Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62.397
Filter
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38832903

ABSTRACT

Profilin binds microtubules in vitro. However, a new study by Vitriol and colleagues (https://doi.org/10.1083/jcb.202309097) now suggests that effects of profilin on microtubule dynamics in cells are indirect and result from its impact on actin dynamics rather than its direct binding to microtubules.


Subject(s)
Actins , Microtubules , Profilins , Actins/metabolism , Microtubules/metabolism , Profilins/metabolism , Profilins/genetics , Protein Binding
2.
Iran J Allergy Asthma Immunol ; 23(2): 197-220, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822514

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune systemic disease that is characterized by immune dysregulation, inflammation, vasculopathy, and fibrosis. Tissue fibrosis plays an important role in SSc and can affect several organs such as the dermis, lungs, and heart. Dysregulation of interferon (IFN) signaling contributes to the SSc pathogenesis and interferon regulatory factor 1 (IRF1) has been indicated as the main regulator of type I IFN. This study aimed to clarify the effect of IFN-gamma (-γ) and dexamethasone (DEX) on the IRF1, extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression of alpha-smooth muscle actin (α-SMA) in myofibroblasts and genes involved in the inflammation and fibrosis processes in early diffuse cutaneous systemic sclerosis (dcSSc). A total of 10 early dcSSc patients (diffuse cutaneous form) and 10 unaffected control dermis biopsies were obtained to determine IFNγ and DEX effects on inflammation and fibrosis. Fibroblasts were treated with IFNγ and DEX at optimum time and dose. The expression level of genes and proteins involved in the fibrosis and inflammation processes have been quantified by quantitative real-time PCR (RT-qPCR) and western blot, respectively. IFNγ could up-regulate some of the inflammation-related genes (Interleukin-6; IL6) and down-regulate some of the fibrosis-related genes (COL1A1) in cultured fibroblasts of patients with early dcSSc compared to the untreated group. Besides, it has been revealed that IFNγ can induce fibroblast differentiation to the myofibroblast that expresses α-SMA. Concerning the inhibitory effect of IFNγ on some fibrotic genes and its positive effect on the inflammatory genes and myofibroblast differentiation, it seems that IFNγ may play a dual role in SSc.


Subject(s)
Actins , Fibroblasts , Interferon-gamma , Interleukin-6 , Scleroderma, Systemic , Adult , Female , Humans , Male , Middle Aged , Actins/metabolism , Actins/genetics , Cells, Cultured , Dexamethasone/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Fibrosis , Gene Expression Regulation/drug effects , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology
3.
Ceska Gynekol ; 89(2): 95-101, 2024.
Article in English | MEDLINE | ID: mdl-38704220

ABSTRACT

OBJECTIVE: To compare cervical stroma in advanced cervical cancer with the control group; to compare, in the pre-treatment period, hemogram parameters in patients with advanced cervical cancer with the same parameters as the control group; and to verify if there is an association of stromal markers with prognostic factors in cervical cancer. MATERIALS AND METHODS: We prospectively evaluated 16 patients diagnosed with advanced invasive cervical cancer. A control group of 22 patients was used (uterine leiomyoma). Immunohistochemistry was performed to verify the stromal immunostaining of alpha-smooth muscle actin (SMA) and fibroblast activation protein alpha (FAP). Immunostainings and hemogram parameters were compared using Fisher's exact and Mann-Whitney Test, respectively. RESULTS: Strong FAP immunostaining was more frequent in patients with cervical cancer when compared with patients with leiomyoma (P = 0.0002). Regarding SMA, strong immunostaining was also found more in the group of cancer patients compared to the control group (P < 0.00001). The neutrophil-lymphocyte ratio (NLR) values were higher in the cancer patient group compared to the control group (P = 0.0019). There was no association of the parameters studied with prognostic factors. CONCLUSIONS: Strong FAP and SMA immunostaining was found more in patients with cervical cancer when compared to the control group. NLR values were also higher in cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Middle Aged , Adult , Endopeptidases , Actins/analysis , Actins/metabolism , Membrane Proteins/analysis , Membrane Proteins/metabolism , Gelatinases/analysis , Gelatinases/metabolism , Serine Endopeptidases/analysis , Serine Endopeptidases/metabolism , Leiomyoma/pathology
4.
Cell Death Dis ; 15(4): 304, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693139

ABSTRACT

Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.


