Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.784
Filter
1.
Biointerphases ; 19(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38738941

ABSTRACT

This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.


Subject(s)
Neurons , Neurons/physiology , Neurons/drug effects , Nanoparticles/chemistry , Humans , Models, Neurological , Action Potentials/drug effects , Action Potentials/physiology , Magnetic Fields
2.
Acta Biomater ; 181: 391-401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704114

ABSTRACT

Potassium ion transport across myocardial cell membrane is essential for type 2 long QT syndrome (LQT2). However, the dysfunction of potassium ion transport due to genetic mutations limits the therapeutic effect in treating LQT2. Biomimetic ion channels that selectively and efficiently transport potassium ions across the cellular membranes are promising for the treatment of LQT2. To corroborate this, we synthesized a series of foldamer-based ion channels with different side chains, and found a biomimetic ion channel of K+ (BICK) with the highest transport activity among them. The selected BICK can restore potassium ion transport and increase transmembrane potassium ion current, thus shortening phase 3 of action potential (AP) repolarization and QT interval in LQT2. Moreover, BICK does not affect heart rate and cardiac rhythm in treating LQT2 model induced by E4031 in isolated heart as well as in guinea pigs. By restoring ion transmembrane transport tactic, biomimetic ion channels, such as BICK, will show great potential in treating diseases related to ion transport blockade. STATEMENT OF SIGNIFICANCE: Type 2 long QT syndrome (LQT2) is a disease caused by K+ transport disorder, which can cause malignant arrhythmia and even death. There is currently no radical cure, so it is critical to explore ways to improve K+ transmembrane transport. In this study, we report that a small-molecule biomimetic ion channel BICK can efficiently simulate natural K+ channel proteins on the cardiomyocyte and cure E4031-induced LQT2 in guinea pig by restoring K+ transport function for the first time. This study found that the potassium transmembrane transport by BICK significantly reduced the QT interval, which provides a conceptually new strategy for the treatment of LQT2 disease.


Subject(s)
Long QT Syndrome , Potassium , Long QT Syndrome/metabolism , Animals , Potassium/metabolism , Guinea Pigs , Humans , Action Potentials/drug effects , Ion Transport/drug effects , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Heart Rate/drug effects
3.
Clin Toxicol (Phila) ; 62(4): 219-228, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38738692

ABSTRACT

INTRODUCTION: Intermediate syndrome is an important cause of respiratory failure following acute organophosphorus pesticide poisoning. The objective of this study was to examine the pathophysiology of this syndrome by analysis of sequential repetitive nerve stimulation studies in patients with acute organophosphorus pesticide poisoning. METHODS: Thirty-four consenting symptomatic patients with acute organophosphorus pesticide poisoning with intermediate syndrome (n = 10) or a milder forme fruste intermediate syndrome (n = 24) were assessed prospectively with daily physical examination and repetitive nerve stimulation done on the right and left median and ulnar nerves. The compound muscle action potential at 1, 3, 10, 15, 20 and 30 Hertz was measured with a train of ten stimuli. The amplitudes of the resulting stimuli were normalized to the first stimulus (100 per cent) and plotted against time. The decrease in the area under the curve of all the second stimulus compound muscle action potentials in the first 0.3 seconds was measured as a means of quantifying the refractory block. The decrease in the area under the curve under the 10, 15, 20 and 30 Hertz compound muscle action potentials relative to this pooled second stimulus compound muscle action potentials-area under the curve indicated the extent of additional rate-dependent block (decreasing compound muscle action potential-area under the curve over the first 0.3 seconds after the first stimulus with increasing Hertz). RESULTS: These new measurements strongly correlated with the severity of weakness. Refractory block was seen in most patients but was more severe in those with intermediate syndrome than those with forme fruste (partial) intermediate syndrome (median 55 per cent versus 16 per cent, P = 0.0001). Similar large differences were found for rate-dependent block (30 per cent versus 7 per cent, P = 0.001), which was uncommon in forme fruste intermediate syndrome but found in nine out of 10 patients with intermediate syndrome. Rate dependent block was generally only observed after 24 hours. The simplest strong predictor was total block at 30 Hertz repetitive nerve stimulation (89 per cent [interquartile range 73 to 94 per cent] versus 21 per cent [4 to 55 per cent]; P < 0.0001), which was very similar to total block calculated by summing other calculations. DISCUSSION: These findings likely represent depolarization and desensitization block from prolonged excessive cholinergic stimulation but it is not clear if these are from pre- or post-synaptic pathology. An animal model of intermediate syndrome with repetitive nerve stimulation studies might enable a better pathophysiological understanding of the two types of block. LIMITATIONS: The limited number of repetitive nerve stimulation studies performed were sufficient to demonstrate proof-of-concept, but further studies with more patients are needed to better define the correlates, clinical relevance and possible diagnostic/prognostic roles for the use of this technique. CONCLUSION: There are two easily distinguishable pathophysiological abnormalities in the neuromuscular block in intermediate syndrome. While they often coincide, both may be observed in isolation. The total and rate-dependent block at 30 Hertz are strongly associated with more severe weakness.


