Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Funct Integr Genomics ; 24(4): 120, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960936

ABSTRACT

The Drosophila egg chamber (EC) starts as a spherical tissue at the beginning. With maturation, the outer follicle cells of EC collectively migrate in a direction perpendicular to the anterior-posterior axis, to shape EC from spherical to ellipsoidal. Filamentous actin (F-actin) plays a significant role in shaping individual migratory cells to the overall EC shape, like in every cell migration. The primary focus of this article is to unveil the function of different Actin Binding Proteins (ABPs) in regulating mature Drosophila egg shape. We have screened 66 ABPs, and the genetic screening data revealed that individual knockdown of Arp2/3 complex genes and the "capping protein ß" (cpb) gene have severely altered the egg phenotype. Arpc1 and cpb RNAi mediated knockdown resulted in the formation of spherical eggs which are devoid of dorsal appendages. Studies also showed the role of Arpc1 and cpb on the number of laid eggs and follicle cell morphology. Furthermore, the depletion of Arpc1 and cpb resulted in a change in F-actin quantity. Together, the data indicate that Arpc1 and cpb regulate Drosophila egg shape, F-actin management, egg-laying characteristics and dorsal appendages formation.


Subject(s)
Actins , Drosophila Proteins , Morphogenesis , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actins/metabolism , Actins/genetics , Female , Morphogenesis/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin Capping Proteins/metabolism , Actin Capping Proteins/genetics , Ovum/metabolism , Ovum/growth & development
2.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38787349

ABSTRACT

Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.


Subject(s)
Actin Capping Proteins , Actin Cytoskeleton , Formins , ras GTPase-Activating Proteins , Animals , Humans , Actin Capping Proteins/metabolism , Actin Capping Proteins/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Movement , Formins/metabolism , HeLa Cells , Protein Binding , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Mice , NIH 3T3 Cells
3.
Proteins ; 92(1): 37-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37497763

ABSTRACT

Capping protein (CP) binds to the barbed end of an actin-filament and inhibits its elongation. CARMIL binds CP and dissociates it from the barbed end of the actin-filament. The binding of CARMIL peptide alters the flexibility of CP, which is considered to facilitate the dissociation. Twinfilin also binds to CP through its C-terminal tail. The complex structures of the CP/twinfilin-tail (TW-tail) peptide indicate that the binding sites of CARMIL and TW-tail overlap. However, TW-tail binding does not facilitate the dissociation of CP from the barbed end. We extensively investigated the flexibilities of CP in the CP/TW-tail or CP/CARMIL complexes using an elastic network model and concluded that TW-tail binding does not alter the flexibility of CP. Our extensive analysis also highlighted that the strong contacts of peptides with the two domains of CP, that is, the CP-L and CP-S domains, are key to changing the flexibilities of CP. CARMIL peptides can interact strongly with both of the domains, while TW-tail peptides exclusively interact with the CP-S domain because the binding site of TW-tail on CP relatively shifts to the CP-S domain compared with that of CP/CARMIL. This result supports our hypothesis that the dissociation of CP from the barbed end is regulated by the flexibility of CP.


Subject(s)
Actin Capping Proteins , Microfilament Proteins , Microfilament Proteins/metabolism , Actin Capping Proteins/chemistry , Actin Capping Proteins/metabolism , Protein Binding , Actins/metabolism , Actin Cytoskeleton/metabolism , Peptides/chemistry
4.
Mol Biol Cell ; 35(2): br6, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38088874

ABSTRACT

The capping of barbed filament ends is a fundamental mechanism for actin regulation. Capping protein controls filament growth and actin turnover in cells by binding to the barbed ends of the filaments with high affinity and slow off-rate. The interaction between capping protein and actin is regulated by capping protein interaction (CPI) motif proteins. We identified a novel CPI motif protein, Bsp1, which is involved in cytokinesis and endocytosis in budding yeast. We demonstrate that Bsp1 is an actin binding protein with a high affinity for capping protein via its CPI motif. In cells, Bsp1 regulates capping protein at endocytic sites and is a major recruiter of capping protein to the cytokinetic actin ring. Lastly, we define Bsp1-related proteins as a distinct fungi-specific CPI protein group. Our results suggest that Bsp1 promotes actin filament capping by the capping protein. This study establishes Bsp1 as a new capping protein regulator and promising candidate to regulate actin networks in fungi.


