Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.257
Filter
1.
Pediatr Dent ; 46(3): 204-208, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38822497

ABSTRACT

Purpose: The purpose of this study was to investigate the microleakage of atraumatic glass ionomer restorations with and without silver diammine fluoride (SDF) application. Restorations with SDF are termed silver-modified atraumatic restorations (SMART). Methods: Sixty carious extracted permanent teeth were randomly allocated to two SMART groups and two control groups (n equals 15 per group) for a total of four groups. After selective caries removal, test specimens were treated with 38 percent SDF and polyacrylic acid conditioner was applied and rinsed; teeth were restored with Fuji IX GP® glass ionomer (n equals 15) or with SMART Advantage™ glass ionomer (SAGI; n equals 15). For control groups, specimens were restored with their respective GI material after selective caries removal, both without SDF. Restored teeth were placed in Dulbecco's Phosphate-Buffered Saline solution at 37 degrees Celsius for 24 hours. Teeth were thermocycled between five and 55 degrees Celsius for 1,000 cycles, stained with two percent basic fuchsin, sectioned, and visually inspected for microleakage utilizing stereomicroscopy on a four-point scale. Data were statistically analyzed using Kruskal-Wallis one-way analysis of variance on ranks using Dunn's method (P<0.05). Results: Microleakage between the two SMART restoration groups was insignificant. SAGI alone demonstrated significantly more microleakage than all other groups. There was no statistical significance between the Fuji IX GP® control group and the two SMART restoration groups. Conclusions: This in vitro study indicated that silver diammine fluoride placed before glass ionomer restoration does not increase microleakage. Polyacrylic acid may be used after SDF placement without increasing microleakage.


Subject(s)
Dental Atraumatic Restorative Treatment , Dental Caries , Dental Leakage , Fluorides, Topical , Glass Ionomer Cements , Silver Compounds , Dental Leakage/prevention & control , Humans , Silver Compounds/chemistry , Glass Ionomer Cements/chemistry , Dental Atraumatic Restorative Treatment/methods , Fluorides, Topical/chemistry , Dental Caries/prevention & control , Cariostatic Agents/chemistry , Quaternary Ammonium Compounds/chemistry , Viscosity , Acrylic Resins/chemistry , Dental Restoration, Permanent/methods
2.
Pediatr Dent ; 46(3): 192-198, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38822501

ABSTRACT

Purpose: The purposes of this study were to evaluate the effect of silver diammine fluoride (SDF) on the shear bond strength (SBS) of pink opaquer (PO) compared to resin-modified glass ionomer (RMGI) and conventional composite (COMP) on demineralized dentin, and also to investigate the mode of failure (MOF). Methods: Sixty extracted third molars were prepared, demineralized for 14 days, and divided into four groups: (1) COMP; (2) SDF+PO; (3) SDF+RMGI; and (4) SDF+COMP (restoration size: two by two mm). SBS, MOF, modified adhesive remnant index (MARI), and remnant adhesive volume (RAV) were evaluated using an Instron® machine, light microscopy, 3D digital scanner ( 3Shape©), and GeoMagic Wrap© software. Results: There was no significant difference in SBS (MPa) among the COMP mean??standard deviation (2.5±1.59), SDF+COMP (2.28±1.05), SDF+PO (3.31±2.63), and SDF+RMGI groups (3.74±2.34). There was no significant difference in MOF and MARI among the four groups (P>0.05). There was no significant difference in RAV (mm3) among the COMP (0.5±0.33), SDF+COMP (0.39±0.44), SDF+PO (0.42±0.38), and SDF+RMGI groups (0.42±0.38; P>0.05). A significant correlation existed between MOF and RAV (R equals 0.721; P<0.001). MOF, MARI, and RAV did not show any correlations with SBS (P>0.05). Conclusions: Silver diammine fluoride does not affect shear bond strength between carious dentinal surface and tooth color restorative materials. The amount of material left on the interface is not related to the amount of shear force needed to break the restoration.


