Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.052
Filter
1.
PLoS One ; 19(7): e0306605, 2024.
Article in English | MEDLINE | ID: mdl-38968286

ABSTRACT

Delays in nerve transmission are an important topic in the field of neuroscience. Spike signals fired or received by the dendrites of a neuron travel from the axon to a presynaptic cell. The spike signal then triggers a chemical reaction at the synapse, wherein a presynaptic cell transfers neurotransmitters to the postsynaptic cell, regenerates electrical signals via a chemical reaction through ion channels, and transmits them to neighboring neurons. In the context of describing the complex physiological reaction process as a stochastic process, this study aimed to show that the distribution of the maximum time interval of spike signals follows extreme-order statistics. By considering the statistical variance in the time constant of the leaky Integrate-and-Fire model, a deterministic time evolution model for spike signals, we enabled randomness in the time interval of the spike signals. When the time constant follows an exponential distribution function, the time interval of the spike signal also follows an exponential distribution. In this case, our theory and simulations confirmed that the histogram of the maximum time interval follows the Gumbel distribution, one of the three forms of extreme-value statistics. We further confirmed that the histogram of the maximum time interval followed a Fréchet distribution when the time interval of the spike signal followed a Pareto distribution. These findings confirm that nerve transmission delay can be described using extreme value statistics and can therefore be used as a new indicator of transmission delay.


Subject(s)
Models, Neurological , Synaptic Transmission , Synaptic Transmission/physiology , Action Potentials/physiology , Neurons/physiology , Humans , Time Factors , Stochastic Processes , Computer Simulation
2.
Nat Commun ; 15(1): 5501, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951486

ABSTRACT

While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.


Subject(s)
Light , Mice, Inbred C57BL , Neurons , Prefrontal Cortex , Retinal Ganglion Cells , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/radiation effects , Prefrontal Cortex/cytology , Mice , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/radiation effects , Male , Neurons/physiology , Neurons/metabolism , Neurons/radiation effects , Photic Stimulation , Action Potentials/physiology
3.
Sci Rep ; 14(1): 15243, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956102

ABSTRACT

Cortical sensory processing is greatly impacted by internally generated activity. But controlling for that activity is difficult since the thalamocortical network is a high-dimensional system with rapid state changes. Therefore, to unwind the cortical computational architecture there is a need for physiological 'landmarks' that can be used as frames of reference for computational state. Here we use a waveshape transform method to identify conspicuous local field potential sharp waves (LFP-SPWs) in the somatosensory cortex (S1). LFP-SPW events triggered short-lasting but massive neuronal activation in all recorded neurons with a subset of neurons initiating their activation up to 20 ms before the LFP-SPW onset. In contrast, LFP-SPWs differentially impacted the neuronal spike responses to ensuing tactile inputs, depressing the tactile responses in some neurons and enhancing them in others. When LFP-SPWs coactivated with more distant cortical surface (ECoG)-SPWs, suggesting an involvement of these SPWs in global cortical signaling, the impact of the LFP-SPW on the neuronal tactile response could change substantially, including inverting its impact to the opposite. These cortical SPWs shared many signal fingerprint characteristics as reported for hippocampal SPWs and may be a biomarker for a particular type of state change that is possibly shared byboth hippocampus and neocortex.


Subject(s)
Neurons , Somatosensory Cortex , Animals , Somatosensory Cortex/physiology , Neurons/physiology , Touch/physiology , Action Potentials/physiology , Male , Touch Perception/physiology
4.
ASN Neuro ; 16(1): 2371160, 2024.
Article in English | MEDLINE | ID: mdl-39024573

ABSTRACT

Promising new pharmacological strategies for the enhancement of cognition target either nicotinic acetylcholine receptors (nAChR) or N-methyl-D-aspartate receptors (NMDAR). There is also an increasing interest in low-dose combination therapies co-targeting the above neurotransmitter systems to reach greater efficacy over the monotreatments and to reduce possible side effects of high-dose monotreatments. In the present study, we assessed modulatory effects of the α7 nAChR-selective agonist PHA-543613 (PHA), a novel α7 nAChR positive allosteric modulator compound (CompoundX) and the NMDAR antagonist memantine on the in vivo firing activity of CA1 pyramidal neurons in the rat hippocampus. Three different test conditions were applied: spontaneous firing activity, NMDA-evoked firing activity and ACh-evoked firing activity. Results showed that high but not low doses of memantine decreased NMDA-evoked firing activity, and low doses increased the spontaneous and ACh-evoked firing activity. Systemically applied PHA robustly potentiated ACh-evoked firing activity with having no effect on NMDA-evoked activity. In addition, CompoundX increased both NMDA- and ACh-evoked firing activity, having no effects on spontaneous firing of the neurons. A combination of low doses of memantine and PHA increased firing activity in all test conditions and similar effects were observed with memantine and CompoundX but without spontaneous firing activity increasing effects. Our present results demonstrate that α7 nAChR agents beneficially interact with Alzheimer's disease medication memantine. Moreover, positive allosteric modulators potentiate memantine effects on the right time and the right place without affecting spontaneous firing activity. All these data confirm previous behavioral evidence for the viability of combination therapies for cognitive enhancement.