Subject(s)
Actins , Cytokinesis , Actins/metabolism , Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Endocytosis , Actin Capping Proteins/metabolism
5.
J Cell Biol ; 223(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-37966720

ABSTRACT

Clathrin-mediated endocytosis depends on polymerization of a branched actin network to provide force for membrane invagination. A key regulator in branched actin network formation is actin capping protein (CP), which binds to the barbed end of actin filaments to prevent the addition or loss of actin subunits. CP was thought to stochastically bind actin filaments, but recent evidence shows CP is regulated by a group of proteins containing CP-interacting (CPI) motifs. Importantly, how CPI motif proteins function together to regulate CP is poorly understood. Here, we show Aim21 and Bsp1 work synergistically to recruit CP to the endocytic actin network in budding yeast through their CPI motifs, which also allosterically modulate capping strength. In contrast, twinfilin works downstream of CP recruitment, regulating the turnover of CP through its CPI motif and a non-allosteric mechanism. Collectively, our findings reveal how three CPI motif proteins work together to regulate CP in a stepwise fashion during endocytosis.


Subject(s)
Actin Capping Proteins , Actins , Endocytosis , Saccharomyces cerevisiae Proteins , Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Clathrin/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Adaptor Proteins, Vesicular Transport/metabolism
6.
J Cell Biol ; 223(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38085573

ABSTRACT

Cellular functions of actin capping protein (CP) regulators are poorly understood. Di Pietro and colleagues (https://doi.org/10.1083/jcb.202306154) shed unprecedented light on this topic using budding yeast. Two proteins with CPI (capping protein interacting) motifs recruit CP to sites of actin assembly, while a third contributes to CP turnover.


Subject(s)
Actins , Saccharomycetales , Actins/genetics , Actins/metabolism , Protein Binding , Saccharomycetales/genetics , Actin Capping Proteins/genetics , Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism
7.
J Mol Biol ; 435(24): 168342, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37924863

ABSTRACT

Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands. In the absence of ligand, both single-molecule FRET and MD revealed two distinct conformations of CP in solution; previous crystallographic studies revealed only one. Interaction with CPI-motif peptides induced conformations within CP that bring the cap and stalk closer, while interaction with V-1 moves them away from one another. Comparing CPI-motif peptides from different proteins, we identified variations in CP conformations and dynamics that are specific to each CPI motif. MD simulations for CP alone and in complex with a CPI motif and V-1 reveal atomistic details of the conformational changes. Analysis of the interaction of CP with wild-type (wt) and chimeric CPI-motif peptides using single-molecule FRET, isothermal calorimetry (ITC) and MD simulation indicated that conformational and affinity differences are intrinsic to the C-terminal portion of the CPI motif. We conclude that allosteric regulation of CP involves changes in conformation that disseminate across the protein to link distinct binding-site functions. Our results provide novel insights into the biophysical mechanism of the allosteric regulation of CP.