Subject(s)
Composite Resins , Dental Bonding , Dentin , Fluorides, Topical , Shear Strength , Silver Compounds , Humans , Silver Compounds/chemistry , Dentin/drug effects , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Quaternary Ammonium Compounds/chemistry , Materials Testing , Dental Restoration, Permanent/methods , Dental Materials/chemistry , Dental Stress Analysis , Tooth Demineralization/prevention & control , In Vitro Techniques , Acrylic Resins/chemistry , Color
3.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823920

ABSTRACT

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Subject(s)
Acrylic Resins , Hydrogels , Spheroids, Cellular , beta-Cyclodextrins , Spheroids, Cellular/drug effects , Humans , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , HeLa Cells , Animals , Mice , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Methacrylates/chemistry , Coculture Techniques , Neoplasms/pathology
4.
BMC Oral Health ; 24(1): 619, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807138

ABSTRACT

PURPOSE: The aim of this in vitro study was to evaluate the changes the rheological properties of some soft lining materials, to compare the rheological properties and viscoelastic behaviour at different temperatures. MATERIALS AND METHODS: Five soft lining materials (acrylic and silicone based) were used. the storage modulus (G'), loss modulus (G"), tan delta (tan δ) and complex viscosity (η') were chosen and for each material, measurements were repeated at 23, 33 and 37  °C, using an oscillating rheometer. All data were statistically analyzed using the Mann Whitney U test, Kruskal Wallis test and Conover's Multiple Comparison test at the significance level of 0.05. RESULTS: Soft lining materials had different viscoelastic properties and most of the materials showed different rheological behavior at 23, 33 and 37  °C. At the end of the test (t¹5), at all the temperatures, Sofreliner Tough M had the highest storage modulus values while Visco Gel had the highest loss Tan delta values. CONCLUSIONS: There were significant changes in the rheological parameters of all the materials. Also temperature affected the initial rheological properties, and polymerization reaction of all the materials, depending on temperature increase. CLINICAL IMPLICATIONS: Temperature affected the initial rheological properties, and polymerization reaction of soft denture liner materials, and clinical inferences should be drawn from such studies conducted. It can be recommended to utilize viscoelastic acrylic-based temporary soft lining materials with lower storage modulus, higher tan delta value, and high viscosity in situations where pain complaint persists and tissue stress is extremely significant, provided that they are replaced often.


Subject(s)
Acrylic Resins , Materials Testing , Rheology , Temperature , Viscosity , Acrylic Resins/chemistry , Elasticity , Denture Liners , Elastic Modulus , Dental Cavity Lining , Silicones/chemistry , Polymerization , Humans , Oscillometry
5.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728854

ABSTRACT

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Staphylococcus aureus , Titanium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Titanium/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Microbial Sensitivity Tests , Povidone/chemistry , Surface Properties
6.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735940

ABSTRACT

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Subject(s)
Biocompatible Materials , Composite Resins , Molecular Docking Simulation , Molecular Dynamics Simulation , Silicon Dioxide , Composite Resins/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry
7.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690698

ABSTRACT

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Subject(s)
Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
8.
J Contemp Dent Pract ; 25(3): 241-244, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690697

ABSTRACT

AIM: The current study was designed to assess the linear dimensional changes and adaptability of two heat-cured denture base resins using various cooling methods. MATERIALS AND METHODS: To prepare a total of 90 acrylic resin samples (45 acrylic resin samples for each material), four rectangular stainless-steel plates measuring 25 × 25 × 10 mm were fabricated. For both groups, the material was put into the mold at the dough stage. Group I - SR Triplex Hot Heat Cure acrylic; group II - DPI Heat Cure acrylic. Both groups used the same curing procedure. One of the following three techniques was used to cool the material (15 samples from each material) once the curing cycle was finished: (A) water bath, (b) quenching, and (C) air. A traveling microscope was used to measure the distance between the markings on the acrylic samples. The data was recorded and statistically analyzed. RESULTS: In SR Triplex Hot heat cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.242 ± 0.05), followed by the air technique (0.168 ± 0.11) and the least was found in the water bath technique (0.146 ± 0.01). In DPI Heat Cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.284 ± 0.09), followed by the air technique (0.172 ± 0.18) and the least was found in the water bath technique (0.158 ± 0.10). There was a statistically significant difference found between these three cooling techniques. On comparison of adaptability, the water bath technique, the marginal gap SR Triplex Hot was 0.012 ± 0.02 and DPI Heat Cure was 0.013 ± 0.02. In the quenching technique, the marginal gap SR Triplex Hot was 0.019 ± 0.04 and DPI Heat Cure was 0.016 ± 0.04. In the air technique, the marginal gap SR Triplex Hot was 0.017 ± 0.01 and DPI Heat Cure was 0.019 ± 0.01. CONCLUSION: The present study concluded that among the different cooling methods, the water bath technique had the least linear dimensional change, followed by the air and quenching techniques. When comparing the materials, DPI Heat Cure acrylic resin showed a greater linear dimensional change than SR Triplex Hot heat cure acrylic resin. CLINICAL SIGNIFICANCE: During polymerization, heat-cured acrylic resins experience dimensional changes. Shrinkage and expansion are dimensional changes that occur in heat-cured acrylic resins and have an impact on the occlusal relationship and denture fit. However, the denture base's material qualities and the different temperature variations it experiences during production may have an impact on this. How to cite this article: Kannaiyan K, Rathod A, Bhushan P, et al. Assessment of Adaptability and Linear Dimensional Changes of Two Heat Cure Denture Base Resin with Different Cooling Techniques: An In Vitro Study. J Contemp Dent Pract 2024;25(3):241-244.


