Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.424
Filter
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791524

ABSTRACT

Actin filaments, as key components of the cytoskeleton, have aroused great interest due to their numerous functional roles in eukaryotic cells, including intracellular electrical signaling. The aim of this research is to characterize the alternating current (AC) conduction characteristics of both globular and polymerized actin and quantitatively compare their values to those theoretically predicted earlier. Actin filaments have been demonstrated to act as conducting bionanowires, forming a signaling network capable of transmitting ionic waves in cells. We performed conductivity measurements for different concentrations of actin, considering both unpolymerized and polymerized actin to identify potential differences in their electrical properties. These measurements revealed two relevant characteristics: first, the polymerized actin, arranged in filaments, has a lower impedance than its globular counterpart; second, an increase in the actin concentration leads to higher conductivities. Furthermore, from the data collected, we developed a quantitative model to represent the electrical properties of actin in a buffer solution. We hypothesize that actin filaments can be modeled as electrical resistor-inductor-capacitor (RLC) circuits, where the resistive contribution is due to the viscous ion flows along the filaments; the inductive contribution is due to the solenoidal flows along and around the helix-shaped filament and the capacitive contribution is due to the counterion layer formed around each negatively charged filament.


Subject(s)
Actin Cytoskeleton , Actins , Electric Conductivity , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Actins/metabolism , Actins/chemistry , Animals , Polymerization
2.
J Agric Food Chem ; 72(21): 11885-11899, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747409

ABSTRACT

Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.


Subject(s)
Actins , Food Quality , Actins/metabolism , Actins/chemistry , Animals , Humans
3.
J Phys Chem B ; 128(19): 4590-4601, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38701111

ABSTRACT

Cofilin, a key actin-binding protein, orchestrates the dynamics of the actomyosin network through its actin-severing activity and by promoting the recycling of actin monomers. Recent experiments suggest that cofilin forms functionally distinct oligomers via thiol post-translational modifications (PTMs) that promote actin nucleation and assembly. Despite these advances, the structural conformations of cofilin oligomers that modulate actin activity remain elusive because there are combinatorial ways to oxidize thiols in cysteines to form disulfide bonds rapidly. This study employs molecular dynamics simulations to investigate human cofilin 1 as a case study for exploring cofilin dimers via disulfide bond formation. Utilizing a biasing scheme in simulations, we focus on analyzing dimer conformations conducive to disulfide bond formation. Additionally, we explore potential PTMs arising from the examined conformational ensemble. Using the free energy profiling, our simulations unveil a range of probable cofilin dimer structures not represented in current Protein Data Bank entries. These candidate dimers are characterized by their distinct population distributions and relative free energies. Of particular note is a dimer featuring an interface between cysteines 139 and 147 residues, which demonstrates stable free energy characteristics and intriguingly symmetrical geometry. In contrast, the experimentally proposed dimer structure exhibits a less stable free energy profile. We also evaluate frustration quantification based on the energy landscape theory in the protein-protein interactions at the dimer interfaces. Notably, the 39-39 dimer configuration emerges as a promising candidate for forming cofilin tetramers, as substantiated by frustration analysis. Additionally, docking simulations with actin filaments further evaluate the stability of these cofilin dimer-actin complexes. Our findings thus offer a computational framework for understanding the role of thiol PTM of cofilin proteins in regulating oligomerization, and the subsequent cofilin-mediated actin dynamics in the actomyosin network.


Subject(s)
Actin Cytoskeleton , Disulfides , Molecular Dynamics Simulation , Disulfides/chemistry , Humans , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Cofilin 1/chemistry , Cofilin 1/metabolism , Protein Multimerization , Actins/chemistry , Actins/metabolism , Actin Depolymerizing Factors/chemistry , Actin Depolymerizing Factors/metabolism , Thermodynamics
5.
J Vis Exp ; (207)2024 May 10.
Article in English | MEDLINE | ID: mdl-38801255

ABSTRACT

Efficient methods for the extraction of features of interest remain one of the biggest challenges for the interpretation of cryo-electron tomograms. Various automated approaches have been proposed, many of which work well for high-contrast datasets where the features of interest can be easily detected and are clearly separated from one another. Our inner ear stereocilia cryo-electron tomographic datasets are characterized by a dense array of hexagonally packed actin filaments that are frequently cross-connected. These features make automated segmentation very challenging, further aggravated by the high-noise environment of cryo-electron tomograms and the high complexity of the densely packed features. Using prior knowledge about the actin bundle organization, we have placed layers of a highly simplified ball-and-stick actin model to first obtain a global fit to the density map, followed by regional and local adjustments of the model. We show that volumetric model building not only allows us to deal with the high complexity, but also provides precise measurements and statistics about the actin bundle. Volumetric models also serve as anchoring points for local segmentation, such as in the case of the actin-actin cross connectors. Volumetric model building, particularly when further augmented by computer-based automated fitting approaches, can be a powerful alternative when conventional automated segmentation approaches are not successful.


