Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.247
Filter
1.
Curr Microbiol ; 81(7): 214, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849626

ABSTRACT

A Gram-staining-positive actinomycete named YZH12T was isolated from the sediment of the Yangtze River in Nanjing, Jiangsu province, China. Cells were aerobic, non-spore forming, non-motile, short rod (0.4-0.6 × 0.5-1.0 µm) or coccus (0.4-0.6 µm in diameter). Colonies were circular, smooth, and beige to yellowish. Growth occurred at 15-42 °C (optimal 28 °C), pH 5.0-9.0 (optimal 7.0), and 0-10% (w/v) NaCl (optimal 2%). The strain could tolerate 1500 mg/L of imazamox. Strain YZH12T showed 98.7% 16S rRNA gene sequence similarity Nocardioides zeae JM-1068T and less than 97% similarities with other type strains in the genus Nocardioides. Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that strain YZH12T was phylogenetically affiliated to the genus Nocardioides and formed a subclade with N. zeae JM-1068T and N. alkalitolerans DSM 16699T. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between YZH12T and closely related type strain N. zeae JM-1068T were 79.9% and 35.2%, respectively. The major fatty acids (> 5%) were C18: 1ω9c, iso-C16: 0, C16: 0, C17: 1ω8cand C18: 0; the major respiratory quinone was MK-8(H4); and the polar lipids profiles were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), glycolipid (GL), two aminophospholipids (APL1, APL2), and an unknown polar lipid (L). The genomic DNA G + C content is 73.5%. Based on the phenotypic, chemotaxonomic, phylogenetic analyses, and genomic data, strain YZH12T represents a novel species of the genus Nocardioides, for which the name Nocardioides imazamoxiresistens YZH12T is proposed, with strain YZH12T (= KCTC 49964T = MCCC 1K0892T) as the type strain.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sewage , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/analysis , Sewage/microbiology , China , Sequence Analysis, DNA , Actinomycetales/classification , Actinomycetales/genetics , Actinomycetales/isolation & purification , Nucleic Acid Hybridization , Geologic Sediments/microbiology
2.
Article in English | MEDLINE | ID: mdl-38809239

ABSTRACT

Strain HUAS 3-15T was isolated from the leaves of Cathaya argyrophylla collected from Chenzhou, Hunan Province, PR China. The main fatty acids (>5.0 %) of the strain were anteiso-C15 : 0, C16 : 0, C18 : 1 ω9c, iso-C16 : 0, summed feature 5 (C18 : 2 ω6,9c/C18 : 0 ante), iso-C15 : 0 and anteiso-C17 : 0. MK-9(H6), MK-9(H8) and MK-9(H4) were detected as respiratory quinones. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. Galactose, glucose and ribose were also present in the cell wall. The major polar lipids consisted of diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidylinositol mannosides and unidentified phospholipids. The DNA G+C content of the genome sequence, consisting of 8 860 963 bp, is 72.4 mol%. blast analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus Kitasatospora, with 99.37, 99.03, 98.95, 98.68 and 98.67 % sequence similarity to Kitasatospora aureofaciens ATCC 10762T, Kitasatospora viridis DSM 44826T, Kitasatospora xanthocidica NBRC 13469T, Kitasatospora aburaviensis NRRL B-2218T and Kitasatospora kifunensis IFO 15206T, respectively. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences demonstrated that strain HUAS 3-15T formed a well-supported cluster with K. aureofaciens ATCC 10762T. Further genomic characterization through average nucleotide identity (ANIb/m) and digital DNA-DNA hybridization analysis between strain HUAS 3-15T and K. aureofaciens ATCC 10762T showed values of 90.62/92.55 % and 45.3 %, respectively, lower than the 95-96 % ANI threshold and 70.0 % cutoff used as guideline values for species delineation in bacteria. Furthermore, the differences between the strain and its phylogenomic neighbour in terms of physiological (e.g. sole carbon source growth) and chemotaxonomic (e.g. cellular fatty composition) characteristics further supported this conclusion. Consequently, we concluded that strain HUAS 3-15T represents a novel species of the genus Kitasatospora, for which the name Kitasatospora cathayae sp. nov. is proposed. The type strain is HUAS 3-15T (=MCCC 1K08542T=JCM 36274T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Endophytes , Fatty Acids , Phospholipids , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Plant Leaves/microbiology , DNA, Bacterial/genetics , China , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/classification , Phospholipids/chemistry , Vitamin K 2/analogs & derivatives , Cell Wall/chemistry , Diaminopimelic Acid , Nucleic Acid Hybridization , Actinomycetales/isolation & purification , Actinomycetales/genetics , Actinomycetales/classification
3.
Microbiol Res ; 285: 127767, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776619