Subject(s)
Acrylic Resins , Denture Bases , Hot Temperature , Materials Testing , Acrylic Resins/chemistry , In Vitro Techniques , Cold Temperature , Dental Materials/chemistry
9.
Bioresour Technol ; 402: 130833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740310

ABSTRACT

The utilization of sludge-based biochar, characterized by abundant pore structures, proves advantageous in enhancing sludge dewatering performance. In this study, advanced anaerobic digestion sludge underwent pyrolysis to produce biochar, subsequently employed for sludge conditioning. Results revealed that biochar, obtained at 800 °C, exhibited the highest specific surface area (105.3 m2/g) and pore volume (0.17 cm3/g). As the pyrolysis temperature increased, the sludge's functional groups tended to aromatize. When used to condition sludge, particularly at a 20 % (dry solid) dosage, biochar significantly reduced sludge capillary suction time and floc size. The addition of biochar enhanced the conditioning effect of cationic polyacrylamide by absorbing extracellular polymeric substances, creating water molecule channels, and forming skeletons for sludge flocs. These findings introduce a novel approach to sludge reuse and provide valuable data supporting the use of biochar as a sludge conditioner.


Subject(s)
Charcoal , Sewage , Sewage/chemistry , Charcoal/chemistry , Anaerobiosis , Acrylic Resins/chemistry , Pyrolysis , Porosity
10.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792086

ABSTRACT

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Subject(s)
Acrylic Resins , Gold , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Gold/chemistry , Photochemotherapy/methods , Metal Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Humans , Acrylic Resins/chemistry , Cell Line, Tumor , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Reactive Oxygen Species/metabolism , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Polymers/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
11.
Anal Chem ; 96(21): 8807-8813, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38714342

ABSTRACT

Although engineering bacterial sensors have outstanding advantages in reflecting the actual bioavailability and continuous monitoring of pollutants, the potential escape risk of engineering microorganisms and lower detection sensitivity have always been one of the biggest challenges limiting their wider application. In this study, a core-shell hydrogel bead with functionalized silica as the core and alginate-polyacrylamide as the shell have been developed not only to realize zero escape of engineered bacteria but also to maintain cell activity in harsh environments, such as extremely acidic/alkaline pH, high salt concentration, and strong pressure. Particularly, after combining the selective preconcentration toward pollutants by functionalized core and the positive feedback signal amplification of engineering bacteria, biosensors have realized two-stage signal amplification, significantly improving the detection sensitivity and reducing the detection limit. In addition, this strategy was actually applied to the detection of As(III) and As(V) coexisting in environmental samples, and the detection sensitivity was increased by 3.23 and 4.39 times compared to sensors without signal amplification strategy, respectively, and the detection limits were as low as 0.39 and 0.86 ppb, respectively.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Alginates/chemistry , Silicon Dioxide/chemistry , Acrylic Resins/chemistry , Limit of Detection , Hydrogels/chemistry
12.
Biosens Bioelectron ; 258: 116376, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38739999