Subject(s)
Actins , Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Actins/chemistry , Electron Microscope Tomography/methods , Animals , Ear, Inner/diagnostic imaging , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure
6.
Science ; 384(6692): eadn9560, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38603491

ABSTRACT

Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.


Subject(s)
Actin Cytoskeleton , Actins , Formins , Actin Cytoskeleton/chemistry , Actins/chemistry , Cryoelectron Microscopy , Formins/chemistry , Formins/genetics , Profilins/chemistry , Mutation , Schizosaccharomyces
7.
J Colloid Interface Sci ; 668: 293-302, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38678885

ABSTRACT

Understanding the cytotoxicity of fluorescent carbon dots (CDs) is crucial for their applications, and various biochemical assays have been used to study the effects of CDs on cells. Knowledge on the effects of CDs from a biophysical perspective is integral to the recognition of their cytotoxicity, however the related information is very limited. Here, we report that atomic force microscopy (AFM) can be used as an effective tool for studying the effects of CDs on cells from the biophysical perspective. We achieve this by integrating AFM-based nanomechanics with AFM-based imaging. We demonstrate the performance of this method by measuring the influence of CDs on living human neuroblastoma (SH-SY5Y) cells at the single-cell level. We find that high-dose CDs can mechanically induce elevated normalized hysteresis (energy dissipation during the cell deformation) and structurally impair actin skeleton. The nanomechanical change highly correlates with the alteration of actin filaments, indicating that CDs-induced changes in SH-SY5Y cells are revealed in-depth from the AFM-based biophysical aspect. We validate the reliability of the biophysical observations using conventional biological methods including cell viability test, fluorescent microscopy, and western blot assay. Our work contributes new and significant information on the cytotoxicity of CDs from the biophysical perspective.


Subject(s)
Carbon , Cell Survival , Microscopy, Atomic Force , Quantum Dots , Humans , Carbon/chemistry , Quantum Dots/chemistry , Cell Survival/drug effects , Neurons/drug effects , Neurons/cytology , Neurons/metabolism , Cell Line, Tumor , Particle Size , Surface Properties , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/drug effects , Actins/metabolism , Actins/chemistry
8.
IUCrJ ; 11(Pt 3): 384-394, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38656311

ABSTRACT

Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP-F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases.


Subject(s)
Phytoplasma , Phytoplasma/chemistry , Crystallography, X-Ray , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Actins/metabolism , Actins/chemistry , Plant Diseases/microbiology , Catharanthus/microbiology , Catharanthus/immunology , Molecular Docking Simulation , Protein Binding
9.
Chem Commun (Camb) ; 60(37): 4910-4913, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38623638

ABSTRACT

Several natural cytotoxic C2-symmetric bis-lactones, such as swinholide A and rhizopodin, sequester actin dimer from the actin network and potently inhibit actin dynamics. To develop new protein-protein interaction (PPI) modulators, we synthesized structurally simplified actin-binding side-chain dimers of antitumor macrolide aplyronine A. By fixing the two side-chains closer than those of rhizopodin, the C4 linker analog depolymerized filamentous actin more potently than natural aplyronines. Cross-link experiments revealed that actin dimer was formed by treatment with the C4 linker analog. Molecular dynamics simulations showed that this analog significantly changed the interaction and spatial arrangement of the two actins compared to those in rhizopodin to provide a highly distorted and twisted orientation in the complex. Our study may promote the development of PPI-based anticancer and other drug leads related to cytoskeletal dynamics.


Subject(s)
Actins , Macrolides , Protein Multimerization , Actin Depolymerizing Factors/chemistry , Actin Depolymerizing Factors/pharmacology , Actins/metabolism , Actins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dimerization , Macrolides/chemistry , Macrolides/pharmacology , Macrolides/chemical synthesis , Molecular Dynamics Simulation , Protein Multimerization/drug effects
10.
J Am Chem Soc ; 146(13): 8895-8903, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511265

ABSTRACT

Actin is one of the most abundant proteins in eukaryotic cells and is a key component of the cytoskeleton. A range of small molecules has emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Among these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390-490 nm pulsed light and rapidly relaxes to its inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated via live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of the microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.