Subject(s)
Action Potentials , Electric Stimulation , Neuromuscular Junction , Organophosphate Poisoning , Humans , Organophosphate Poisoning/physiopathology , Male , Adult , Female , Middle Aged , Action Potentials/drug effects , Neuromuscular Junction/physiopathology , Neuromuscular Junction/drug effects , Prospective Studies , Young Adult , Median Nerve/physiopathology , Ulnar Nerve/physiopathology , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/etiology , Aged
4.
Biochem Biophys Res Commun ; 720: 150105, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38754163

ABSTRACT

BACKGROUND: Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist, can decrease the incidence of arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the underlying mechanisms by which DEX affects cardiac electrophysiological function remain unclear. METHODS: Ryanodine receptor (RyR2) heterozygous R2474S mice were used as a model for CPVT. WT and RyR2R2474S/+ mice were treated with isoproterenol (ISO) and DEX, and electrocardiograms were continuously monitored during both in vivo and ex vivo experiments. Dual-dye optical mapping was used to explore the anti-arrhythmic mechanism of DEX. RESULTS: DEX significantly reduced the occurrence and duration of ISO-induced of VT/VF in RyR2R2474S/+ mice in vivo and ex vivo. DEX remarkably prolonged action potential duration (APD80) and calcium transient duration (CaTD80) in both RyR2R2474S/+ and WT hearts, whereas it reduced APD heterogeneity and CaT alternans in RyR2R2474S/+ hearts. DEX inhibited ectopy and reentry formation, and stabilized voltage-calcium latency. CONCLUSION: DEX exhibited an antiarrhythmic effect through stabilizing membrane voltage and intracellular Ca2+. DEX can be used as a beneficial perioperative anesthetic for patients with CPVT or other tachy-arrhythmias.


Subject(s)
Arrhythmias, Cardiac , Calcium , Dexmedetomidine , Ryanodine Receptor Calcium Release Channel , Animals , Dexmedetomidine/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Calcium/metabolism , Mice , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/genetics , Membrane Potentials/drug effects , Isoproterenol/pharmacology , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/drug therapy , Anti-Arrhythmia Agents/pharmacology , Male , Action Potentials/drug effects , Mice, Inbred C57BL
5.
Biomed Pharmacother ; 175: 116649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692059