Subject(s)
Actin Capping Proteins , Actins , Actin Capping Proteins/chemistry , Protein Binding , Allosteric Regulation , Actins/metabolism , Peptides/chemistry
8.
Microbiol Spectr ; 11(4): e0059623, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37310229

ABSTRACT

Cytoadherence and migration are crucial for pathogens to establish colonization in the host. In contrast to a nonadherent isolate of Trichomonas vaginalis, an adherent one expresses more actin-related machinery proteins with more active flagellate-amoeboid morphogenesis, amoeba migration, and cytoadherence, activities that were abrogated by an actin assembly blocker. By immunoprecipitation coupled with label-free quantitative proteomics, an F-actin capping protein (T. vaginalis F-actin capping protein subunit α [TvFACPα]) was identified from the actin-centric interactome. His-TvFACPα was detected at the barbed end of a growing F-actin filament, which inhibited elongation and possessed atypical activity in binding G-actin in in vitro assays. TvFACPα partially colocalized with F-actin at the parasite pseudopod protrusion and formed a protein complex with α-actin through its C-terminal domain. Meanwhile, TvFACPα overexpression suppressed F-actin polymerization, amoeboid morphogenesis, and cytoadherence in this parasite. Ser2 phosphorylation of TvFACPα enriched in the amoeboid stage of adhered trophozoites was reduced by a casein kinase II (CKII) inhibitor. Site-directed mutagenesis and CKII inhibitor treatment revealed that Ser2 phosphorylation acts as a switching signal to alter TvFACPα actin-binding activity and the consequent actin cytoskeleton behaviors. Through CKII signaling, TvFACPα also controls the conversion of adherent trophozoites from amoeboid migration to the flagellate form with axonemal motility. Together, CKII-dependent Ser2 phosphorylation regulates TvFACPα binding to actin to fine-tune cytoskeleton dynamics and drive crucial behaviors underlying host colonization by T. vaginalis. IMPORTANCE Trichomoniasis is one of the most prevalent nonviral sexually transmitted diseases. T. vaginalis cytoadherence to urogenital epithelium cells is the first step in the colonization of the host. However, studies on the mechanisms of cytoadherence have focused mainly on the role of adhesion molecules, and their effects are limited when analyzed by loss- or gain-of-function assays. This study proposes an extra pathway in which the actin cytoskeleton mediated by a capping protein α-subunit may play roles in parasite morphogenesis, cytoadherence, and motility, which are crucial for colonization. Once the origin of the cytoskeleton dynamics could be manipulated, the consequent activities would be controlled as well. This mechanism may provide new potential therapeutic targets to impair this parasite infection and relieve the increasing impact of drug resistance on clinical and public health.


Subject(s)
Trichomonas vaginalis , Trichomonas vaginalis/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism , Actin Capping Proteins/metabolism
9.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36897576

ABSTRACT

Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.


Subject(s)
Actomyosin , Caenorhabditis elegans , Animals , Actomyosin/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Actins/metabolism , Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , Germ Cells/metabolism
10.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36729023

ABSTRACT

How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins. Consistent with these biochemical differences, in vivo formin-mediated actin cable assembly was strongly attenuated by the overexpression of CapZ but not Cap1/2. Multiwavelength live cell imaging further revealed that actin patches in cap2∆ cells acquire cable-like features over time, including recruitment of formins and tropomyosin. Together, our results suggest that the activities of S. cerevisiae Cap1/2 have been tuned across evolution to allow robust cable assembly by formins in the presence of high cytosolic levels of Cap1/2, which conversely limit patch growth and shield patches from formins.


Subject(s)
Actin Capping Proteins , Actins , Saccharomyces cerevisiae Proteins , Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytosol/metabolism , Formins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , CapZ Actin Capping Protein/metabolism
11.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886903