Subject(s)
Actin Cytoskeleton , Actins , Animals , Mice , Humans , Actins/chemistry , Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Cell Line , Microtubules/metabolism
11.
Proc Natl Acad Sci U S A ; 121(13): e2401625121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507449

ABSTRACT

Molecular motors employ chemical energy to generate unidirectional mechanical output against a track while navigating a chaotic cellular environment, potential disorder on the track, and against Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.


Subject(s)
Actins , Myosin Type V , Actins/chemistry , Myosins/chemistry , Actin Cytoskeleton/chemistry , Motion , Myosin Type V/chemistry
12.
J Biol Chem ; 300(3): 105740, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340794

ABSTRACT

Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.


Subject(s)
Actin Cytoskeleton , Actins , Leishmania major , Parasites , Profilins , Animals , Humans , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Actins/chemistry , Actins/metabolism , Amino Acid Motifs , Binding Sites , Conserved Sequence , Crystallization , Crystallography, X-Ray , Leishmania major/cytology , Leishmania major/metabolism , Parasites/cytology , Parasites/metabolism , Profilins/chemistry , Profilins/metabolism , Protein Binding , Protein Domains
13.
Biosystems ; 237: 105139, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336223

ABSTRACT

Depending on the chemical energy from ATP hydrolysis, myosin V can drive the multistep and continuous coupled cycling process to transport cellular cargo to targeted regions. However, it is still obscure how the molecular memory induced by the multistep coupled transported process could regulate the dynamic behavior of the motor state of myosin V. Here, we propose a novel non-Markovian polymorphic mechanochemical model to investigate the effect of the molecular memory on the mechanic of noise attenuation of myosin V system. We first define an effective transition rate for a multistep coupled reaction process which is the function of memory and system states to transform equivalently the non-Markovian process into the classical Markov process. By noise decomposition technology, it is observed that both the intrinsic and extrinsic noises of the ADP-myosin V bound state (AM ⋅ ADP) exhibit a monotonically decreasing trend with lengthening the molecular memory. Molecular memory as a regulation factor can amplify the contribution of intrinsic noise to the overall noise while reducing the influence of extrinsic noise on the AM ⋅ ADP. Moreover, the modulation of molecular memory could induce stochastic focusing. These results indicate that the role of molecular memory in the myosin V state transition can not only offer a handle to maintain the robustness of the motion system but also serve as a paradigm for studying more complex molecular motors.


Subject(s)
Myosin Type V , Myosin Type V/chemistry , Myosin Type V/metabolism , Cell Communication , Adenosine Triphosphate/metabolism , Actins/chemistry
14.
ACS Biomater Sci Eng ; 10(3): 1364-1378, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38330438

ABSTRACT

Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.


Subject(s)
Actins , Cytoskeleton , Actins/chemistry , Cell Movement/physiology , Fibroblasts
15.
Nat Struct Mol Biol ; 31(5): 801-809, 2024 May.
Article in English | MEDLINE | ID: mdl-38267598

ABSTRACT

Regulation of the assembly and turnover of branched actin filament networks nucleated by the Arp2/3 complex is essential during many cellular processes, including cell migration and membrane trafficking. Cortactin is important for actin branch stabilization, but the mechanism by which this occurs is unclear. Given this, we determined the structure of vertebrate cortactin-stabilized Arp2/3 actin branches using cryogenic electron microscopy. We find that cortactin interacts with the new daughter filament nucleated by the Arp2/3 complex at the branch site, rather than the initial mother actin filament. Cortactin preferentially binds activated Arp3. It also stabilizes the F-actin-like interface of activated Arp3 with the first actin subunit of the new filament, and its central repeats extend along successive daughter-filament subunits. The preference of cortactin for activated Arp3 explains its retention at the actin branch and accounts for its synergy with other nucleation-promoting factors in regulating branched actin network dynamics.


Subject(s)
Actin Cytoskeleton , Actin-Related Protein 2-3 Complex , Actins , Cortactin , Cortactin/metabolism , Cortactin/chemistry , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/chemistry , Actins/metabolism , Actins/chemistry , Actin Cytoskeleton/metabolism , Animals , Cryoelectron Microscopy , Models, Molecular , Humans , Protein Binding , Actin-Related Protein 3/metabolism
16.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38252080

ABSTRACT

The compartmentalization of the plasma membrane (PM) is a fundamental feature of cells. The diffusivity of membrane proteins is significantly lower in biological than in artificial membranes. This is likely due to actin filaments, but assays to prove a direct dependence remain elusive. We recently showed that periodic actin rings in the neuronal axon initial segment (AIS) confine membrane protein motion between them. Still, the local enrichment of ion channels offers an alternative explanation. Here we show, using computational modeling, that in contrast to actin rings, ion channels in the AIS cannot mediate confinement. Furthermore, we show, employing a combinatorial approach of single particle tracking and super-resolution microscopy, that actin rings are close to the PM and that they confine membrane proteins in several neuronal cell types. Finally, we show that actin disruption leads to loss of compartmentalization. Taken together, we here develop a system for the investigation of membrane compartmentalization and show that actin rings compartmentalize the PM.