ABSTRACT

BACKGROUND: Second-generation antipsychotics increase the risk of atrial fibrillation. This study explores whether the atypical antipsychotic ziprasidone triggers inflammasome signaling, leading to atrial arrhythmia. METHODS: Electromechanical and pharmacological assessments were conducted on the rabbit left atria (LA). The patch-clamp technique was used to measure ionic channel currents in single cardiomyocytes. Detection of cytosolic reactive oxygen species production was performed in atrial cardiomyocytes. RESULTS: The duration of action potentials at 50 % and 90 % repolarization was dose-dependently shortened in ziprasidone-treated LA. Diastolic tension in LA increased after ziprasidone treatment. Ziprasidone-treated LA showed rapid atrial pacing (RAP) triggered activity. PI3K inhibitor, Akt inhibitor and mTOR inhibitor abolished the triggered activity elicited by ziprasidone in LA. The NLRP3 inhibitor MCC950 suppressed the ziprasidone-induced post-RAP-triggered activity. MCC950 treatment reduced the reverse-mode Na+/Ca2+ exchanger current in ziprasidone-treated myocytes. Cytosolic reactive oxygen species production decreased in ziprasidone-treated atrial myocytes after MCC950 treatment. Protein levels of inflammasomes and proinflammatory cytokines, including NLRP3, caspase-1, IL-1ß, IL-18, and IL-6 were observed to be upregulated in myocytes treated with ziprasidone. CONCLUSIONS: Our findings suggest ziprasidone induces atrial arrhythmia, potentially through upregulation of the NLRP3 inflammasome and enhancement of reactive oxygen species production via the PI3K/Akt/mTOR pathway.


Subject(s)
Atrial Fibrillation , Inflammasomes , Myocytes, Cardiac , Piperazines , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Atrial Fibrillation/chemically induced , Atrial Fibrillation/metabolism , TOR Serine-Threonine Kinases/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rabbits , Reactive Oxygen Species/metabolism , Piperazines/pharmacology , Male , Phosphatidylinositol 3-Kinases/metabolism , Thiazoles/pharmacology , Heart Atria/drug effects , Heart Atria/metabolism , Action Potentials/drug effects , Antipsychotic Agents/pharmacology
6.
Neuroreport ; 35(10): 638-647, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813908

ABSTRACT

Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system. We prepared brain slices of the mouse brainstem and performed patch-clamp recording in bushy cells in the anteroventral cochlear nucleus, with or without Danshensu incubation for 1 h. QX-314 was used internally to block Na+ current, while tetraethylammonium and 4-aminopyridine were used to isolate different subtypes of K+ current. We found that Danshensu of 100 µm decreased the input resistance of bushy cells by approximately 60% and shifted the voltage threshold of spiking positively by approximately 7 mV, resulting in significantly reduced excitability. Furthermore, we found this reduced excitability by Danshensu was caused by enhanced voltage-gated K+ currents in these neurons, including both low voltage-activated IK,A, by approximately 100%, and high voltage-activated IK,dr, by approximately 30%. Lastly, we found that the effect of Danshensu on K+ currents was dose-dependent in that no enhancement was found for Danshensu of 50 µm and Danshensu of 200 µm failed to cause significantly more enhancement on K+ currents when compared to that of 100 µm. We found that Danshensu reduced neuronal excitability in the central nervous system by enhancing voltage-gated K+ currents, providing mechanistic support for its neuroprotective effect widely seen in vivo.


Subject(s)
Cochlear Nucleus , Lactates , Neurons , Animals , Mice , Neurons/drug effects , Neurons/physiology , Lactates/pharmacology , Cochlear Nucleus/drug effects , Cochlear Nucleus/physiology , Patch-Clamp Techniques , Action Potentials/drug effects , Action Potentials/physiology , Male , Potassium Channels/drug effects , Potassium Channels/metabolism , Mice, Inbred C57BL
7.
Chemosphere ; 357: 142089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643846

ABSTRACT

Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 µM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 µM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.


Subject(s)
Heart , Myocytes, Cardiac , Phenanthrenes , Animals , Phenanthrenes/toxicity , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart/drug effects , Heart/physiology , Action Potentials/drug effects , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Perciformes/physiology
8.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599494

ABSTRACT

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Subject(s)
Action Potentials , Dopaminergic Neurons , Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Mice, Inbred C57BL , Substantia Nigra , Animals , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Exenatide/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Action Potentials/drug effects , Action Potentials/physiology , Mice , Venoms/pharmacology , Peptides/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Peptide Fragments/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism
9.
Pharmacol Rep ; 76(3): 585-599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38619735

ABSTRACT

BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.