ABSTRACT

Actinobacteria produce a plethora of bioactive secondary metabolites that are often regulated by quorum-sensing signaling molecules via specific binding to their cognate TetR-type receptors. Here, we identified monocyclic α-pyrone as a new class of actinobacterial signaling molecules influencing quorum sensing process in Nocardiopsis sp. LDBS0036, primarily evidenced by a significant reduction in the production of phenazines in the pyrone-null mutant compared to the wild-type strain. Exogenous addition of the α-pyrone can partially restore the expression of some pathways to the wild strain level. Moreover, a unique multicomponent system referred to as a conservon, which is widespread in actinobacteria and generally contains four or five functionally conserved proteins, may play an important role in detecting and transmitting α-pyrone signals in LDBS0036. We found the biosynthetic gene clusters of α-pyrone and their associated conservon genes are highly conserved in Nocardiopsis, indicating the widespread prevalence and significant function of this regulate mechanism within Nocardiopsis genus. Furthermore, homologous α-pyrones from different actinobacterial species were also found to mediate interspecies communication. Our results thus provide insights into a novel quorum-sensing signaling system and imply that various modes of bacterial communication remain undiscovered.


Subject(s)
Gene Expression Regulation, Bacterial , Pyrones , Quorum Sensing , Pyrones/metabolism , Multigene Family , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Signal Transduction , Actinobacteria/metabolism , Actinobacteria/genetics , Biosynthetic Pathways/genetics , Secondary Metabolism , Actinomycetales/metabolism , Actinomycetales/genetics
4.
PeerJ ; 12: e17165, 2024.
Article in English | MEDLINE | ID: mdl-38590706

ABSTRACT

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Subject(s)
Actinomycetales , Microbiota , Actinomycetales/genetics , Agar/metabolism , Bacteria/genetics , Microbiota/genetics , Plastics/metabolism , Polyesters/metabolism , Polystyrenes/metabolism , RNA, Ribosomal, 16S/genetics , Sand
5.
J Inorg Biochem ; 256: 112565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677005

ABSTRACT

Two conserved second-sphere ßArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase ßR52A, ßR52K, ßR157A, ßR157K and ReNHase ßR61A) were successfully expressed and purified. Apart from the PtNHase ßR52A mutant that exhibited no detectable activity, the kcat values obtained for the PtNHase and ReNHase ßR mutant enzymes were between 1.8 and 12.4 s-1 amounting to <1% of the kcat values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ∼10 to ∼40%. UV-Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase ßR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calculations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second-sphere ßR residues in the proposed subunit swapping process and post-translational modification of the α-subunit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form.


Subject(s)
Arginine , Hydro-Lyases , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Arginine/chemistry , Rhodococcus equi/enzymology , Rhodococcus equi/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Actinomycetales/enzymology , Actinomycetales/genetics , Catalytic Domain
6.
Arch Microbiol ; 206(4): 160, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483595

ABSTRACT

Root-knot nematodes (RKN) are one of the most harmful soil-borne plant pathogens in the world. Actinobacteria are known phytopathogen control agents. The aim of this study was to select soil actinobacteria with control potential against the RKN (Meloidogyne javanica) in tomato plants and to determine mechanisms of action. Ten isolates were tested and a significant reduction was observed in the number of M. javanica eggs, and galls 46 days after infestation with the nematode. The results could be explained by the combination of different mechanisms including parasitism and induction of plant defense response. The M. javanica eggs were parasited by all isolates tested. Some isolates reduced the penetration of juveniles into the roots. Other isolates using the split-root method were able to induce systemic defenses in tomato plants. The 4L isolate was selected for analysis of the expression of the plant defense genes TomLoxA, ACCO, PR1, and RBOH1. In plants treated with 4L isolate and M. javanica, there was a significant increase in the number of TomLoxA and ACCO gene transcripts. In plants treated only with M. javanica, only the expression of the RBOH1 and PR1 genes was induced in the first hours after infection. The isolates were identified using 16S rRNA gene sequencing as Streptomyces sp. (1A, 3F, 4L, 6O, 8S, 9T, and 10U), Kribbella sp. (5N), Kitasatospora sp. (2AE), and Lentzea sp. (7P). The efficacy of isolates from the Kitasatospora, Kribbella, and Lentzea genera was reported for the first time, and the efficacy of Streptomyces genus isolates for controlling M. javanica was confirmed. All the isolates tested in this study were efficient against RKN. This study provides the opportunity to investigate bacterial genera that have not yet been explored in the control of M. javanica in tomatoes and other crops.