ABSTRACT

The infection of a mammalian host by the pathogenic fungus Candida albicans involves fungal resistance to reactive oxygen species (ROS)-induced DNA damage stress generated by the defending macrophages or neutrophils. Thus, the DNA damage response in C. albicans may contribute to its pathogenicity. Uncovering the transcriptional changes triggered by the DNA damage-inducing agent MMS in many model organisms has enhanced the understanding of their DNA damage response processes. However, the transcriptional regulation triggered by MMS remains unclear in C. albicans. Here, we explored the global transcription profile in response to MMS in C. albicans and identified 306 defined genes whose transcription was significantly affected by MMS. Only a few MMS-responsive genes, such as MGT1, DDR48, MAG1, and RAD7, showed potential roles in DNA repair. GO term analysis revealed that a large number of induced genes were involved in antioxidation responses, and some downregulated genes were involved in nucleosome packing and IMP biosynthesis. Nevertheless, phenotypic assays revealed that MMS-induced antioxidation gene CAP1 and glutathione metabolism genes GST2 and GST3 showed no direct roles in MMS resistance. Furthermore, the altered transcription of several MMS-responsive genes exhibited RAD53-related regulation. Intriguingly, the transcription profile in response to MMS in C. albicans shared a limited similarity with the pattern in S. cerevisiae, including COX17, PRI2, and MGT1. Overall, C. albicans cells exhibit global transcriptional changes to the DNA damage agent MMS; these findings improve our understanding of this pathogen's DNA damage response pathways.


Subject(s)
Candida albicans , Methyl Methanesulfonate , Actin Capping Proteins/genetics , Actin Capping Proteins/metabolism , Animals , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Mammals/metabolism , Methyl Methanesulfonate/pharmacology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
12.
J Cell Sci ; 135(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35583107

ABSTRACT

Capping protein Arp2/3 myosin I linker (CARMIL) proteins are multi-domain scaffold proteins that regulate actin dynamics by regulating the activity of capping protein (CP). Here, we characterize CARMIL-GAP (GAP for GTPase-activating protein), a Dictyostelium CARMIL isoform that contains a ∼130 residue insert that, by homology, confers GTPase-activating properties for Rho-related GTPases. Consistent with this idea, this GAP domain binds Dictyostelium Rac1a and accelerates its rate of GTP hydrolysis. CARMIL-GAP concentrates with F-actin in phagocytic cups and at the leading edge of chemotaxing cells, and CARMIL-GAP-null cells exhibit pronounced defects in phagocytosis and chemotactic streaming. Importantly, these defects are fully rescued by expressing GFP-tagged CARMIL-GAP in CARMIL-GAP-null cells. Finally, rescue with versions of CARMIL-GAP that lack either GAP activity or the ability to regulate CP show that, although both activities contribute significantly to CARMIL-GAP function, the GAP activity plays the bigger role. Together, our results add to the growing evidence that CARMIL proteins influence actin dynamics by regulating signaling molecules as well as CP, and that the continuous cycling of the nucleotide state of Rho GTPases is often required to drive Rho-dependent biological processes.


Subject(s)
Actin Capping Proteins , Dictyostelium , Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Carrier Proteins/metabolism , Dictyostelium/genetics , Dictyostelium/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism
13.
Gene ; 821: 146267, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35150821

ABSTRACT

Nitrogen metabolism is essential for most cellular activities. Therefore, a deep understanding of its regulatory mechanisms is necessary for the efficient utilization of nitrogen sources for Saccharomyces cerevisiae. In this study, a gene co-expression network was constructed for S. cerevisiae S288C with different nitrogen sources. From this, a key gene co-expression module related to nitrogen source preference utilization was obtained, and 10 hub genes centrally located in the co-expression network were identified. Functional studies verified that the endocytosis-related genes CAP1 and END3 significantly increased the utilization of multiple non-preferred amino acids and reduced the accumulation of the harmful nitrogen metabolite precursor urea by regulating amino acid transporters and TOR pathway. The mitochondria-related gene ATP12, MRPL22, MRP1 and NAM9 significantly increased the utilization of multiple non-preferred amino acids and reduced accumulation of the urea by coordinately regulating nitrogen catabolism repression, Ssy1p-Ptr3p-Ssy5p signaling sensor system, amino acid transporters, TOR pathway and urea metabolism-related pathways. Furthermore, these data revealed the potential positive effects of endocytosis and mitochondrial ribosomes protein translation on nitrogen source preference. This study provides new analytical perspectives for complex regulatory networks involving nitrogen metabolism in S. cerevisiae.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Mitochondria/genetics , Nitrogen/metabolism , Saccharomyces cerevisiae/growth & development , Actin Capping Proteins/genetics , Cytoskeletal Proteins/genetics , Endocytosis , Gene Expression Profiling , Gene Expression Regulation, Fungal , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Multidrug Resistance-Associated Proteins/genetics , Ribosomal Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
14.
Eur J Cell Biol ; 101(2): 151207, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35150966