Subject(s)
Action Potentials , Amiodarone , Anti-Arrhythmia Agents , Arrhythmias, Cardiac , Heart Atria , Myocytes, Cardiac , Rats, Wistar , Animals , Amiodarone/pharmacology , Anti-Arrhythmia Agents/pharmacology , Male , Humans , Rats , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Action Potentials/drug effects , Heart Atria/drug effects , Heart Atria/metabolism , Hydrogen-Ion Concentration , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced , NAV1.5 Voltage-Gated Sodium Channel/metabolism , HEK293 Cells , Sodium/metabolism , Patch-Clamp Techniques , Cnidarian Venoms/pharmacology
10.
Headache ; 64(5): 533-546, 2024 May.
Article in English | MEDLINE | ID: mdl-38650105

ABSTRACT

OBJECTIVES: Investigation of chronic homocysteine action on the excitability and N-methyl-D-aspartate (NMDA) sensitivity of the peripheral trigeminovascular system of rats. BACKGROUND: Migraine is a neurological disease that affects 15%-20% of the general population. Epidemiological observations show that an increase of the sulfur-containing amino acid homocysteine in plasma-called hyperhomocysteinemia-is associated with a high risk of migraine, especially migraine with aura. In animal studies, rats with hyperhomocysteinemia demonstrated mechanical allodynia, photophobia, and anxiety, and higher sensitivity to cortical spreading depression. In addition, rats with hyperhomocysteinemia were more sensitive in a model of chronic migraine induced by nitroglycerin which indicated the involvement of peripheral nociceptive mechanisms. The present work aimed to analyze the excitability of meningeal afferents and neurons isolated from the trigeminal ganglion of rats with prenatal hyperhomocysteinemia. METHODS: Experiments were performed on male rats born from females fed with a methionine-rich diet before and during pregnancy. The activity of meningeal afferents was recorded extracellularly in hemiskull preparations ex vivo and action potentials were characterized using cluster analysis. The excitability of trigeminal ganglion neurons was assessed using whole-cell patch clamp recording techniques and calcium imaging studies. Meningeal mast cells were stained using toluidine blue. RESULTS: The baseline extracellular recorded electrical activity of the trigeminal nerve was higher in the hyperhomocysteinemia group with larger amplitude action potentials. Lower concentrations of KCl caused an increase in the frequency of action potentials of trigeminal afferents recorded in rat hemiskull ex vivo preparations. In trigeminal ganglion neurons of rats with hyperhomocysteinemia, the current required to elicit at least one action potential (rheobase) was lower, and more action potentials were induced in response to stimulus of 2 × rheobase. In controls, short-term application of homocysteine and its derivatives increased the frequency of action potentials of the trigeminal nerve and induced Ca2+ transients in neurons, which are associated with the activation of NMDA receptors. At the same time, in rats with hyperhomocysteinemia, we did not observe an increased response of the trigeminal nerve to NMDA. Similarly, the parameters of Ca2+ transients induced by NMDA, homocysteine, and its derivatives were not changed in rats with hyperhomocysteinemia. Acute incubation of the meninges in homocysteine and homocysteinic acid did not change the state of the mast cells, whereas in the model of hyperhomocysteinemia, an increased degranulation of mast cells in the meninges was observed. CONCLUSIONS: Our results demonstrated higher excitability of the trigeminal system of rats with hyperhomocysteinemia. Together with our previous finding about the lower threshold of generation of cortical spreading depression in rats with hyperhomocysteinemia, the present data provide evidence of homocysteine as a factor that increases the sensitivity of the peripheral migraine mechanisms, and the control of homocysteine level may be an important strategy for reducing the risk and/or severity of migraine headache attacks.


