Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.853
Filter
1.
Function (Oxf) ; 5(3): zqae012, 2024.
Article in English | MEDLINE | ID: mdl-38706963

ABSTRACT

Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.


Subject(s)
Acute Kidney Injury , Extracellular Vesicles , Acute Kidney Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Humans , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Animals , Cell Culture Techniques/methods , MicroRNAs/metabolism , MicroRNAs/genetics
2.
Physiol Res ; 73(2): 227-237, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710058

ABSTRACT

Nephrotoxicity as a cause of acute kidney injury (AKI) induced by cisplatin (CP), limits its usefulness as an anticancer agent. Diminazene, an angiotensin converting enzyme 2 activator, exhibited renoprotective properties on rat models of kidney diseases. This research aims to investigate the salutary effect of diminazene in comparison with lisinopril or valsartan in CP-induced AKI. The first and second groups of rats received oral vehicle (distilled water) for 9 days, and saline injection or intraperitoneal CP (6 mg/kg) on day 6, respectively. Third, fourth, and fifth groups received intraperitoneal injections of CP on day 6 and diminazene (15 mg/kg/day, orally), lisinopril (10 mg/kg/day, orally), or valsartan (30 mg/kg/day, orally), for 9 days, respectively. 24h after the last day of treatment, blood and kidneys were removed under anesthesia for biochemical and histopathological examination. Urine during the last 24 h before sacrificing the rats was also collected. CP significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin, calcium, phosphorus, and uric acid. It also increased urinary albumin/creatinine ratio, N-Acetyl-beta-D-Glucosaminidase/creatinine ratio, and reduced creatinine clearance, as well the plasma concentrations of inflammatory cytokines [plasma tumor necrosis factor-alpha, and interleukin-1beta], and significantly reduced antioxidant indices [catalase, glutathione reductase , and superoxide dismutase]. Histopathologically, CP treatment caused necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. Diminazine, lisinopril, and valsartan ameliorated CP-induced biochemical and histopathological changes to a similar extent. The salutary effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Keywords: Cisplatin, Diminazene, ACE2 activator, Lisinopril, Valsartan, Acute kidney injury.


Subject(s)
Acute Kidney Injury , Cisplatin , Diminazene , Lisinopril , Rats, Wistar , Valsartan , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Lisinopril/pharmacology , Cisplatin/toxicity , Valsartan/pharmacology , Male , Diminazene/analogs & derivatives , Diminazene/pharmacology , Diminazene/therapeutic use , Rats , Antineoplastic Agents/toxicity , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
3.
Mol Biol Rep ; 51(1): 679, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796668

ABSTRACT

BACKGROUND: Renal ischemia-reperfusion injury (IRI) is one of the causes of acute kidney injury. Annexin A5 (AnxA5), a calcium-dependent cell membrane-binding protein, shows protective effects in various organ IRI models. This study explored the therapeutic effect of exogenous AnxA5 monomer protein on renal IRI and its potential mechanism of action. METHODS AND RESULTS: Different doses of AnxA5 were injected intravenously to treat bilateral renal IRI in SD rats. This model confirmed the protective effects of AnxA5 on kidney structure and function. In vitro, HK-2 cells were subjected to hypoxia for 12 h, followed by restoration of normal oxygen supply to simulate IRI. In vitro experiments demonstrated the mechanism of action of AnxA5 by measuring cellular activity and permeability. A comparison of the mutant AnxA5 protein M23 and the application of a calcium-free culture medium further validated the protective effect of AnxA5 by forming a network structure. CONCLUSIONS: Exogenous AnxA5 monomers prevented renal IRI by binding to the damaged renal tubular epithelial cell membrane, forming a two-dimensional network structure to maintain cell membrane integrity, and ultimately prevent cell death.


Subject(s)
Annexin A5 , Kidney , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Rats , Annexin A5/metabolism , Annexin A5/pharmacology , Humans , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Male , Cell Membrane/metabolism , Cell Membrane/drug effects , Cell Line , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Disease Models, Animal
4.
Bull Exp Biol Med ; 176(5): 567-571, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724809

ABSTRACT

The expression of marker proteins of acute kidney injury after administration of high doses of lithium carbonate was assessed to evaluate the possibility of lithium use in neutron capture therapy. In mice with implanted skin melanoma B16, the expression of Kim1 (kidney injury molecule 1) and NGAL (neutrophil gelatinase-associated lipocalin) proteins in the kidneys was evaluated immunohistochemically 15, 30, 90, 180 min, and 7 days after peroral administration of lithium carbonate at single doses of 300 and 400 mg/kg. An increase in the expression of the studied proteins was found in 30 and 90 min after administration of 400 mg/kg lithium carbonate, however, 7 days after the drug administration, the expression returned to the level observed in the control group. It can be suggested that single administration of lithium carbonate in the studied doses effective for lithium neutron capture therapy will not significantly affect the renal function.