Subject(s)
Actinobacteria , Actinomycetales , Solanum lycopersicum , Tylenchoidea , Animals , Plant Diseases/prevention & control , Tylenchoidea/genetics , Actinobacteria/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Actinomycetales/genetics , Soil
7.
ACS Synth Biol ; 13(3): 721-727, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377312

ABSTRACT

Currently, most maytansine-containing antibody-drug conjugates (ADCs) in clinical trials are prepared with DM1 or DM4, which in turn is synthesized mainly from ansamitocin P-3 (AP-3), a bacterial maytansinoid, isolated from Actinosynnema pretiosum. However, due to the high self-toxicity of AP-3 to A. pretiosum, the yield of AP-3 has been difficult to improve. Herein, a new maytansinoid with much lower self-toxicity to A. pretiosum, 3-O-carbamoylmaytansinol (CAM, 3), was designed and generated by introducing the 3-O-carbamoyltransferase gene asc21b together with the N-methyltransferase genes from exogenous maytansinoid gene clusters into the 3-O-acyltransferase gene (asm19) deleted mutant HGF052. Meanwhile, two new shunt products, 20-O-demethyl-19-dechloro-N-demethyl-4,5-desepoxy-CAM (4) and 20-O-demethyl-N-demethyl-4,5-desepoxy-CAM (5) were identified from the recombinant strain. Furthermore, by screening of liquid fermentation media, overexpression of bottleneck tailoring enzymes and the pathway-specific activator, the titer of CAM reached 498 mg/L in the engineered strain. Since the 3-O-carbamoyl group of CAM can be removed by chemical cleavage as AP-3 to produce maytansinol, our work suggests that CAM may be a promising alternative to AP-3 in the future development of ADCs.


Subject(s)
Actinomycetales , Maytansine/analogs & derivatives , Actinomycetales/genetics , Acyltransferases
8.
Article in English | MEDLINE | ID: mdl-38345846

ABSTRACT

Two Gram-stain-positive, aerobic, non-spore-forming, non-motile, irregular rod-shaped actinobacteria, designated as D2-41T and D3-21, were isolated from soil samples collected in a natural cave in Jeju, Republic of Korea. Both of the isolates were shown to share 100 % 16S rRNA sequence identity. The cell wall contained meso-diaminopimelic acid, arabinose and galactose. The predominant menaquinone was MK-8(H2). The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid, an unidentified aminoglycolipid, an unidentified phospholipid and two unidentified lipids. The predominant fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH). Mycolic acids of C30-C38 were present. The 16S rRNA gene trees showed that the organisms occupied a distinct position remotely located from recognized genera within the order Mycobacteriales, albeit with the 16S rRNA gene similarities of 97.0-97.1 % with Rhodococcus olei, Rhodococcus rhodnii and Rhodococcus triatomae. The genome sizes and DNA G+C contents of strains D2-41T and D3-21 were 4.77-4.88 Mbp and 69.8 mol%, respectively. Both of the isolates shared an average nucleotide identity of 99.4 % and digital DNA-DNA hybridization of 95.2 % to each other, revealing that strains D2-41T and D3-21 belonged to the same species. In the core genome-based phylogenomic tree, both of the isolates were found to be closely associated with members of the genus Tomitella. However, strains D2-41T and D3-21 revealed the highest amino acid identity values (mean 66.5 %, range 66.2-67.0 % with the genus Prescottella of the family Nocardiaceae, followed by the genus Tomitella (mean 64.1 %, range 63.6-64.7 %) of the family Tomitellaceae. Based on the combined data obtained here, the novel isolates belong to a new genus of the new family for which the name Speluncibacter jeojiensis gen. nov. sp. nov. is proposed, with Speluncibacteraceae fam. nov. The type strain is strain D2-41T (=KACC 17930T=DSM 101875T).