ABSTRACT

The capacitive immunosensor, known for its label-free simplicity, has great potential for point-of-care diagnostics. However, the interaction between insulation and recognition layers on the sensing electrode greatly affects its performance. This study introduces a pioneering dual-layer strategy, implementing a novel combination of acrylic resin (AR) and nitrocellulose (NC) coatings on screen-printed carbon electrodes (SPCEs). This innovative approach not only enhances the dielectric properties of the capacitive sensor but also streamlines the immobilization of recognizing elements. Particularly noteworthy is the superior reliability and insulation offered by the AR coating, surpassing the limitations of traditional self-assembled monolayer (SAM) modifications. This dual-layer methodology establishes a robust foundation for constructing capacitive sensors optimized specifically for liquid medium-based biosensing applications. The NC coating in this study represents a breakthrough in effectively immobilizing BSA, unraveling the capacitive response intricately linked to the quantity of adsorbed recognizing elements. The results underscore the prowess of the proposed immunosensor, showcasing a meticulously defined linear calibration curve for anti-BSA (ranging from 0 to 25 µg/ml). Additionally, specific interactions with anti-HAS and anti-TNF-α further validate the versatility and efficacy of the developed immunosensor. This work presents a streamlined and highly efficient protocol for developing label-free immunosensors for antibody determination and introduces a paradigm shift by utilizing readily available electrodes and sensing systems. The findings are poised to catalyze a significant acceleration in the advancement of biosensor technology, opening new avenues for innovative applications in point-of-care diagnostics.


Subject(s)
Acrylic Resins , Biosensing Techniques , Carbon , Collodion , Electrodes , Serum Albumin, Bovine , Biosensing Techniques/instrumentation , Carbon/chemistry , Acrylic Resins/chemistry , Immunoassay/instrumentation , Immunoassay/methods , Collodion/chemistry , Serum Albumin, Bovine/chemistry , Humans , Electric Capacitance , Limit of Detection , Electrochemical Techniques/methods , Antibodies, Immobilized/chemistry , Animals
13.
Int J Pharm ; 657: 124177, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38697582

ABSTRACT

We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.


Subject(s)
Nebulizers and Vaporizers , Particle Size , Polymers , Polymers/chemistry , Drug Stability , Solubility , Drug Compounding/methods , Acrylic Resins/chemistry , Povidone/chemistry , Ultrasonics , Polymethacrylic Acids/chemistry , Furosemide/chemistry , Chemistry, Pharmaceutical/methods
14.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785696

ABSTRACT

This work presents a novel approach for tailoring molecularly imprinted polymers (MIPs) with a preliminary stage of atom transfer radical polymerization (ATRP), for a more precise definition of the imprinted cavity. A well-defined copolymer of acrylamide and N,N'-methylenebisacrylamide (PAAm-co-PMBAm) was synthesized by ATRP and applied to gold electrodes with the template, followed by a crosslinking reaction. The template was removed from the polymer matrix by enzymatic/chemical action. The surface modifications were monitored via electrochemical impedance spectroscopy (EIS), having the MIP polymer as a non-conducting film designed with affinity sites for CA15-3. The resulting biosensor exhibited a linear response to CA15-3 log concentrations from 0.001 to 100 U/mL in PBS or in diluted fetal bovine serum (1000×) in PBS. Compared to the polyacrylamide (PAAm) MIP from conventional free-radical polymerization, the ATRP-based MIP extended the biosensor's dynamic linear range 10-fold, improving low concentration detection, and enhanced the signal reproducibility across units. The biosensor demonstrated good sensitivity and selectivity. Overall, the work described confirmed that the process of radical polymerization to build an MIP material influences the detection capacity for the target substance and the reproducibility among different biosensor units. Extending this approach to other cancer biomarkers, the methodology presented could open doors to a new generation of MIP-based biosensors for point-of-care disease diagnosis.


Subject(s)
Biosensing Techniques , Molecularly Imprinted Polymers , Polymerization , Molecularly Imprinted Polymers/chemistry , Molecular Imprinting , Humans , Dielectric Spectroscopy , Polymers/chemistry , Acrylamides/chemistry , Reproducibility of Results , Gold/chemistry , Acrylic Resins/chemistry
15.
Int J Biol Macromol ; 268(Pt 2): 131972, 2024 May.
Article in English | MEDLINE | ID: mdl-38697436

ABSTRACT

Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.