Subject(s)
Hippocampus , Memantine , alpha7 Nicotinic Acetylcholine Receptor , Animals , Memantine/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Hippocampus/drug effects , Male , Rats , Neurons/drug effects , Neurons/physiology , Action Potentials/drug effects , Action Potentials/physiology , Dose-Response Relationship, Drug , Cognition/drug effects , Cognition/physiology , Excitatory Amino Acid Antagonists/pharmacology , Nootropic Agents/pharmacology , Rats, Wistar , Ligands , Nicotinic Agonists/pharmacology
5.
Neuron ; 112(14): 2263-2264, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024918

ABSTRACT

In this issue of Neuron, Spyropoulos et al.1 report direct top-down modulation of neuronal firing rates underlying selective visual attentional modulation.


Subject(s)
Attention , Neurons , Attention/physiology , Animals , Humans , Neurons/physiology , Visual Perception/physiology , Action Potentials/physiology
6.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39016432

ABSTRACT

Sound is an important navigational cue for mammals. During spatial navigation, hippocampal place cells encode spatial representations of the environment based on visual information, but to what extent audiospatial information can enable reliable place cell mapping is largely unknown. We assessed this by recording from CA1 place cells in the dark, under circumstances where reliable visual, tactile, or olfactory information was unavailable. Male rats were exposed to auditory cues of different frequencies that were delivered from local or distal spatial locations. We observed that distal, but not local cue presentation, enables and supports stable place fields, regardless of the sound frequency used. Our data suggest that a context dependency exists regarding the relevance of auditory information for place field mapping: whereas locally available auditory cues do not serve as a salient spatial basis for the anchoring of place fields, auditory cue localization supports spatial representations by place cells when available in the form of distal information. Furthermore, our results demonstrate that CA1 neurons can effectively use auditory stimuli to generate place fields, and that hippocampal pyramidal neurons are not solely dependent on visual cues for the generation of place field representations based on allocentric reference frames.


Subject(s)
Acoustic Stimulation , Cues , Place Cells , Rats, Long-Evans , Space Perception , Animals , Male , Place Cells/physiology , Space Perception/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Rats , Auditory Perception/physiology , Action Potentials/physiology , Spatial Navigation/physiology
7.
Neural Comput ; 36(8): 1449-1475, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028957

ABSTRACT

Dimension reduction on neural activity paves a way for unsupervised neural decoding by dissociating the measurement of internal neural pattern reactivation from the measurement of external variable tuning. With assumptions only on the smoothness of latent dynamics and of internal tuning curves, the Poisson gaussian-process latent variable model (P-GPLVM; Wu et al., 2017) is a powerful tool to discover the low-dimensional latent structure for high-dimensional spike trains. However, when given novel neural data, the original model lacks a method to infer their latent trajectories in the learned latent space, limiting its ability for estimating the neural reactivation. Here, we extend the P-GPLVM to enable the latent variable inference of new data constrained by previously learned smoothness and mapping information. We also describe a principled approach for the constrained latent variable inference for temporally compressed patterns of activity, such as those found in population burst events during hippocampal sharp-wave ripples, as well as metrics for assessing the validity of neural pattern reactivation and inferring the encoded experience. Applying these approaches to hippocampal ensemble recordings during active maze exploration, we replicate the result that P-GPLVM learns a latent space encoding the animal's position. We further demonstrate that this latent space can differentiate one maze context from another. By inferring the latent variables of new neural data during running, certain neural patterns are observed to reactivate, in accordance with the similarity of experiences encoded by its nearby neural trajectories in the training data manifold. Finally, reactivation of neural patterns can be estimated for neural activity during population burst events as well, allowing the identification for replay events of versatile behaviors and more general experiences. Thus, our extension of the P-GPLVM framework for unsupervised analysis of neural activity can be used to answer critical questions related to scientific discovery.