Subject(s)
Actinomycetales , Fatty Acids , Fatty Acids/chemistry , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Phylogeny , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , Phospholipids/chemistry , Actinomycetales/genetics , Vitamin K 2/chemistry
9.
Arch Microbiol ; 206(3): 100, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353773

ABSTRACT

Three Gram-reaction-positive bacterial strains, designated KSW-18T, KSW2-22, and KSW4-11T, were isolated from seawater, and two dried seaweed samples collected at Gwakji Beach in Jeju, Republic of Korea, respectively, and their taxonomic positions were examined by a polyphasic approach. The 16S rRNA gene phylogeny showed that strain KSW4-11T was tightly associated with Microbacterium oleivorans NBRC 103075T, while strains KSW-18T and KSW2-22 formed a distinctive subline at the base of a clade including the above two strains. The three isolates showed high sequence similarity with one another (99.7-99.9%; 1-4 nt differences) and Microbacterium oleivorans (99.8-99.9%; 1-3 nt differences). The chemotaxonomic features were typical for the genus Microbacterium; Lysine as the diagnostic diamino acid and N-glycolylated muramic acid of the peptidoglycans, the predominant menaquinones of MK-11, MK-10 and MK-12, the major fatty acids of anteiso-C15:0 and anteiso-C17:0, and the major polar lipids including diphosphatidylglycerol, phosphatidylglycerol, and two or three unidentified glycolipids. In core genome-based phylogenetic tree, strains KSW-18T and KSW2-22 were closely associated with Microbacterium oleivorans NBRC 103075T, while strain KSW4-11T formed a distinctive subline at the base of a clade including the above three strains, in contrast to the 16S rRNA gene tree. Strains KSW-18T and KSW2-22 shared an OrthoANIu of 98.6% and a digital DNA-DNA hybridization of 87.6% with each other, representing that they were strains of a species, while the OrthoANIu and digital DNA-DNA hybridization values between strains KSW-18T and KSW4-11T, and between both of these isolates and all members of the genus Microbacterium were ≤86.5% and ≤30.7%, respectively. The analyses of overall genomic relatedness indices and phenotypic distinctness support that the three isolates represent two new species of the genus Microbacterium. Based on the results obtained here, Microbacterium aquilitoris sp. nov. (type strain KSW-18T = KCTC 49623T = NBRC 115222T) and Microbacterium gwkjiense sp. nov. (type strain KSW4-11T = KACC 23321T = DSM 116380T) are proposed.


Subject(s)
Actinomycetales , Microbacterium , Phylogeny , RNA, Ribosomal, 16S/genetics , Actinomycetales/genetics , DNA
10.
Antonie Van Leeuwenhoek ; 117(1): 9, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170239

ABSTRACT

During the course of development plants form tight interactions with microorganisms inhabiting their root zone. In turn, rhizosphere bacteria, in particular members of the phylum Actinomycetota, positively influence the host plant by increasing access to essential nutrients and controlling the pathogenic microorganism's population. Herein, we report the characterisation of the rhizosphere associated actinobacteria community of Phyllostachys viridiglaucescens growing in the Nikitsky Botanical Garden (Crimean Peninsula, Ukraine). The overall composition of the bacterial community was elucidated by 16S rRNA gene amplicon sequencing followed by isolation of culturable microorganisms with the focus on actinomycetes. The metagenomic approach revealed that the representatives of phylum Actinomycetota (57.1%), Pseudomonadota (20.0%), and Acidobacteriota (12.2%) were dominating in the studied microbiome with Ilumatobacter (phylum Actinomycetota) (13.1%) being the dominant genus. Furthermore, a total of 159 actinomycete isolates, belonging to eight genera of Streptomyces, Micromonospora, Nonomuraea, Arthrobacter, Actinomadura, Kribbella, Cellulosimicrobium, and Mumia, were recovered from P. viridiglaucescens rhizosphere. The isolated species were tested for antimicrobial activity. 64% of isolates were active against at least one bacterial test-culture and 7.5% against fungal test culture. In overall, the rhizosphere bacterial communities act as a great source of actinobacterial diversity with the high potential for production of new bioactive compounds.