Subject(s)
Acrylic Resins , Alginates , Electric Conductivity , Hydrogels , Sodium Chloride , Alginates/chemistry , Acrylic Resins/chemistry , Hydrogels/chemistry , Sodium Chloride/chemistry , Wearable Electronic Devices , Freezing , Biocompatible Materials/chemistry , Humans
16.
ACS Appl Mater Interfaces ; 16(19): 24398-24409, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712727

ABSTRACT

Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.


Subject(s)
Imidazoles , Trypsin , Zeolites , Trypsin/chemistry , Trypsin/metabolism , Zeolites/chemistry , Imidazoles/chemistry , Molecular Weight , Acrylic Resins/chemistry , Porosity , Proteins/chemistry
17.
Pak J Pharm Sci ; 37(2): 405-416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767108

ABSTRACT

To develop a new kind of famotidine-resin microcapsule for gastric adhesion sustained release by screening out suitable excipients and designing reasonable prescriptions to improve patient drug activities to achieve the expected therapeutic effect. The famotidine drug resin was prepared using the water bath method with carbomer 934 used as coating material. Microcapsules were prepared using the emulsified solvent coating method and appropriate excipients were used to prepare famotidine sustained release suspension. Pharmacokinetics of the developed microcapsules were studied in the gastrointestinal tract of rats. The self-made sustained-release suspension of famotidine hydrochloride effectively reduced the blood concentration and prolonged the action time. The relative bioavailability of the self-made suspension of the famotidine hydrochloride to the commercially available famotidine hydrochloride was 146.44%, with an average retention time of about 5h longer, which indicated that the new suspension had acceptable adhesion properties. The findings showed that the newly developed famotidine-resin microcapsule increased the bioavailability of the drug with a significant sustained-release property.


Subject(s)
Biological Availability , Delayed-Action Preparations , Famotidine , Famotidine/pharmacokinetics , Famotidine/administration & dosage , Famotidine/chemistry , Famotidine/pharmacology , Animals , Rats , Male , Excipients/chemistry , Suspensions , Capsules , Drug Liberation , Acrylic Resins/chemistry , Histamine H2 Antagonists/pharmacokinetics , Histamine H2 Antagonists/administration & dosage , Histamine H2 Antagonists/pharmacology , Histamine H2 Antagonists/chemistry , Adhesiveness , Drug Compounding , Acrylates
18.
Chemosphere ; 358: 142215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701865

ABSTRACT

The existence of microplastics (MPs) in water is a significant global concern since they have the potential to pose a threat to human health. Therefore, there is a need to develop a sustainable treatment technology for MPs removal, as the conventional methods are inadequate to address this problem. Coagulation is a typical process in treatment plants that can capture MPs before releasing them into the environment. In this work, the removal behaviors of polyamide (PA), polystyrene (PS), and polyethylene (PE) MPs were systematically investigated through coagulation processes using aluminum sulfate (Al2(SO4)3) and Moringa oleifera (MO) seeds extract. Subsequently, the coagulation performance of Al2(SO4)3 was improved by the separate addition of anionic polyacrylamide (APAM) and naturally derived MO. Results showed that Al2(SO4)3 in combination with APAM had better performance than Al2(SO4)3 or MO alone. In the Al2(SO4)3+APAM system, the removal efficiencies were 93.47%, 81.25%, and 29.48% for PA, PS, and PE MPs, respectively. Furthermore, the effectiveness of the Al2(SO4)3 and MO blended system was approximately similar to the Al2(SO4)3+APAM system. However, the required amount of Al2(SO4)3 was decreased to 50% in the Al2(SO4)3+MO system compared to the optimal dosage in the Al2(SO4)3 system alone. The combination of 40 mg/L of Al2(SO4)3 and 60 mg/L of MO resulted in removal efficiencies of 92.99%, 80.48%, and 28.94% for PA, PS, and PE MPs, respectively. The high efficacy of these enhanced methods was due to the synergic effects of charge neutralization and agglomeration adsorption, which were validated through zeta potential assessments and visual analysis using scanning electron microscopy (SEM) images. In the case of experimental conditions, initial pH had little impact on removal efficiency, while NaCl salinity and stirring speed directly affected MPs removal. Consequently, this research took a step toward finding a green strategy to remove MPs from water systems.