ABSTRACT

Cyclase-associated protein (CAP) is an actin binding protein that has been initially described as partner of the adenylyl cyclase in yeast. In all vertebrates and some invertebrate species, two orthologs, named CAP1 and CAP2, have been described. CAP1 and CAP2 are characterized by a similar multidomain structure, but different expression patterns. Several molecular studies clarified the biological function of the different CAP domains, and they shed light onto the mechanisms underlying CAP-dependent regulation of actin treadmilling. However, CAPs are crucial elements not only for the regulation of actin dynamics, but also for signal transduction pathways. During recent years, human genetic studies and the analysis of gene-targeted mice provided important novel insights into the physiological roles of CAPs and their involvement in the pathogenesis of several diseases. In the present review, we summarize and discuss recent progress in our understanding of CAPs' physiological functions, focusing on heart, skeletal muscle and central nervous system as well as their involvement in the mechanisms controlling metabolism. Remarkably, loss of CAPs or impairment of CAPs-dependent pathways can contribute to the pathogenesis of different diseases. Overall, these studies unraveled CAPs complexity highlighting their capability to orchestrate structural and signaling pathways in the cells.


Subject(s)
Actins , Saccharomyces cerevisiae Proteins , Actin Capping Proteins/metabolism , Actins/metabolism , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Human Genetics , Humans , Mice , Microfilament Proteins/metabolism , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
15.
Cell Mol Life Sci ; 79(2): 125, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35132495

ABSTRACT

Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the ß-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a ß-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.


Subject(s)
Actin Capping Proteins , Antigens, Protozoan , Malaria/parasitology , Plasmodium/metabolism , Protozoan Proteins , Actin Capping Proteins/chemistry , Actin Capping Proteins/metabolism , Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Kinetics , Models, Molecular , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
16.
Nat Commun ; 12(1): 5329, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504078

ABSTRACT

Heterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP's C-terminal "tentacle" extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the ß tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes-capping and nucleation-in branched actin network assembly.


Subject(s)
Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Melanocytes/metabolism , Actin Capping Proteins/chemistry , Actin Capping Proteins/genetics , Actin Cytoskeleton/ultrastructure , Actin-Related Protein 2-3 Complex/chemistry , Actin-Related Protein 2-3 Complex/genetics , Actins/chemistry , Actins/genetics , Animals , Binding Sites , Cattle , Cytoskeleton/ultrastructure , Gelsolin/chemistry , Gelsolin/genetics , Gelsolin/metabolism , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Melanocytes/cytology , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Models, Molecular , Profilins/chemistry , Profilins/genetics , Profilins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
17.
Mol Biol Cell ; 32(16): 1459-1473, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34081539

ABSTRACT

Clathrin- and actin-mediated endocytosis is a fundamental process in eukaryotic cells. Previously, we discovered Tda2 as a new yeast dynein light chain (DLC) that works with Aim21 to regulate actin assembly during endocytosis. Here we show Tda2 functions as a dimerization engine bringing two Aim21 molecules together using a novel binding surface different than the canonical DLC ligand binding groove. Point mutations on either protein that diminish the Tda2-Aim21 interaction in vitro cause the same in vivo phenotype as TDA2 deletion showing reduced actin capping protein (CP) recruitment and increased filamentous actin at endocytic sites. Remarkably, chemically induced dimerization of Aim21 rescues the endocytic phenotype of TDA2 deletion. We also uncovered a CP interacting motif in Aim21, expanding its function to a fundamental cellular pathway and showing such motif exists outside mammalian cells. Furthermore, specific disruption of this motif causes the same deficit of actin CP recruitment and increased filamentous actin at endocytic sites as AIM21 deletion. Thus, the data indicate the Tda2-Aim21 complex functions in actin assembly primarily through CP regulation. Collectively, our results provide a mechanistic view of the Tda2-Aim21 complex and its function in actin network regulation at endocytic sites.