Subject(s)
Actinobacteria , Actinomycetales , Streptomyces , Actinomyces/genetics , Rhizosphere , RNA, Ribosomal, 16S/genetics , Actinomycetales/genetics , Poaceae , Soil Microbiology
11.
Bioresour Technol ; 393: 130048, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980947

ABSTRACT

Previous researches have recognized the vital role of Tetrasphaera elongata in enhanced biological phosphorus removal systems, but the underlying mechanisms remain under-investigated. To address this issue, this study investigated the metabolic characteristics of Tetrasphaera elongata when utilizing glucose as the sole carbon source. Results showed under aerobic conditions, Tetrasphaera elongata exhibited a glucose uptake rate of 136.6 mg/(L·h) and a corresponding phosphorus removal rate of 8.6 mg P/(L·h). Upregulations of genes associated with the glycolytic pathway and oxidative phosphorylation were observed. Noteworthily, the genes encoding the two-component sensor histidine kinase and response regulator transcription factor exhibited a remarkable 28.3 and 27.4-fold increase compared with the group without glucose. Since these genes play a pivotal role in phosphate-specific transport systems, collectively, these findings shed light on a potential mechanism for simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata under aerobic conditions, providing fresh insights into phosphorus removal from wastewaters.


Subject(s)
Actinobacteria , Actinomycetales , Glucose , Glucose/metabolism , Phosphorus/metabolism , Carbon/metabolism , Polyphosphates/metabolism , Actinomycetales/genetics , Actinomycetales/metabolism , Bioreactors , Sewage
12.
Braz J Biol ; 83: e275505, 2023.
Article in English | MEDLINE | ID: mdl-37909592

ABSTRACT

Multiplex real-time PCR with TaqMan® probes has been developed for the simultaneous detection of soybean pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens. The method specificity has been confirmed using 25 strains of target bacteria and 18 strains of other bacteria common to soybean seeds as endophytes. The multiplex real-time PCR developed has been shown to have high sensitivity - a positive result was achieved at 0.01 ng/µl of DNA for both target organisms, and at 100 CFU/ml of bacteria in soybean seed homogenate. The robustness of the multiplex real-time PCR developed has been verified by the detection of the pathogens in 25 commercial seed stocks, in comparison with previously published PCR protocols. In all tests, three seed stocks were positive and 22 were negative. The multiplex real-time PCR can be applied in diagnostic practice for the simultaneous detection of two important pathogens of leguminous plants.


Subject(s)
Actinomycetales , Glycine max , Real-Time Polymerase Chain Reaction , Actinomycetales/genetics , Seeds , Plant Diseases
13.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37917000

ABSTRACT

Two novel plant growth-promoting, rod-shaped, Gram-positive and non-motile rhizobacteria, W1NT and W2RT, were isolated from wetland plants Festuca elata and Nymphoides peltatum, respectively, in China. The results of the 16S rRNA sequence alignment analysis showed that they were related to Microbacterium, with the highest similarity to Microbacterium ketosireducens (98.7 %) and Microbacterium laevaniformans (98.5 %) for strain W1NT, and to Microbacterium terricola (98.1 %) and Microbacterium marinum (98.0 %) for strain W2RT. Phylogenetic analyses based on 16S rRNA gene sequences and 92 conserved concatenated proteins suggested that the two strains belong to the genus Microbacterium and were placed in two separate novel phylogenetic clades. The genome sizes of the two strains were 3.2 and 3.7 Mb, and the G+C contents were 71.7 and 68.5 mol%, respectively. The comparative genome results showed that the average nucleotide identity values between W1NT and W2RT and other species ranged from 73.5 to 83.6 %, and the digital DNA-DNA hybridization values ranged from 19.7 to 26.8 %. These two strains show physiological and biochemical features that differ from those of closely related species. Rhamnose, galactose and glucose were present in the characteristic sugar fractions of strains W1NT and W2RT. The peptidoglycan of strains W1NT and W2RT contained the amino acids ornithine, alanine and aspartic acid. C15 : 0 anteiso, C17 : 0 anteiso and C16 : 0 iso were the predominant cellular fatty acids in W1NT and W2RT. Phosphatidylglycerol and diphosphatidylglycerol are major polar lipid components. Strain W1NT not only formed bacterial biofilms but also had the ability to solubilize phosphorus and produce indole-3-acetic acid. Strain W2RT had siderophore-producing and lignin-degrading properties. Based on their genetic and phenotypic characteristics, strains W1NT and W2RT were classified as novel bacteria in the genus Microbacterium and designated as Microbacterium festucae sp. nov. (type strain W1NT=ACCC 61807T=GDMCC 1.2966T=JCM 35339T) and Microbacterium nymphoidis sp. nov. (type strain W2RT=ACCC 61808T=GDMCC 1.2967T=JCM 35340T).