Subject(s)
Homocysteine , Hyperhomocysteinemia , Meninges , Migraine Disorders , Trigeminal Ganglion , Animals , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/physiopathology , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Male , Homocysteine/pharmacology , Rats , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Female , Disease Models, Animal , Action Potentials/physiology , Action Potentials/drug effects , Pregnancy , Rats, Wistar , Patch-Clamp Techniques , Rats, Sprague-Dawley , Neurons, Afferent/physiology , Neurons, Afferent/metabolism
11.
Cardiovasc Toxicol ; 24(5): 472-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38630336

ABSTRACT

The challenge posed by opioid overdose has become a significant concern for health systems due to the complexities associated with drug prohibition, widespread clinical use, and potential abuse. In response, healthcare professionals have primarily concentrated on mitigating the hallucinogenic and respiratory depressant consequences of opioid overdose to minimize associated risks. However, it is crucial to acknowledge that most opioids possess the capacity to prolong the QT interval, particularly in cases of overdose, thereby potentially resulting in severe ventricular arrhythmias and even sudden death if timely intervention is not implemented. Consequently, alongside addressing the typical adverse effects of opioids, it is imperative to consider their cardiotoxicity. To enhance comprehension of the correlation between opioids and arrhythmias, identify potential targets for prompt intervention, and mitigate the hazards associated with clinical utilization, an exploration of the interaction between drugs and ion channels, as well as their underlying mechanisms, becomes indispensable. This review primarily concentrates on elucidating the impact of opioid drugs on diverse ion channels, investigating recent advancements in this domain, and attaining a deeper understanding of the mechanisms underlying the prolongation of the QT interval by opioid drugs, along with potential interventions.


Subject(s)
Analgesics, Opioid , Cardiotoxicity , Long QT Syndrome , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Analgesics, Opioid/adverse effects , Animals , Risk Assessment , Risk Factors , Heart Rate/drug effects , Action Potentials/drug effects , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Ion Channels/metabolism , Ion Channels/drug effects , Opiate Overdose/physiopathology
12.
J Neurosci Methods ; 407: 110144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670535

ABSTRACT

BACKGROUND: The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics. NEW METHOD: Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation. RESULTS: Myenteric plexus cells isolated from the entire length of adult murine small intestine formed ≥3000 neurospheres within 7 days. Matrigel-embedded neurospheres exhibited abundant neural stem and progenitor cells expressing Sox2, Sox10 and Msi1 by day 4. By day 5, neural progenitor cell marker Nestin appeared in the periphery of neurospheres prior to differentiation. Neurospheres produced extensive neurons and neurites, confirmed by Tubulin beta III, PGP9.5, HuD/C, and NeuN immunofluorescence, including neural subtypes Calretinin, ChAT, and nNOS following 8 days of differentiation. Individual neurons within and external to neurospheres generated depolarization induced action potentials which were inhibited in the presence of sodium channel blocker, Tetrodotoxin. Differentiated neurospheres also contained a limited number of glia and endothelial cells. COMPARISON WITH EXISTING METHODS: This novel one-step neurosphere growth and differentiation culture system, in 3D format (in the presence of GDNF, EGF, and FGF2), allows for ∼2-fold increase in neurosphere count in the derivation of enteric neurons with measurable action potentials. CONCLUSION: Our method describes a novel, robust 3D culture of electrophysiologically active enteric neurons from adult myenteric neural stem and progenitor cells.


Subject(s)
Myenteric Plexus , Neurons , Animals , Myenteric Plexus/cytology , Myenteric Plexus/physiology , Neurons/physiology , Neurons/cytology , Neurons/drug effects , Cell Culture Techniques/methods , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neural Stem Cells/drug effects , Cell Differentiation/physiology , Cell Differentiation/drug effects , Mice , Mice, Inbred C57BL , Cells, Cultured , Action Potentials/physiology , Action Potentials/drug effects , Laminin/pharmacology , Drug Combinations , Proteoglycans/pharmacology , Male , Neurogenesis/physiology , Neurogenesis/drug effects , Collagen
13.
Biomed Pharmacother ; 174: 116513, 2024 May.
Article in English | MEDLINE | ID: mdl-38565056