Subject(s)
Actins , Cell Membrane , Ion Channels , Actins/chemistry , Cell Membrane/chemistry , Ion Channels/chemistry , Animals , Rats , Neurons , Models, Chemical
17.
J Biomol Struct Dyn ; 42(1): 435-444, 2024.
Article in English | MEDLINE | ID: mdl-37029713

ABSTRACT

Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.


Subject(s)
Actins , Molecular Dynamics Simulation , Actins/chemistry , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Actin Cytoskeleton/metabolism
18.
J Sci Food Agric ; 104(3): 1564-1571, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37807842

ABSTRACT

BACKGROUND: Myofibrillar proteins, the main contributors to the quality of meat products, are the main structural protein component of muscle and have functional properties such as the formation of a 3D protein gel network and water binding. The susceptibility of meat-derived proteins to heat-induced aggregation is the functional constraint that hinders their applications in industry, and so establishing an effective but simple method to improve their thermostability of the proteins is of great importance. RESULTS: In the present study, we describe an easy approach to perform high colloidal thermostability of both paramyosin and actin by mixing them at low ionic strength. The improvement in thermal stability was found to be derived from intermolecular interactions between these two different proteins through non-covalent binding with each other. Consequently, such interactions protected each of them from thermal-induced degradation compared to individual components. Notably, this binary native protein mixture rather than single paramyosin or actin component has the ability to form protein hydrogels with a shear-thinning and reversible sol-gel transformation behavior, which is markedly different from most of reported heat-induced, denatured protein hydrogels. CONCLUSION: The present study not only presents a facile and effective strategy for improvement of the thermal stability and gel properties of a binary paramyosin and actin mixture, but also enhances our understanding of how mutual interactions of protein components affect their physicochemical and functional properties. © 2023 Society of Chemical Industry.


Subject(s)
Actins , Tropomyosin , Tropomyosin/chemistry , Actins/chemistry , Muscles/metabolism , Hydrogels
19.
J Mol Biol ; 436(4): 168421, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38158176

ABSTRACT

Highly specialized cells, such as neurons and podocytes, have arborized morphologies that serve their specific functions. Actin cytoskeleton and its associated proteins are responsible for the distinctive shapes of cells. The mechanism of their cytoskeleton regulation - contributing to cell shape maintenance - is yet to be fully clarified. Inverted formin 2 (INF2), one of the modulators of the cytoskeleton, is an atypical formin that can both polymerize and depolymerize actin filaments depending on its molar ratio to actin. Prior work has established that INF2 binds to the sides of actin filaments and severs them. Drebrin is another actin-binding protein that also binds filaments laterally and stabilizes them, but the interplay between drebrin and INF2 on actin filament stabilization is not well understood. Here, we have used biochemical assays, electron microscopy, and total internal reflection fluorescence microscopy imaging to show that drebrin protects actin filaments from severing by INF2 without inhibiting its polymerization activity. Notably, truncated drebrin - DrbA1-300 - is sufficient for this protection, though not as effective as the full-length protein. INF2 and drebrin are abundantly expressed in highly specialized cells and are crucial for the temporal regulation of their actin cytoskeleton, consistent with their involvement in peripheral neuropathy.


Subject(s)
Actins , Formins , Neuropeptides , Actin Cytoskeleton/chemistry , Actins/chemistry , Formins/chemistry , Neuropeptides/chemistry , Cell Surface Extensions/chemistry , Neurons/metabolism , Microscopy, Electron
20.
Phys Rev Lett ; 131(22): 228401, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101392

ABSTRACT

The kinetics of the assembly of semiflexible filaments through end-to-end annealing is key to the structure of the cytoskeleton, but is not understood. We analyze this problem through scaling theory and simulations, and uncover a regime where filaments' ends find each other through bending fluctuations without the need for the whole filament to diffuse. This results in a very substantial speedup of assembly in physiological regimes, and could help with understanding the dynamics of actin and intermediate filaments in biological processes such as wound healing and cell division.


Subject(s)
Actins , Cytoskeleton , Actins/chemistry , Intermediate Filaments , Microtubules , Actin Cytoskeleton/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...