Subject(s)
Actinomycetales , Fatty Acids , Base Composition , Fatty Acids/chemistry , Microbacterium , Phylogeny , RNA, Ribosomal, 16S/genetics , Wetlands , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , China , Actinomycetales/genetics
14.
Ann Clin Microbiol Antimicrob ; 22(1): 97, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940983

ABSTRACT

BACKGROUND: Tsukamurella spp. are obligate aerobic, gram-positive, non-motile, and slightly acid-fast bacilli belonging to the Actinomycetes family. They share many characteristics with Nocardia, Rhodococcus, Gordonia, and the rapidly growing Mycobacterium species. Therefore, standard testing may misidentify Tsukamurella spp. as another species. Accurate and rapid diagnosis is critical for proper infection management, but identification of this bacterium is difficult in the standard laboratory setting. CASE PRESENTATION: A bloodstream infection caused by a gram-positive bacterium and related to a central venous catheter was identified in an immunocompromised 2-year-old girl. Tsukamurella tyrosinosolvens was identified by modified secA1 sequencing. Antibiotic treatment and removal of the central venous catheter resolved the infection. Inappropriate management of the catheter during an overnight stay outside of the hospital was considered as a possible source of infection. CONCLUSIONS: SecA1 sequencing may be a useful diagnostic tool in the identification of T. tyrosinosolvens. Providing proper central venous catheter care instructions to patients, their families, and medical staff is important for infection prevention.


Subject(s)
Actinobacteria , Actinomycetales , Catheter-Related Infections , Central Venous Catheters , Sepsis , Child, Preschool , Female , Humans , Actinobacteria/genetics , Actinomycetales/genetics , Bacteria, Aerobic , Catheter-Related Infections/diagnosis , Catheter-Related Infections/drug therapy , Catheter-Related Infections/microbiology , Sepsis/microbiology
15.
Microbiol Spectr ; 11(6): e0164423, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37874148

ABSTRACT

Tsukamurella species have been clinically regarded as rare but emerging opportunistic pathogens causing various infections in humans. Tsukamurella pneumonia has often been misdiagnosed as pulmonary tuberculosis due to its clinical presentation resembling tuberculosis-like syndromes. Tsukamurella species have also been confused in the laboratory with other phylogenetic bacteria, such as Gordonia. This study aimed to investigate the clinical, microbiological, and molecular characteristics; species distribution; and antimicrobial susceptibility of Tsukamurella species. Immunodeficiency and chronic pulmonary disease appeared to be risk factors for Tsukamurella pneumonia, and the presence of bronchiectasis and pulmonary nodules on imaging was highly correlated with this infection. The study confirmed that groEL (heat shock protein 60) and secA (the secretion ATPase) genes are reliable for identifying Tsukamurella species. Additionally, the ssrA (stable small RNA) gene showed promise as a tool for discriminating between different Tsukamurella species with the shortest sequence length. In terms of antimicrobial susceptibility, quinolones, trimethoprim/sulfamethoxazole, amikacin, minocycline, linezolid, and tigecycline demonstrated potent in vitro activity against Tsukamurella isolates in our study. The study also proposed a resistance mechanism involving a substitution (S91R) within the quinolone-resistance-determining region of the gyrA gene, which confers resistance to levofloxacin and ciprofloxacin. Furthermore, we found that disk diffusion testing is not suitable for testing the susceptibilities of Tsukamurella isolates to ciprofloxacin, imipenem, and minocycline. In conclusion, our systematic investigation may contribute to a better understanding of this rare pathogen. Tsukamurella species are rare but emerging human pathogens that share remarkable similarities with other mycolic acid-containing genera of the order Actinomycetales, especially Mycobacterium tuberculosis. Consequently, misdiagnosis and therapeutic failures can occur in clinical settings. Despite the significance of accurate identification, antimicrobial susceptibility, and understanding the resistance mechanism of this important genus, our knowledge in these areas remains fragmentary and incomplete. In this study, we aimed to address these gaps by investigating promising identification methods, the antimicrobial susceptibility patterns, and a novel quinolone resistance mechanism in Tsukamurella species, utilizing a collection of clinical isolates. The findings of our study will contribute to improve diagnosis and successful management of infections caused by Tsukamurella species, as well as establishing well-defined performance and interpretive criteria for antimicrobial susceptibility testing.