Subject(s)
Caenorhabditis elegans , Wiskott-Aldrich Syndrome Protein, Neuronal , alpha-Synuclein , alpha-Synuclein/metabolism , Animals , Humans , Caenorhabditis elegans/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Actins/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Synapsins/metabolism , Caenorhabditis elegans Proteins/metabolism
5.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731597

ABSTRACT

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Subject(s)
Artemisia , Artemisinins , Fibroblasts , Fibrosis , Humans , Artemisinins/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Artemisia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Actins/metabolism , Actins/genetics , Artesunate/pharmacology , Gene Expression Regulation/drug effects , Artemether/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology
6.
Nat Commun ; 15(1): 4176, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755176

ABSTRACT

SETD3 is an essential host factor for the replication of a variety of enteroviruses that specifically interacts with viral protease 2A. However, the interaction between SETD3 and the 2A protease has not been fully characterized. Here, we use X-ray crystallography and cryo-electron microscopy to determine the structures of SETD3 complexed with the 2A protease of EV71 to 3.5 Å and 3.1 Å resolution, respectively. We find that the 2A protease occupies the V-shaped central cleft of SETD3 through two discrete sites. The relative positions of the two proteins vary in the crystal and cryo-EM structures, showing dynamic binding. A biolayer interferometry assay shows that the EV71 2A protease outcompetes actin for SETD3 binding. We identify key 2A residues involved in SETD3 binding and demonstrate that 2A's ability to bind SETD3 correlates with EV71 production in cells. Coimmunoprecipitation experiments in EV71 infected and 2A expressing cells indicate that 2A interferes with the SETD3-actin complex, and the disruption of this complex reduces enterovirus replication. Together, these results reveal the molecular mechanism underlying the interplay between SETD3, actin, and viral 2A during virus replication.


Subject(s)
Actins , Cryoelectron Microscopy , Enterovirus A, Human , Protein Binding , Humans , Actins/metabolism , Enterovirus A, Human/genetics , Enterovirus A, Human/metabolism , Crystallography, X-Ray , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/chemistry , Virus Replication , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Enterovirus Infections/virology , Enterovirus Infections/metabolism , Models, Molecular , Histone Methyltransferases
7.
Sci Rep ; 14(1): 11250, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755233

ABSTRACT

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.


Subject(s)
Dictyostelium , Microfilament Proteins , Microtubules , Mitosis , Microtubules/metabolism , Dictyostelium/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin-Related Protein 2-3 Complex/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protein Transport , Cytokinesis , Actins/metabolism
8.
PLoS Pathog ; 20(5): e1012215, 2024 May.
Article in English | MEDLINE | ID: mdl-38701108

ABSTRACT

Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgß2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 µg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.


Subject(s)
Actins , Fungal Proteins , Fungicides, Industrial , Fusarium , Microtubules , Plant Diseases , Triticum , Microtubules/metabolism , Fusarium/metabolism , Fusarium/pathogenicity , Fusarium/genetics , Fusarium/drug effects , Fusarium/growth & development , Actins/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Triticum/microbiology , Fungicides, Industrial/pharmacology , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Reproduction
9.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747713

ABSTRACT

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Subject(s)
Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
10.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38749543

ABSTRACT

Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in CHKB, encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known. We determine that in Chkb -/- mice there is a failure of the α7ß1 integrin complex that is specific to affected muscle. We observed that in Chkb -/- hindlimb muscles there is a decrease in sarcolemma association/abundance of the PI(4,5)P2 binding integrin complex proteins vinculin, and α-actinin, and a decrease in actin association with the sarcolemma. In cells, pharmacological inhibition of choline kinase activity results in internalization of a fluorescent PI(4,5)P2 reporter from discrete plasma membrane clusters at the cell surface membrane to cytosol, this corresponds with a decreased vinculin localization at plasma membrane focal adhesions that was rescued by overexpression of CHKB.