ABSTRACT

Amiodarone is a benzofuran-based class III antiarrhythmic agent frequently used for the treatment of atrial and ventricular arrhythmias. The primary target of class III antiarrhythmic drugs is the cardiac human ether-a-go-go-related gene (hERG) encoded channel, KCNH2, commonly known as HERG, that conducts the rapidly activating delayed rectifier potassium current (IKr). Like other class III antiarrhythmic drugs, amiodarone exerts its physiologic effects mainly through IKr blockade, delaying the repolarization phase of the action potential and extending the effective refractory period. However, while many class III antiarrhythmics, including sotalol and dofetilide, can cause long QT syndrome (LQTS) that can progress to torsade de pointes, amiodarone displays less risk of inducing this fatal arrhythmia. This review article discusses the arrhythmogenesis in LQTS from the aspects of the development of early afterdepolarizations (EADs) associated with Ca2+ current, transmural dispersion of repolarization (TDR), as well as reverse use dependence associated with class III antiarrhythmic drugs to highlight electropharmacological effects of amiodarone on the myocardium.


Subject(s)
Amiodarone , Anti-Arrhythmia Agents , Amiodarone/pharmacology , Humans , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Animals , Action Potentials/drug effects , Ion Channels/metabolism , Ion Channels/drug effects , Myocardium/metabolism , Electrophysiological Phenomena/drug effects , Long QT Syndrome/physiopathology , Long QT Syndrome/chemically induced , Long QT Syndrome/drug therapy
14.
Neurotoxicology ; 102: 58-67, 2024 May.
Article in English | MEDLINE | ID: mdl-38599286

ABSTRACT

Exposure to pesticides, such as carbamates, organophosphates, organochlorines and pyrethroids, has been linked to various health problems, including neurotoxicity. Although most in vivo studies use only male rodents, some studies have shown in vivo sex-specific effects after acute exposure. Since in vivo studies are costly and require a large number of animals, in vitro assays that take sex-specific effects into account are urgently needed. We therefore assessed the acute effects of exposure to different carbamates (methomyl, aldicarb and carbaryl), organophosphates (chlorpyrifos (CPF), chlorpyrifos-oxon (CPO) and 3,5,6-trichloropyridinol), organochlorines (endosulfan, dieldrin and lindane) and pyrethroids (permethrin, alpha-cypermethrin and 3-phenoxy-benzoic acid (3-PBA)) on neuronal network function in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure to the carbamate carbaryl and the organophosphates CPF and CPO decreased neuronal activity, with CPO being the most potent. Notably, (network) burst patterns differed between CPF and CPO, with CPO inducing fewer, but more intense (network) bursts. Exposure to low micromolar levels of endosulfan induced a hyperexcitation, most likely due to the antagonistic effects on GABA receptors. Interestingly, females were more sensitive to endosulfan than males. Exposure to dieldrin and lindane also increased neuronal activity, albeit less than endosulfan and without sex-specific effects. Exposure to type I pyrethroid permethrin increased neuronal activity, while exposure to type II pyrethroid alpha-cypermethrin strongly decreased neuronal activity. The increase seen after permethrin exposure was more pronounced in males than in females. Together, these results show that acute exposure to different classes of pesticides exerts differential effects on neuronal activity. Moreover, it shows that MEA recordings are suited to detect sex-specific neurotoxic effects in vitro.


Subject(s)
Cerebral Cortex , Insecticides , Neurons , Animals , Insecticides/toxicity , Neurons/drug effects , Female , Male , Cerebral Cortex/drug effects , Rats , Cells, Cultured , Action Potentials/drug effects , Dose-Response Relationship, Drug , Microelectrodes , Rats, Wistar
15.
Elife ; 122024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687187

ABSTRACT

Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.


