longer-term effectiveness and safety data. METHODS: This multi-centre, open-label study included patients with symptomatic and radiographic knee OA. Primary outcome was WOMAC pain (0-100 scale) at 13 weeks, and patients continued to 26 weeks before entering a further 26-week extension phase. Secondary efficacy outcomes included WOMAC stiffness and function subscales, Patient Global Assessment (PGA) and proportion of OMERACT-OARSI responders. Safety outcomes were adverse events (AEs). RESULTS: 49 participants (31 women, mean age 70) received an ultrasound-guided, intra-articular injection of 6 ml iPAAG; 46 completed the extension phase to 52 weeks. There was a significant reduction in the WOMAC pain score from baseline to 52 weeks (- 17.7 points (95% CI - 23.1; - 12.4); p < 0.0001). Similar sustained improvements were observed for WOMAC stiffness (11.0 points; 95% CI - 17.0; - 4.9), physical function (18.0 points; 95% CI - 19.1; - 10.6), and PGA (16.3 points; 95% CI - 23.1; - 9.4). At 52 weeks 62.2% of patients were OMERACT-OARSI responders. From 26 to 52 weeks, 8 adverse effects (AE), including 1 serious AE (cerebrovascular accident) were reported in 5 subjects. None of the new adverse events were thought to be device related. CONCLUSION: This open-label study suggests persistent benefits and safety of iPAAG through 52 weeks after a single injection. TRIAL REGISTRATION: Clinicaltrials.gov NCT04179552.


Subject(s)
Acrylic Resins , Osteoarthritis, Knee , Humans , Female , Osteoarthritis, Knee/drug therapy , Acrylic Resins/administration & dosage , Male , Aged , Middle Aged , Treatment Outcome , Follow-Up Studies , Injections, Intra-Articular , Time Factors , Hydrogels/administration & dosage , Aged, 80 and over
15.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792086

ABSTRACT

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Subject(s)
Acrylic Resins , Gold , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Gold/chemistry , Photochemotherapy/methods , Metal Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Humans , Acrylic Resins/chemistry , Cell Line, Tumor , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Reactive Oxygen Species/metabolism , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Polymers/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
16.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785696

ABSTRACT

This work presents a novel approach for tailoring molecularly imprinted polymers (MIPs) with a preliminary stage of atom transfer radical polymerization (ATRP), for a more precise definition of the imprinted cavity. A well-defined copolymer of acrylamide and N,N'-methylenebisacrylamide (PAAm-co-PMBAm) was synthesized by ATRP and applied to gold electrodes with the template, followed by a crosslinking reaction. The template was removed from the polymer matrix by enzymatic/chemical action. The surface modifications were monitored via electrochemical impedance spectroscopy (EIS), having the MIP polymer as a non-conducting film designed with affinity sites for CA15-3. The resulting biosensor exhibited a linear response to CA15-3 log concentrations from 0.001 to 100 U/mL in PBS or in diluted fetal bovine serum (1000×) in PBS. Compared to the polyacrylamide (PAAm) MIP from conventional free-radical polymerization, the ATRP-based MIP extended the biosensor's dynamic linear range 10-fold, improving low concentration detection, and enhanced the signal reproducibility across units. The biosensor demonstrated good sensitivity and selectivity. Overall, the work described confirmed that the process of radical polymerization to build an MIP material influences the detection capacity for the target substance and the reproducibility among different biosensor units. Extending this approach to other cancer biomarkers, the methodology presented could open doors to a new generation of MIP-based biosensors for point-of-care disease diagnosis.


Subject(s)
Biosensing Techniques , Molecularly Imprinted Polymers , Polymerization , Molecularly Imprinted Polymers/chemistry , Molecular Imprinting , Humans , Dielectric Spectroscopy , Polymers/chemistry , Acrylamides/chemistry , Reproducibility of Results , Gold/chemistry , Acrylic Resins/chemistry
17.
Biosensors (Basel) ; 14(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38785708