Subject(s)
Choline Kinase , Integrins , Mice, Knockout , Muscular Dystrophies , Sarcolemma , Vinculin , Animals , Mice , Vinculin/metabolism , Vinculin/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/genetics , Integrins/metabolism , Choline Kinase/metabolism , Choline Kinase/genetics , Sarcolemma/metabolism , Humans , Focal Adhesions/metabolism , Cell Membrane/metabolism , Actinin/metabolism , Actinin/genetics , Muscle, Skeletal/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Actins/metabolism , Disease Models, Animal
11.
Nat Commun ; 15(1): 4095, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750021

ABSTRACT

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Cell Nucleus , Chromatin , Mesenchymal Stem Cells , Actins/metabolism , Chromatin/metabolism , Cell Nucleus/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation , Cytochalasin D/pharmacology , Histones/metabolism , Humans , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Mice , Chromatin Assembly and Disassembly
12.
PLoS One ; 19(5): e0285655, 2024.
Article in English | MEDLINE | ID: mdl-38753593

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the sinuses or nose. Persistent inflammatory responses can lead to tissue remodeling, which is a pathological characteristics of CRS. Activation of fibroblasts in the nasal mucosal stroma, differentiation and collagen deposition, and subepithelial fibrosis have been associated with CRS. OBJECTIVES: We aimed to assess the inhibitory effects of doxycycline and deoxycholic acid-polyethyleneimine conjugate (DA3-Doxy) on myofibroblast differentiation and extracellular matrix (ECM) production in nasal fibroblasts stimulated with TGF-ß1. METHODS: To enhance efficacy, we prepared DA3-Doxy using a conjugate of low-molecular-weight polyethyleneimine (PEI) (MW 1800) and deoxycholic acid (DA) and Doxy. The synthesis of the DA3-Doxy polymer was confirmed using nuclear magnetic resonance, and the critical micelle concentration required for cationic micelle formation through self-assembly was determined. Subsequently, the Doxy loading efficiency of DA3 was assessed. The cytotoxicity of Doxy, DA3, PEI, and DA-Doxy in nasal fibroblasts was evaluated using the WST-1 assay. The anti-tissue remodeling and anti-inflammatory effects of DA3-Doxy and DA3 were examined using real-time polymerase chain reaction (Real-time PCR), immunocytochemistry, western blot, and Sircol assay. RESULTS: Both DA3 and DA3-Doxy exhibited cytotoxicity at 10 µg/ml in nasal fibroblasts. Doxy partially inhibited α-smooth muscle actin, collagen types I and III, and fibronectin. However, DA3-Doxy significantly inhibited α-SMA, collagen types I and III, and fibronectin at 5 µg/ml. DA3-Doxy also modulated TGF-ß1-induced changes in the expression of MMP 1, 2, and 9. Nonetheless, TGF-ß1-induced expression of MMP3 was further increased by DA3-Doxy. The expression of TIMP 1 and 2 was partially reduced with 5 µg/ml DA3-Doxy. CONCLUSIONS: Although initially developed for the delivery of genetic materials or drugs, DA3 exhibits inhibitory effects on myofibroblast differentiation and ECM production. Therefore, it holds therapeutic potential for CRS, and a synergistic effect can be expected when loaded with CRS treatment drugs.