Subject(s)
Acrylic Resins , Microplastics , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Acrylic Resins/chemistry , Water Purification/methods , Moringa oleifera/chemistry , Anions/chemistry , Adsorption , Polystyrenes/chemistry
19.
Clin Oral Investig ; 28(6): 312, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748326

ABSTRACT

OBJECTIVES: Material chemistry and workflow variables associated with the fabrication of dental devices may affect the biocompatibility of the dental devices. The purpose of this study was to compare digital and conventional workflow procedures in the manufacturing of acrylic-based occlusal devices by assessing the cytotoxic potential of leakage products. METHODS: Specimens were manufactured by 3D printing (stereolithography and digital light processing), milling, and autopolymerization. Print specimens were also subjected to different post-curing methods. To assess biocompatibility, a human tongue epithelial cell line was exposed to material-based extracts. Cell viability was measured by MTT assay while Western blot assessed the expression level of selected cytoprotective proteins. RESULTS: Extracts from the Splint 2.0 material printed with DLP technology and post-cured with the Asiga Flash showed the clearest loss of cell viability. The milled and autopolymerized materials also showed a significant reduction in cell viability. However, by storing the autopolymerized material in dH2O for 12 h, no significant viability loss was observed. Increased levels of cytoprotective proteins were seen in cells exposed to extracts from the print materials and the autopolymerized material. Similarly to the effect on viability loss, storing the autopolymerized material in dH2O for 12 h reduced this effect. CONCLUSIONS/CLINICAL RELEVANCE: Based on the biocompatibility assessments, clinical outcomes of acrylic-based occlusal device materials may be affected by the choice of manufacturing technique and workflow procedures.


Subject(s)
Biocompatible Materials , Cell Survival , Materials Testing , Printing, Three-Dimensional , Humans , Biocompatible Materials/chemistry , In Vitro Techniques , Acrylic Resins/chemistry , Cell Line , Blotting, Western
20.
Clin Oral Investig ; 28(6): 345, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809289

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effect of restorations made with a glass-hybrid restorative system (GHRS), a high-viscosity glass ionomer restorative material (HVGIC), a high-viscosity bulk-fill composite resin (HVB), a flowable bulk-fill composite resin (FB), and a nanohybrid composite resin (NH), which are commonly preferred in clinical applications on the fracture resistance of teeth in-vitro. MATERIALS AND METHODS: One hundred intact human premolar teeth were included in the study. The teeth were randomly divided into ten groups (n = 10). No treatment was applied to the teeth in Control group. Class II cavities were prepared on the mesial surfaces of the remaining ninety teeth in other groups. For restoration of the teeth, a GHRS, a HVGIC, a HVB, a FB, and a NH were used. Additionally, in four groups, teeth were restored using NH, GHRS, and HVGIC with open and closed-sandwich techniques. After 24 h, fracture resistance testing was performed. One-way ANOVA and Tukey HDS tests were used for statistical analysis of the data. RESULTS: The fracture resistance values of Control group were statistically significantly higher than those of GHRS, HVGIC, FB, NH, HVGIC-CS, GHRS-OS, and HVGIC-OS groups(p < 0.05). There was no statistically significant difference observed between the fracture resistance values of Control, HVB, and GHRS-CS groups (p > 0.05). CONCLUSION: It can be concluded that the use of HVB and the application of GHRS with a closed-sandwich technique may have a positive effect on the fracture resistance of teeth in the restoration of wide Class II cavities. CLINICAL RELEVANCE: The use of high-viscosity bulk-fill composite resin and the application of glass-hybrid restorative system with the closed-sandwich technique in the restoration of teeth with wide Class II cavities could increase the fracture resistance of the teeth.


Subject(s)
Bicuspid , Composite Resins , Dental Restoration, Permanent , Dental Stress Analysis , Glass Ionomer Cements , Materials Testing , Tooth Fractures , Composite Resins/chemistry , Humans , In Vitro Techniques , Dental Restoration, Permanent/methods , Glass Ionomer Cements/chemistry , Tooth Fractures/prevention & control , Viscosity , Surface Properties , Dental Cavity Preparation/methods , Acrylic Resins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...