ABSTRACT

Polluted air and the presence of numerous airborne pathogens affect our daily lives. The sensitive and fast detection of pollutants and pathogens is crucial for environmental monitoring and effective medical diagnostics. Compared to conventional detection methods (PCR, ELISA, metabolic tests, etc.), biosensors bring a very attractive possibility to detect chemicals and organic particles with the mentioned reliability and sensitivity in real time. Moreover, by integrating nanomaterials into the biosensor structure, it is possible to increase the sensitivity and specificity of the device significantly. However, air quality monitoring could be more problematic even with such devices. The greatest challenge with conservative and sensing methods for detecting organic matter such as bacteria is the need to use liquid samples, which slows down the detection procedure and makes it more difficult. In this work, we present the development of a polyacrylonitrile nanofiber bioreceptor functionalized with antibodies against bacterial antigens for the specific interception of bacterial cells directly from the air. We tested the presented novel nanofiber bioreceptor using a unique air filtration system we had previously created. The prepared antibody-functionalized nanofiber membranes for air filtration and pathogen detection (with model organisms E. coli and S. aureus) show a statistically significant increase in bacterial interception compared to unmodified nanofibers. Creating such a bioreceptor could lead to the development of an inexpensive, fast, sensitive, and incredibly selective bionanosensor for detecting bacterial polluted air in commercial premises or medical facilities.


Subject(s)
Biosensing Techniques , Escherichia coli , Nanofibers , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Escherichia coli/isolation & purification , Environmental Monitoring/methods , Air Microbiology , Acrylic Resins
18.
Int J Pharm ; 657: 124177, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38697582

ABSTRACT

We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.


Subject(s)
Nebulizers and Vaporizers , Particle Size , Polymers , Polymers/chemistry , Drug Stability , Solubility , Drug Compounding/methods , Acrylic Resins/chemistry , Povidone/chemistry , Ultrasonics , Polymethacrylic Acids/chemistry , Furosemide/chemistry , Chemistry, Pharmaceutical/methods
19.
Bioresour Technol ; 402: 130833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740310

ABSTRACT

The utilization of sludge-based biochar, characterized by abundant pore structures, proves advantageous in enhancing sludge dewatering performance. In this study, advanced anaerobic digestion sludge underwent pyrolysis to produce biochar, subsequently employed for sludge conditioning. Results revealed that biochar, obtained at 800 °C, exhibited the highest specific surface area (105.3 m2/g) and pore volume (0.17 cm3/g). As the pyrolysis temperature increased, the sludge's functional groups tended to aromatize. When used to condition sludge, particularly at a 20 % (dry solid) dosage, biochar significantly reduced sludge capillary suction time and floc size. The addition of biochar enhanced the conditioning effect of cationic polyacrylamide by absorbing extracellular polymeric substances, creating water molecule channels, and forming skeletons for sludge flocs. These findings introduce a novel approach to sludge reuse and provide valuable data supporting the use of biochar as a sludge conditioner.


Subject(s)
Charcoal , Sewage , Sewage/chemistry , Charcoal/chemistry , Anaerobiosis , Acrylic Resins/chemistry , Pyrolysis , Porosity
20.
Clin Exp Dent Res ; 10(3): e880, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798134

ABSTRACT

OBJECTIVE: To study the feasibility of using poly methyl methacrylate (PMMA) filament and fused deposition modeling (FDM) to manufacture denture bases via the development of a study that considers both conventional and additive-based manufacturing techniques. MATERIALS AND METHODS: Five sample groups were compared: heat and cold cured acrylic resins, CAD/CAM milled PMMA, 3D-printed PMMA (via FDM), and 3D-printed methacrylate resin (via stereolithography, SLA). All groups were subjected to mechanical testing (flexural strength, impact strength, and hardness), water sorption and solubility tests, a tooth bonding test, microbiological assessment, and accuracy of fit measurements. The performance of sample groups was referred to ISO 20795-1 and ISO/TS 19736. The data was analyzed using one-way ANOVA. RESULTS: Samples manufactured using FDM performed within ISO specifications for mechanical testing, water sorption, and solubility tests. However, the FDM group failed to achieve the ISO requirements for the tooth bonding test. FDM samples presented a rough surface finish which could ultimately encourage an undesirable high level of microbial adhesion. For accuracy of fit, FDM samples showed a lower degree of accuracy than existing materials. CONCLUSIONS: Although FDM samples were a cost-effective option and were able to be quickly manufactured in a reproducible manner, the results demonstrated that current recommended testing regimes for conventionally manufactured denture-based polymers are not directly applicable to additive-manufactured denture base polymers. Therefore, new standards should be developed to ensure the correct implementation of additive manufacturing techniques within denture-based fabrication workflow.


Subject(s)
Acrylic Resins , Computer-Aided Design , Denture Bases , Materials Testing , Polymethyl Methacrylate , Printing, Three-Dimensional , Denture Bases/microbiology , Polymethyl Methacrylate/chemistry , Acrylic Resins/chemistry , Denture Design , Humans , Feasibility Studies , Dental Materials/chemistry , Dental Bonding/methods , Surface Properties , Stereolithography , Flexural Strength , Hardness , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...