Subject(s)
Cell Differentiation , Deoxycholic Acid , Doxycycline , Fibroblasts , Polyethyleneimine , Humans , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Deoxycholic Acid/chemistry , Deoxycholic Acid/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Differentiation/drug effects , Doxycycline/pharmacology , Doxycycline/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Transforming Growth Factor beta1/metabolism , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/cytology , Actins/metabolism
13.
Medicina (Kaunas) ; 60(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792998

ABSTRACT

Background and Objectives: This study aims to compare the neuromuscular structure of the vagina in women with posterior vaginal wall prolapse with the neuromuscular structure of the vagina in women without prolapse, to determine the difference, and to demonstrate the role of neuromuscular structure in the physiopathology of prolapse. Materials and Methods: In this prospective study, women aged between 40 and 75 years who had not undergone any vaginal surgery and had not undergone any abdominal prolapse surgery were included. Thirty-one women diagnosed with rectocele on examination were included in the study group. Thirty-one patients who underwent vaginal intervention and hysterectomy for reasons other than rectocele (colposcopy, conization, etc.) without anterior or posterior wall prolapse were included in the control group. Biopsy material was obtained from the epithelium of the posterior wall of the vagina, including the fascia that fits the Ap point. Immunohistochemical staining with Protein Gene Product 9.5 and smooth muscle α-actin was performed in the pathology laboratory. The epithelial thickness measurement and smooth muscle density parameters obtained with these immunohistochemical stainings were compared between the two groups. The collected data were analyzed using the SPSS 23 package program. p values less than 0.05 were considered statistically significant. Results: In the control group, muscle thickness and the number of nerves per mm2 of fascia were statistically significantly higher than in the study group (p < 0.05). Conclusions: We found that smooth muscle tissue and the number of nerves per mm2 of fascia were decreased in posterior vaginal wall prolapse compared to the general population. Based on the correlation coefficients, age was the parameter that most affected the degree of prolapse, followed by parity, number of live births, and number of vaginal deliveries.


Subject(s)
Actins , Vagina , Humans , Female , Middle Aged , Vagina/pathology , Adult , Prospective Studies , Aged , Actins/analysis , Uterine Prolapse/pathology , Muscle, Smooth/pathology , Immunohistochemistry/methods , Ubiquitin Thiolesterase
14.
J R Soc Interface ; 21(214): 20240105, 2024 May.
Article in English | MEDLINE | ID: mdl-38774959

ABSTRACT

During mesenchymal migration, F-actin protrusion at the leading edge and actomyosin contraction determine the retrograde flow of F-actin within the lamella. The coupling of this flow to integrin-based adhesions determines the force transmitted to the extracellular matrix and the net motion of the cell. In tissues, motion may also arise from convection, driven by gradients in tissue-scale surface tensions and pressures. However, how migration coordinates with convection to determine the net motion of cellular ensembles is unclear. To explore this, we study the spreading of cell aggregates on adhesive micropatterns on compliant substrates. During spreading, a cell monolayer expands from the aggregate towards the adhesive boundary. However, cells are unable to stabilize the protrusion beyond the adhesive boundary, resulting in retraction of the protrusion and detachment of cells from the matrix. Subsequently, the cells move upwards and rearwards, yielding a bulk convective flow towards the centre of the aggregate. The process is cyclic, yielding a steady-state balance between outward (protrusive) migration along the surface, and 'retrograde' (contractile) flows above the surface. Modelling the cell aggregates as confined active droplets, we demonstrate that the interplay between surface tension-driven flows within the aggregate, radially outward monolayer flow and conservation of mass leads to an internal circulation.


Subject(s)
Cell Adhesion , Cell Movement , Models, Biological , Cell Movement/physiology , Cell Adhesion/physiology , Cell Aggregation/physiology , Animals , Humans , Actins/metabolism
15.
J R Soc Interface ; 21(214): 20230658, 2024 May.
Article in English | MEDLINE | ID: mdl-38774960

ABSTRACT

Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.