Subject(s)
Actinomycetales , Anti-Infective Agents , Pneumonia , Quinolones , Humans , Minocycline , Phylogeny , Microbial Sensitivity Tests , Actinomycetales/genetics , Ciprofloxacin , Hospitals, Teaching , China , Anti-Bacterial Agents/pharmacology
16.
Environ Sci Pollut Res Int ; 30(41): 94347-94360, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531050

ABSTRACT

Composting is a sustainable and eco-friendly technology that turns animal waste into organic fertilizers. It remains unclear whether differences exist in the structure of microbial communities during different livestock manure composting. This study analyzed the dynamic change of bacterial and fungal communities, metabolic function, and trophic mode during chicken manure (CM) and pig manure (PM) composting based on 16S rRNA and ITS sequencing. Environmental factors were investigated for their impact on microbial communities. During composting, bacterial diversity decreased and then increased, while fungal diversity slightly increased and then decreased. Saccharomonospora and Aspergillus were the dominant genera and key microorganisms in CM and PM, respectively, which played crucial roles in sustaining the stability of the ecological network structure in the microbial ecology and participating in metabolism. Saccharomonospora gradually increased, while Aspergillus increased at first and then decreased. PM had better microbial community stability and more keystone taxa than CM. In CM and PM, the primary function of bacterial communities was metabolism, while saprotroph was the primary trophic mode of fungal communities. Dissolved organic carbon (DOC) was the primary factor influencing the structure and function of microbial communities in CM and PM. In addition to DOC, pH and moisture were important factors affecting the fungal communities in CM and PM, respectively. These results show that the succession of bacteria and fungi in CM and PM proceeded in a similar pattern, but there are still some differences in the dominant genus and their responses to environmental factors.


Subject(s)
Actinomycetales , Composting , Mycobiome , Animals , Swine , Manure/microbiology , Chickens/genetics , RNA, Ribosomal, 16S , Soil , Bacteria/genetics , Actinomycetales/genetics
17.
Arch Microbiol ; 205(9): 307, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580455

ABSTRACT

Isoptericola sp. AK164 is a Gram-positive, aerobic bacterial genus from the family Promicromonosporaceae, isolated from the root rhizosphere of Avicennia marina. AK164 significantly enhanced the growth of the Arabidopsis thaliana plant under normal and saline conditions. These bacteria can produce ACC deaminase and several enzymes playing a role in carbohydrate hydrolyses, such as cellulose, hemicellulose, and chitin degradation, which may contribute to plant growth, salt tolerance, and stress elevation. The genome sequence AK164 has a single circular chromosome of approximately 3.57 Mbp with a GC content of 73.53%. A whole genome sequence comparison of AK164 with type strains from the same genus, using digital DNA-DNA hybridization and average nucleotide identity calculations, revealed that AK164 might potentially belong to a new species of Isoptericola. Genome data and biochemical analyses indicate that AK164 could be a potential biostimulant for improving agriculture in submerged saline land.