Subject(s)
Hippocampus , Models, Neurological , Neurons , Animals , Normal Distribution , Poisson Distribution , Neurons/physiology , Hippocampus/physiology , Action Potentials/physiology , Unsupervised Machine Learning , Rats
8.
Neural Comput ; 36(8): 1476-1540, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028958

ABSTRACT

Pulse-coupled spiking neural networks are a powerful tool to gain mechanistic insights into how neurons self-organize to produce coherent collective behavior. These networks use simple spiking neuron models, such as the θ-neuron or the quadratic integrate-and-fire (QIF) neuron, that replicate the essential features of real neural dynamics. Interactions between neurons are modeled with infinitely narrow pulses, or spikes, rather than the more complex dynamics of real synapses. To make these networks biologically more plausible, it has been proposed that they must also account for the finite width of the pulses, which can have a significant impact on the network dynamics. However, the derivation and interpretation of these pulses are contradictory, and the impact of the pulse shape on the network dynamics is largely unexplored. Here, I take a comprehensive approach to pulse coupling in networks of QIF and θ-neurons. I argue that narrow pulses activate voltage-dependent synaptic conductances and show how to implement them in QIF neurons such that their effect can last through the phase after the spike. Using an exact low-dimensional description for networks of globally coupled spiking neurons, I prove for instantaneous interactions that collective oscillations emerge due to an effective coupling through the mean voltage. I analyze the impact of the pulse shape by means of a family of smooth pulse functions with arbitrary finite width and symmetric or asymmetric shapes. For symmetric pulses, the resulting voltage coupling is not very effective in synchronizing neurons, but pulses that are slightly skewed to the phase after the spike readily generate collective oscillations. The results unveil a voltage-dependent spike synchronization mechanism at the heart of emergent collective behavior, which is facilitated by pulses of finite width and complementary to traditional synaptic transmission in spiking neuron networks.


Subject(s)
Action Potentials , Models, Neurological , Nerve Net , Neurons , Neurons/physiology , Action Potentials/physiology , Nerve Net/physiology , Neural Networks, Computer , Animals , Humans , Synapses/physiology , Computer Simulation
9.
Neural Comput ; 36(8): 1643-1668, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028955

ABSTRACT

Consistent observations across recording modalities, experiments, and neural systems find neural field spectra with 1/f-like scaling, eliciting many alternative theories to explain this universal phenomenon. We show that a general dynamical system with stochastic drive and minimal assumptions generates 1/f-like spectra consistent with the range of values observed in vivo without requiring a specific biological mechanism or collective critical behavior.


Subject(s)
Models, Neurological , Neurons , Neurons/physiology , Stochastic Processes , Animals , Humans , Neural Networks, Computer , Action Potentials/physiology
10.
Nat Commun ; 15(1): 6023, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019848

ABSTRACT

Neuronal responses during behavior are diverse, ranging from highly reliable 'classical' responses to irregular 'non-classically responsive' firing. While a continuum of response properties is observed across neural systems, little is known about the synaptic origins and contributions of diverse responses to network function, perception, and behavior. To capture the heterogeneous responses measured from auditory cortex of rodents performing a frequency recognition task, we use a novel task-performing spiking recurrent neural network incorporating spike-timing-dependent plasticity. Reliable and irregular units contribute differentially to task performance via output and recurrent connections, respectively. Excitatory plasticity shifts the response distribution while inhibition constrains its diversity. Together both improve task performance with full network engagement. The same local patterns of synaptic inputs predict spiking response properties of network units and auditory cortical neurons from in vivo whole-cell recordings during behavior. Thus, diverse neural responses contribute to network function and emerge from synaptic plasticity rules.


Subject(s)
Action Potentials , Auditory Cortex , Neuronal Plasticity , Neurons , Synapses , Animals , Neuronal Plasticity/physiology , Auditory Cortex/physiology , Auditory Cortex/cytology , Neurons/physiology , Action Potentials/physiology , Synapses/physiology , Rats , Nerve Net/physiology , Models, Neurological , Task Performance and Analysis
11.
PLoS Comput Biol ; 20(7): e1012261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980898