Subject(s)
Models, Biological , Muscle, Skeletal , Myosins , Animals , Muscle, Skeletal/physiology , Muscle, Skeletal/ultrastructure , Muscle, Skeletal/metabolism , Myosins/metabolism , Muscle Contraction/physiology , Actins/metabolism , Sarcomeres/metabolism , Sarcomeres/ultrastructure , Sarcomeres/physiology , Biomechanical Phenomena
16.
PeerJ ; 12: e17356, 2024.
Article in English | MEDLINE | ID: mdl-38766485

ABSTRACT

Background: Hepatic stellate cell (HSC) activation and hepatic fibrosis mediated biliary atresia (BA) development, but the underlying molecular mechanisms are poorly understood. This study aimed to investigate the roles of circRNA hsa_circ_0009096 in the regulation of HSC proliferation and hepatic fibrosis. Methods: A cellular hepatic fibrosis model was established by treating LX-2 cells with transforming growth factor ß (TGF-ß1). RNaseR and actinomycin D assays were performed to detect hsa_circ_0009096 stability. Expression of hsa_circ_0009096, miR-370-3p, and target genes was detected using reverse transcription-qPCR. Direct binding of hsa_circ_0009096 to miR-370-3p was validated using dual luciferase reporter assay. Cell cycle progression and apoptosis of LX-2 cells were assessed using flow cytometry. The alpha-smooth muscle actin (α-SMA), collagen 1A1 (COL1A1), and TGF beta receptor 2 (TGFBR2) protein levels in LX-2 cells were analyzed using immunocytochemistry and western blotting. Results: Hsa_circ_0009096 exhibited more resistance to RNase R and actinomycinD digestion than UTRN mRNA. Hsa_circ_0009096 expression increased significantly in LX-2 cells treated with TGF-ß1, accompanied by elevated α-SMA and COL1A1 expression. Hsa_circ_0009096 siRNAs effectively promoted miR-370-3p and suppressed TGFBR2 expression in LX-2 cells, mediated by direct association of hsa_circ_0009096 with miR-370-3p. Hsa_circ_0009096 siRNA interfered with the cell cycle progression, promoted apoptosis, and reduced α-SMA and COL1A1 expression in LX-2 cells treated with TGF-ß1. MiR-370-3p inhibitors mitigated the alterations in cell cycle progression, apoptosis, and α-SMA, COL1A1, and TGFBR2 expression in LX-2 cells caused by hsa_circ_0009096 siRNA. In conclusion, hsa_circ_0009096 promoted HSC proliferation and hepatic fibrosis during BA pathogenesis by accelerating TGFBR2 expression by sponging miR-370-3p.


Subject(s)
Biliary Atresia , Cell Proliferation , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , RNA, Circular , Receptor, Transforming Growth Factor-beta Type II , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Biliary Atresia/pathology , Biliary Atresia/genetics , Biliary Atresia/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Apoptosis , Cell Line , Actins/metabolism , Actins/genetics , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics
17.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791282

ABSTRACT

We previously found IQ motif containing GTPase activating protein (IQGAP1) to be consistently elevated in lung fibroblasts (LF) isolated from patients with scleroderma (systemic sclerosis, SSc)-associated interstitial lung disease (ILD) and reported that IQGAP1 contributed to SSc by regulating expression and organization of α-smooth muscle actin (SMA) in LF. The aim of this study was to compare the development of ILD in the presence and absence of IQGAP1. Pulmonary fibrosis was induced in IQGAP1 knockout (KO) and wild-type (WT) mice by a single-intratracheal instillation of bleomycin. Two and three weeks later, mice were euthanized and investigated. We observed that the IQGAP1 KO mouse was characterized by a reduced rate of actin polymerization with reduced accumulation of actin in the lung compared to the WT mouse. After exposure to bleomycin, the IQGAP1 KO mouse demonstrated decreased contractile activity of LF, reduced expression of SMA, TGFß, and collagen, and lowered overall fibrosis scores compared to the WT mouse. The numbers of inflammatory cells and expression of pro-inflammatory cytokines in lung tissue were not significantly different between IQGAP1 KO and WT mice. We conclude that IQGAP1 plays an important role in the development of lung fibrosis induced by bleomycin, and the absence of IQGAP1 reduces the contractile activity of lung fibroblast and bleomycin-induced pulmonary fibrosis. Thus, IQGAP1 may be a potential target for novel anti-fibrotic therapies for lung fibrosis.