Subject(s)
Analgesics , Benzenesulfonamides , Nociceptors , Phenyl Ethers , Animals , Analgesics/pharmacology , Nociceptors/metabolism , Nociceptors/drug effects , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mice , Action Potentials/drug effects , Pain/drug therapy , Humans , Sodium Channels/metabolism , Sodium Channels/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics
16.
J Biol Chem ; 300(5): 107294, 2024 May.
Article in English | MEDLINE | ID: mdl-38636665

ABSTRACT

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Subject(s)
Action Potentials , Atrial Fibrillation , Exenatide , Kv1.5 Potassium Channel , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Animals , Exenatide/pharmacology , Atrial Fibrillation/metabolism , Atrial Fibrillation/drug therapy , Atrial Fibrillation/pathology , Atrial Fibrillation/prevention & control , Humans , Kv1.5 Potassium Channel/metabolism , Kv1.5 Potassium Channel/antagonists & inhibitors , Kv1.5 Potassium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Rats , Action Potentials/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , HEK293 Cells , Male , Rats, Sprague-Dawley
17.
Toxicon ; 242: 107693, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38519012

ABSTRACT

Aconitine is the main active component of Aconitum plants. Although aconitine has effects that include strengthening the heart, analgesia, anti-tumor, and immune-regulating effects, aconitine has both efficacy and toxicity, especially cardiotoxicity. Severe effects can include arrhythmia and cardiac arrest, which limits the clinical application of aconitine-containing traditional Chinese medicine. Ginsenoside Rb1(Rb1) is mainly found in plants, such as ginseng and Panax notoginseng, and has cardiovascular-protective and anti-arrhythmia effects. This study aimed to investigate the detoxifying effects of Rb1 on aconitine cardiotoxicity and the electrophysiological effect of Rb1 on aconitine-induced arrhythmia in rats. Pathological analysis, myocardial enzymatic indexes, and Western blotting were used to investigate the ameliorating effect of Rb1 on aconitine cardiotoxicity. Optical mapping was used to evaluate the effect of Rb1 on action potential and calcium signaling after aconitine-induced arrhythmia. Rb1 inhibited pathological damage caused by aconitine, decreased myocardial enzyme levels, and restored the balance of apoptotic protein expression by reducing the expression of Bax and cleaved caspase 3 and increasing the expression of Bcl-2, thereby reducing myocardial damage caused by aconitine. Rb1 also reduced the increase in heart rate caused by aconitine, accelerated action potential conduction and calcium signaling, and reduced the dispersion of action potential and calcium signal conduction. Rb1 reduced the cardiotoxicity of aconitine by attenuating aconitine-induced myocardial injury and inhibiting the aconitine-induced retardation of ventricular action potential and calcium signaling in rats.


Subject(s)
Aconitine , Calcium Signaling , Cardiotoxicity , Ginsenosides , Animals , Ginsenosides/pharmacology , Aconitine/analogs & derivatives , Cardiotoxicity/prevention & control , Rats , Calcium Signaling/drug effects , Male , Action Potentials/drug effects , Rats, Sprague-Dawley , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/prevention & control , Myocardium/metabolism , Myocardium/pathology
18.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38438259

ABSTRACT

Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.


Subject(s)
Electric Stimulation , Oxytocin , Paraventricular Hypothalamic Nucleus , Rats, Wistar , Receptors, Oxytocin , Synaptic Transmission , Animals , Male , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Oxytocin/metabolism , Oxytocin/analogs & derivatives , Rats , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Synaptic Transmission/physiology , Nociceptors/physiology , Nociceptors/metabolism , Nociception/physiology , Action Potentials/physiology , Action Potentials/drug effects , Meninges/physiology , Neural Inhibition/physiology
19.
Cardiovasc Res ; 120(7): 735-744, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38442735