Subject(s)
Actin Capping Proteins/metabolism , Cytoskeletal Proteins/metabolism , Endocytosis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Actin Cytoskeleton/metabolism , Protein Multimerization
18.
J Mol Biol ; 433(9): 166891, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33639213

ABSTRACT

Twinfilin is a conserved actin regulator that interacts with actin capping protein (CP) via C terminus residues (TWtail) that exhibits sequence similarity with the CP interaction (CPI) motif of CARMIL. Here we report the crystal structure of TWtail in complex with CP. Our structure showed that although TWtail and CARMIL CPI bind CP to an overlapping surface via their middle regions, they exhibit different CP-binding modes at both termini. Consequently, TWtail and CARMIL CPI restrict the CP in distinct conformations of open and closed forms, respectively. Interestingly, V-1, which targets CP away from the TWtail binding site, also favors the open-form CP. Consistently, TWtail forms a stable ternary complex with CP and V-1, a striking contrast to CARMIL CPI, which rapidly dissociates V-1 from CP. Our results demonstrate that TWtail is a unique CP-binding motif that regulates CP in a manner distinct from CARMIL CPI.


Subject(s)
Actin Capping Proteins/chemistry , Actin Capping Proteins/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Chickens , Crystallography, X-Ray , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Models, Molecular , Protein Binding , Protein Structure, Quaternary
19.
J Biol Chem ; 295(45): 15366-15375, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32868296

ABSTRACT

Heterodimeric capping protein (CP) binds the rapidly growing barbed ends of actin filaments and prevents the addition (or loss) of subunits. Capping activity is generally considered to be essential for actin-based motility induced by Arp2/3 complex nucleation. By stopping barbed end growth, CP favors nucleation of daughter filaments at the functionalized surface where the Arp2/3 complex is activated, thus creating polarized network growth, which is necessary for movement. However, here using an in vitro assay where Arp2/3 complex-based actin polymerization is induced on bead surfaces in the absence of CP, we produce robust polarized actin growth and motility. This is achieved either by adding the actin polymerase Ena/VASP or by boosting Arp2/3 complex activity at the surface. Another actin polymerase, the formin FMNL2, cannot substitute for CP, showing that polymerase activity alone is not enough to override the need for CP. Interfering with the polymerase activity of Ena/VASP, its surface recruitment or its bundling activity all reduce Ena/VASP's ability to maintain polarized network growth in the absence of CP. Taken together, our findings show that CP is dispensable for polarized actin growth and motility in situations where surface-directed polymerization is favored by whatever means over the growth of barbed ends in the network.


Subject(s)
Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , DNA-Binding Proteins/metabolism , Formins/metabolism , Animals , Mice , Polymerization , Rabbits , Swine
20.
PLoS Biol ; 18(9): e3000848, 2020 09.
Article in English | MEDLINE | ID: mdl-32898131

ABSTRACT

Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.


Subject(s)
Actin Cytoskeleton/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Actin Capping Proteins/chemistry , Actin Capping Proteins/metabolism , Actin Cytoskeleton/chemistry , Actins/chemistry , Actins/metabolism , Animals , Animals, Newborn , Binding Sites , Cells, Cultured , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Humans , Mice , Models, Molecular , Molecular Dynamics Simulation , Myocardium/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs , Rats , Sarcomeres/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...