Subject(s)
Actins , Bleomycin , Fibroblasts , Mice, Knockout , Pulmonary Fibrosis , ras GTPase-Activating Proteins , Animals , Bleomycin/adverse effects , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Actins/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/genetics , Mice , Fibroblasts/metabolism , Fibroblasts/pathology , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Polymerization , Disease Models, Animal
18.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791524

ABSTRACT

Actin filaments, as key components of the cytoskeleton, have aroused great interest due to their numerous functional roles in eukaryotic cells, including intracellular electrical signaling. The aim of this research is to characterize the alternating current (AC) conduction characteristics of both globular and polymerized actin and quantitatively compare their values to those theoretically predicted earlier. Actin filaments have been demonstrated to act as conducting bionanowires, forming a signaling network capable of transmitting ionic waves in cells. We performed conductivity measurements for different concentrations of actin, considering both unpolymerized and polymerized actin to identify potential differences in their electrical properties. These measurements revealed two relevant characteristics: first, the polymerized actin, arranged in filaments, has a lower impedance than its globular counterpart; second, an increase in the actin concentration leads to higher conductivities. Furthermore, from the data collected, we developed a quantitative model to represent the electrical properties of actin in a buffer solution. We hypothesize that actin filaments can be modeled as electrical resistor-inductor-capacitor (RLC) circuits, where the resistive contribution is due to the viscous ion flows along the filaments; the inductive contribution is due to the solenoidal flows along and around the helix-shaped filament and the capacitive contribution is due to the counterion layer formed around each negatively charged filament.


Subject(s)
Actin Cytoskeleton , Actins , Electric Conductivity , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Actins/metabolism , Actins/chemistry , Animals , Polymerization
19.
Methods Mol Biol ; 2800: 115-145, 2024.
Article in English | MEDLINE | ID: mdl-38709482

ABSTRACT

The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell-directly under the plasma membrane-makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.


Subject(s)
Actin Cytoskeleton , Animals , Humans , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Magnetic Fields , Microspheres
20.
Nat Commun ; 15(1): 4073, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769302

ABSTRACT

Vivid structural colours in butterflies are caused by photonic nanostructures scattering light. Structural colours evolved for numerous biological signalling functions and have important technological applications. Optically, such structures are well understood, however insight into their development in vivo remains scarce. We show that actin is intimately involved in structural colour formation in butterfly wing scales. Using comparisons between iridescent (structurally coloured) and non-iridescent scales in adult and developing H. sara, we show that iridescent scales have more densely packed actin bundles leading to an increased density of reflective ridges. Super-resolution microscopy across three distantly related butterfly species reveals that actin is repeatedly re-arranged during scale development and crucially when the optical nanostructures are forming. Furthermore, actin perturbation experiments at these later developmental stages resulted in near total loss of structural colour in H. sara. Overall, this shows that actin plays a vital and direct templating role during structural colour formation in butterfly scales, providing ridge patterning mechanisms that are likely universal across lepidoptera.


Subject(s)
Actin Cytoskeleton , Actins , Butterflies , Pigmentation , Wings, Animal , Animals , Butterflies/metabolism , Butterflies/physiology , Butterflies/ultrastructure , Wings, Animal/ultrastructure , Wings, Animal/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Color , Animal Scales/metabolism , Animal Scales/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...