ABSTRACT

AIMS: While variants in KCNQ1 are the commonest cause of the congenital long QT syndrome, we and others find only a small IKs in cardiomyocytes from human-induced pluripotent stem cells (iPSC-CMs) or human ventricular myocytes. METHODS AND RESULTS: We studied population control iPSC-CMs and iPSC-CMs from a patient with Jervell and Lange-Nielsen (JLN) syndrome due to compound heterozygous loss-of-function (LOF) KCNQ1 variants. We compared the effects of pharmacologic IKs block to those of genetic KCNQ1 ablation, using JLN cells, cells homozygous for the KCNQ1 LOF allele G643S, or siRNAs reducing KCNQ1 expression. We also studied the effects of two blockers of IKr, the other major cardiac repolarizing current, in the setting of pharmacologic or genetic ablation of KCNQ1: moxifloxacin, associated with a very low risk of drug-induced long QT, and dofetilide, a high-risk drug. In control cells, a small IKs was readily recorded but the pharmacologic IKs block produced no change in action potential duration at 90% repolarization (APD90). In contrast, in cells with genetic ablation of KCNQ1 (JLN), baseline APD90 was markedly prolonged compared with control cells (469 ± 20 vs. 310 ± 16 ms). JLN cells displayed increased sensitivity to acute IKr block: the concentration (µM) of moxifloxacin required to prolong APD90 100 msec was 237.4 [median, interquartile range (IQR) 100.6-391.6, n = 7] in population cells vs. 23.7 (17.3-28.7, n = 11) in JLN cells. In control cells, chronic moxifloxacin exposure (300 µM) mildly prolonged APD90 (10%) and increased IKs, while chronic exposure to dofetilide (5 nM) produced greater prolongation (67%) and no increase in IKs. However, in the siRNA-treated cells, moxifloxacin did not increase IKs and markedly prolonged APD90. CONCLUSION: Our data strongly suggest that KCNQ1 expression modulates baseline cardiac repolarization, and the response to IKr block, through mechanisms beyond simply generating IKs.


Subject(s)
Action Potentials , Induced Pluripotent Stem Cells , Jervell-Lange Nielsen Syndrome , KCNQ1 Potassium Channel , Moxifloxacin , Myocytes, Cardiac , Phenethylamines , Sulfonamides , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Action Potentials/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Moxifloxacin/pharmacology , Phenethylamines/pharmacology , Sulfonamides/pharmacology , Jervell-Lange Nielsen Syndrome/genetics , Jervell-Lange Nielsen Syndrome/metabolism , Jervell-Lange Nielsen Syndrome/physiopathology , Potassium Channel Blockers/pharmacology , Fluoroquinolones/pharmacology
20.
Am J Physiol Heart Circ Physiol ; 326(6): H1337-H1349, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38551482

ABSTRACT

Nicotine is the primary addictive component of tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. To assess the underlying mechanisms, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days before performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the first to third thoracic vertebrae, and ß-adrenergic responsiveness was additionally evaluated following norepinephrine (NE) perfusion. Baseline ex vivo heart rate (HR) and SNS stimulation threshold were higher in NIC versus CT (P = 0.004 and P = 0.003, respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC versus CT at baseline (P = 0.002) and during SNS (P = 0.0003), with similar results obtained for Ca2+ transient alternans. SNS shortened the PCL at which alternans emerged in CT but not in NIC hearts. NIC-exposed hearts tended to have slower and reduced HR responses to NE perfusion, but ventricular responses to NE were comparable between groups. Although fibrosis was unaltered, NIC hearts had lower sympathetic nerve density (P = 0.03) but no difference in NE content versus CT. These results suggest both sympathetic hypoinnervation of the myocardium and regional differences in ß-adrenergic responsiveness with NIC. This autonomic remodeling may contribute to the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with long-term use.NEW & NOTEWORTHY Here, we show that chronic nicotine exposure was associated with increased heart rate, increased susceptibility to alternans, and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to sympathetic hypoinnervation of the myocardium and diminished ß-adrenergic responsiveness of the sinoatrial node following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this proarrhythmic remodeling.


Subject(s)
Action Potentials , Heart Rate , Heart , Nicotine , Sympathetic Nervous System , Animals , Nicotine/toxicity , Nicotine/adverse effects , Rabbits , Heart Rate/drug effects , Action Potentials/drug effects , Heart/innervation , Heart/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Male , Nicotinic Agonists/toxicity , Nicotinic Agonists/administration & dosage , Calcium Signaling/drug effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/metabolism , Transdermal Patch , Isolated Heart Preparation , Administration, Cutaneous , Norepinephrine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...