Subject(s)
Actinomycetales , Avicennia , Avicennia/genetics , Avicennia/microbiology , Rhizosphere , Indian Ocean , Actinomycetales/genetics , Bacteria/genetics , Sequence Analysis , DNA , Sequence Analysis, DNA , Phylogeny , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry
18.
J Appl Microbiol ; 134(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37468449

ABSTRACT

AIMS: This study aimed to isolate and characterize endophytic plant growth-promoting (PGP) actinomycetes from the wild medicinal plant Zygophyllum album. METHODS AND RESULTS: Eight actinomycetes were isolated, identified, and screened for their PGP activities to improve the growth and production of wheat plants under low N-inputs. Based on 16S rRNA analysis, the isolated actinobacteria showed high diversity and had multiple in vitro PGP attributes. In pot experiments, Streptomyces sp. NGB-Act4 and NGB-Act6 demonstrated the highest significant PGP activities to enhance the growth of wheat plants under reduced N-inputs. Under various field conditions (high-fertility clay soils and low-fertility sandy soils), in combination with 50% N-dose, the two streptomycetes showed significant increases in grain N% and grain yield of the wheat crop compared with the 50% N-fertilized treatment. Irrespective of soil type, wheat plants inoculated with strain NGB-Act4 produced grain yield and grain N% significantly greater than or comparable to the full N-dose treatment. CONCLUSIONS: This is the first field report on the successful use of endophytic streptomycetes as an effective strategy to improve wheat yield and reduce the use of synthetic N fertilizers.


Subject(s)
Actinobacteria , Actinomycetales , Streptomyces , Triticum/microbiology , Soil , RNA, Ribosomal, 16S/genetics , Plant Development , Edible Grain , Actinobacteria/genetics , Actinomycetales/genetics
19.
ACS Synth Biol ; 12(8): 2353-2366, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37402223

ABSTRACT

CRISPR tools, especially Cas9n-sgRNA guided cytidine deaminase base editors such as CRISPR-BEST, have dramatically simplified genetic manipulation of streptomycetes. One major advantage of CRISPR base editing technology is the possibility to multiplex experiments in genomically instable species. Here, we demonstrate scaled up Csy4 based multiplexed genome editing using CRISPR-mcBEST in Streptomyces coelicolor. We evaluated the system by simultaneously targeting 9, 18, and finally all 28 predicted specialized metabolite biosynthetic gene clusters in a single experiment. We present important insights into the performance of Csy4 based multiplexed genome editing at different scales. Using multiomics analysis, we investigated the systems wide effects of such extensive editing experiments and revealed great potentials and important bottlenecks of CRISPR-mcBEST. The presented analysis provides crucial data and insights toward the development of multiplexed base editing as a novel paradigm for high throughput engineering of Streptomyces chassis and beyond.


Subject(s)
Actinomycetales , Gene Editing , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , RNA, Guide, CRISPR-Cas Systems , Actinomycetales/genetics , Systems Analysis
20.
Article in English | MEDLINE | ID: mdl-37417235

ABSTRACT

A novel actinobacterium strain, designated CFWR-12T, was isolated from the larval gut of Protaetia brevitarsis seulensis grown at the National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea, and its taxonomic position was evaluated. Strain CFWR-12T was aerobic, Gram-stain-positive and non-motile. Growth occurred at 10-40 °C, pH 6.0-9.0 and 0-4 % (w/v) NaCl, with optimal growth at 28-30 °C, pH 7.0 and in the absence of NaCl. Strain CFWR-12T showed high 16S rRNA gene sequence similarity to Agromyces intestinalis KACC 19306T (99.0 %) and Agromyces protaetiae FW100M-8T (97.9 %). The genome sequence of strain CFWR-12T was 4.01 Mb in size with a high G+C content of 71.2 mol%. The values of average nucleotide identity and digital DNA-DNA hybridization between strain CFWR-12T and A. intestinalis KACC 19306T were 89.8 and 39.1 %, respectively, which were the highest among the closely related Agromyces species. The predominant cellular fatty acids (>10 %) were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, and the major respiratory quinones (>10 %) were MK-11 and MK-12. The polar lipids were composed of diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and an unidentified lipid while the peptidoglycan type was identified to be B1. Data based on chemotaxonomic, phylogenetic, phenotypic and genomic evidence demonstrated that strain CFWR-12T represents a novel species of the genus Agromyces, for which the name Agromyces larvae sp. nov. is proposed. The type strain is strain CFWR-12T (=KACC 19307T= NBRC 113047T).


Subject(s)
Actinobacteria , Actinomycetales , Coleoptera , Animals , Larva/microbiology , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Sequence Analysis, DNA , Base Composition , Bacterial Typing Techniques , DNA, Bacterial/genetics , Actinomycetales/genetics , Coleoptera/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...