ABSTRACT

Abnormally strong neural synchronization may impair brain function, as observed in several brain disorders. We computationally study how neuronal dynamics, synaptic weights, and network structure co-emerge, in particular, during (de)synchronization processes and how they are affected by external perturbation. To investigate the impact of different types of plasticity mechanisms, we combine a network of excitatory integrate-and-fire neurons with different synaptic weight and/or structural plasticity mechanisms: (i) only spike-timing-dependent plasticity (STDP), (ii) only homeostatic structural plasticity (hSP), i.e., without weight-dependent pruning and without STDP, (iii) a combination of STDP and hSP, i.e., without weight-dependent pruning, and (iv) a combination of STDP and structural plasticity (SP) that includes hSP and weight-dependent pruning. To accommodate the diverse time scales of neuronal firing, STDP, and SP, we introduce a simple stochastic SP model, enabling detailed numerical analyses. With tools from network theory, we reveal that structural reorganization may remarkably enhance the network's level of synchrony. When weaker contacts are preferentially eliminated by weight-dependent pruning, synchrony is achieved with significantly sparser connections than in randomly structured networks in the STDP-only model. In particular, the strengthening of contacts from neurons with higher natural firing rates to those with lower rates and the weakening of contacts in the opposite direction, followed by selective removal of weak contacts, allows for strong synchrony with fewer connections. This activity-led network reorganization results in the emergence of degree-frequency, degree-degree correlations, and a mixture of degree assortativity. We compare the stimulation-induced desynchronization of synchronized states in the STDP-only model (i) with the desynchronization of models (iii) and (iv). The latter require stimuli of significantly higher intensity to achieve long-term desynchronization. These findings may inform future pre-clinical and clinical studies with invasive or non-invasive stimulus modalities aiming at inducing long-lasting relief of symptoms, e.g., in Parkinson's disease.


Subject(s)
Models, Neurological , Nerve Net , Neuronal Plasticity , Neurons , Synapses , Neuronal Plasticity/physiology , Nerve Net/physiology , Synapses/physiology , Neurons/physiology , Action Potentials/physiology , Animals , Humans , Computational Biology , Computer Simulation
12.
Elife ; 122024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028036

ABSTRACT

Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.


Subject(s)
Aging , Macaca mulatta , Memory, Short-Term , Myelin Sheath , Prefrontal Cortex , Memory, Short-Term/physiology , Animals , Myelin Sheath/physiology , Aging/physiology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/physiology , Models, Neurological , Demyelinating Diseases/physiopathology , Demyelinating Diseases/pathology , Action Potentials/physiology , Dorsolateral Prefrontal Cortex
13.
PLoS Comput Biol ; 20(7): e1012220, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950068

ABSTRACT

Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.


Subject(s)
Action Potentials , Models, Neurological , Nerve Net , Neuronal Plasticity , Neurons , Synapses , Neuronal Plasticity/physiology , Nerve Net/physiology , Action Potentials/physiology , Neurons/physiology , Synapses/physiology , Animals , Cerebral Cortex/physiology , Computational Biology , Humans , Computer Simulation
14.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959041

ABSTRACT

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Subject(s)
Action Potentials , Polystyrenes , Synapses , Action Potentials/physiology , Synapses/physiology , Polystyrenes/chemistry , Nanotechnology/methods , Nanotechnology/instrumentation
15.
PLoS Comput Biol ; 20(7): e1012257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959262

ABSTRACT

Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.


Subject(s)
Computational Biology , Electromyography , Movement , Muscle, Skeletal , Electromyography/methods , Humans , Movement/physiology , Muscle, Skeletal/physiology , Neural Networks, Computer , Biomechanical Phenomena/physiology , Computer Simulation , Action Potentials/physiology , Models, Neurological
18.
Elife ; 122024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985568

ABSTRACT

Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.


Subject(s)
Neurons , Animals , Neurons/physiology , Mice , Electrophysiology/methods , Electrophysiological Phenomena , Action Potentials/physiology , Cell Tracking/methods
19.
Nat Commun ; 15(1): 5861, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997274

ABSTRACT

Electrical stimulation is a key tool in neuroscience, both in brain mapping studies and in many therapeutic applications such as cochlear, vestibular, and retinal neural implants. Due to safety considerations, stimulation is restricted to short biphasic pulses. Despite decades of research and development, neural implants lead to varying restoration of function in patients. In this study, we use computational modeling to provide an explanation for how pulsatile stimulation affects axonal channels and therefore leads to variability in restoration of neural responses. The phenomenological explanation is transformed into equations that predict induced firing rate as a function of pulse rate, pulse amplitude, and spontaneous firing rate. We show that these equations predict simulated responses to pulsatile stimulation with a variety of parameters as well as several features of experimentally recorded primate vestibular afferent responses to pulsatile stimulation. We then discuss the implications of these effects for improving clinical stimulation paradigms and electrical stimulation-based experiments.


Subject(s)
Electric Stimulation , Animals , Electric Stimulation/methods , Models, Neurological , Macaca mulatta , Action Potentials/physiology , Neurons/physiology , Computer Simulation , Humans , Vestibule, Labyrinth/physiology
20.
Elife ; 122024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037765

ABSTRACT

Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between 'bimodal cells' showing interleaved phase precession and procession, and 'unimodal cells' in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells' firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.


Subject(s)
Action Potentials , Place Cells , Theta Rhythm , Animals , Theta Rhythm/physiology , Place Cells/physiology , Action Potentials/physiology , Models, Neurological , Hippocampus/physiology , Hippocampus/cytology , Adaptation, Physiological , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...