Subject(s)
Acute Kidney Injury , Hepatitis A Virus Cellular Receptor 1 , Lipocalin-2 , Lithium Carbonate , Animals , Lipocalin-2/metabolism , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Lithium Carbonate/administration & dosage , Hepatitis A Virus Cellular Receptor 1/metabolism , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/drug therapy , Biomarkers/metabolism , Biomarkers/blood
5.
PLoS One ; 19(5): e0303740, 2024.
Article in English | MEDLINE | ID: mdl-38748639

ABSTRACT

Acute kidney injury (AKI) is a sudden loss of renal function with a high mortality rate and inflammation is thought to be the underlying cause. The phenylpropanoid components acteoside (ACT) and isoacteoside (ISO), which were isolated from Cistanche deserticola Y.C.Ma, have been reported to have preventive effects against kidney disorders. This study aimed to investigate the anti-inflammatory properties and protective mechanisms of ACT and ISO. In this investigation, kidney function was assessed using a semi-automatic biochemical analyzer, histopathology was examined using Hematoxylin-Eosin staining and immunohistochemistry, and the concentration of inflammatory cytokines was assessed using an enzyme-linked immunosorbent assay (ELISA) test. In addition, using Western blot and q-PCR, the expression of proteins and genes connected to the NF-κB signaling pathway in mice with lipopolysaccharide (LPS)-induced AKI was found. The findings showed that under AKI intervention in LPS group, ACT group and ISO group, the expression of Rela (Rela gene is responsible for the expression of NFκB p65 protein) and Tlr4 mRNA was considerably elevated (P<0.01), which led to a significant improvement in the expression of MyD88, TLR4, Iκ-Bɑ and NF-κB p65 protein (P<0.001). The levels of Alb, Crea and BUN (P<0.001) increased along with the release of downstream inflammatory factors such as IL-1ß, IL-6, Cys-C, SOD1 and TNF-α (P<0.001). More importantly, the study showed that ISO had a more favorable impact on LPS-induced AKI mice than ACT. In conclusion, by inhibiting NF-κB signaling pathway, ACT and ISO could relieve renal failure and inflammation in AKI, offering a fresh possibility for the therapeutic management of the condition.


Subject(s)
Acute Kidney Injury , Glucosides , Inflammation , Lipopolysaccharides , NF-kappa B , Phenols , Signal Transduction , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Signal Transduction/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Mice , NF-kappa B/metabolism , Male , Phenols/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Transcription Factor RelA/metabolism
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731829

ABSTRACT

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Subject(s)
Acute Kidney Injury , Cell Cycle Proteins , Kidney Tubules, Proximal , Mice, Knockout , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Male , Cell Proliferation , Signal Transduction , Hippo Signaling Pathway , Mice, Inbred C57BL , Disease Models, Animal
7.
Ren Fail ; 46(1): 2354918, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38757723

ABSTRACT

Cisplatin is a particularly potent antineoplastic drug. However, its usefulness is restricted due to the induction of nephrotoxicity. More recent research has indicated that ß-hydroxybutyrate (ß-HB) protects against acute or chronic organ damage as an efficient healing agent. Nonetheless, the therapeutic mechanisms of ß-HB in acute kidney damage caused by chemotherapeutic drugs remain unclear. Our study developed a model of cisplatin-induced acute kidney injury (AKI), which involved the administration of a ketogenic diet or ß-HB. We analyzed blood urea nitrogen (BUN) and creatinine (Cr) levels in serum, and used western blotting and immunohistochemical staining to assess ferroptosis and the calcium/calmodulin-dependent kinase kinase 2 (Camkk2)/AMPK pathway. The mitochondrial morphology and function were examined. Additionally, we conducted in vivo and in vitro experiments using selective Camkk2 inhibitor or activator to investigate the protective mechanism of ß-HB on cisplatin-induced AKI. Exogenous or endogenous ß-HB effectively alleviated cisplatin-induced abnormally elevated levels of BUN and Cr and renal tubular necrosis in vivo. Additionally, ß-HB reduced ferroptosis biomarkers and increased the levels of anti-ferroptosis biomarkers in the kidney. ß-HB also improved mitochondrial morphology and function. Moreover, ß-HB significantly attenuated cisplatin-induced cell ferroptosis and damage in vitro. Furthermore, western blotting and immunohistochemical staining indicated that ß-HB may prevent kidney injury by regulating the Camkk2-AMPK pathway. The use of the Camkk2 inhibitor or activator verified the involvement of Camkk2 in the renal protection by ß-HB. This study provided evidence of the protective effects of ß-HB against cisplatin-induced nephrotoxicity and identified inhibited ferroptosis and Camkk2 as potential molecular mechanisms.


ß-HB protects against cisplatin-induced renal damage both in vivo and in vitro.Moreover, ß-HB is effective in attenuating cisplatin-induced lipid peroxidation and ferroptosis.The regulation of energy metabolism, as well as the treatment involving ß-HB, is associated with Camkk2.


Subject(s)
3-Hydroxybutyric Acid , Acute Kidney Injury , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Cisplatin , Ferroptosis , Cisplatin/adverse effects , Cisplatin/toxicity , Animals , Ferroptosis/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Male , Mice , 3-Hydroxybutyric Acid/pharmacology , Disease Models, Animal , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Antineoplastic Agents/toxicity , Antineoplastic Agents/adverse effects , Mice, Inbred C57BL , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Blood Urea Nitrogen , Mitochondria/drug effects , Mitochondria/metabolism , Creatinine/blood , Humans
8.
Toxicol Appl Pharmacol ; 486: 116952, 2024 May.
Article in English | MEDLINE | ID: mdl-38705399

ABSTRACT

The incidence of contrast-induced acute kidney injury (CI-AKI) has escalated to become the third most prevalent cause of hospital-acquired AKI, with a lack of efficacious interventions. Berberine (BBR) possesses diverse pharmacological effects and exhibits renoprotective properties; however, limited knowledge exists regarding its impact on CI-AKI. Therefore, our study aimed to investigate the protective effects and underlying mechanisms of BBR on CI-AKI in a mice model, focusing on the nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3) inflammasome and mitophagy. The CI-AKI mice model was established by administering NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg), indomethacin (10 mg/kg), and iohexol (11 g/kg) following water deprivation. A pretreatment of 100 mg/kg of BBR was orally administered to the mice for two weeks. Renal injury markers, damage-associated molecular patterns (DAMPs), renal histopathology, mitochondrial morphology, autophagosomes, and potential mechanisms were investigated. BBR effectively reduced levels of renal injury biomarkers such as serum cystatin C, urea nitrogen, and creatinine, downregulated the protein level of kidney injury molecule 1 (KIM1), and mitigated renal histomorphological damage. Moreover, BBR reduced DAMPs, including high mobility group box-1 (HMGB1), heat shock protein 70 (HSP70), and uric acid (UA). It also alleviated oxidative stress and inflammatory factors such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). Furthermore, the activation of NLRP3 inflammasome was attenuated in the BBR pretreatment group, as evidenced by both mRNA and protein levels. Electron microscopy and western blotting examination revealed that BBR mitigated mitochondrial damage and enhanced mitophagy. Additionally, BBR increased the P-AMPK/AMPK ratio. These findings indicated that BBR exerted a protective effect against CI-AKI by suppressing NLRP3 inflammasome activation and modulating mitophagy, providing a potential therapeutic strategy for its prevention.


Subject(s)
Acute Kidney Injury , Berberine , Contrast Media , Disease Models, Animal , Inflammasomes , Mice, Inbred C57BL , Mitophagy , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Berberine/pharmacology , Male , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
9.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710691

ABSTRACT

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Subject(s)
Glycogen Synthase Kinase 3 beta , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Rats , S100 Proteins/metabolism , S100 Proteins/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Signal Transduction , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Apoptosis , Cell Line , Cell Hypoxia , Mice, Knockout
10.
Nat Commun ; 15(1): 4383, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782909

ABSTRACT

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Subject(s)
Acute Kidney Injury , Autophagy , Cisplatin , Macrophages , MicroRNAs , Mitochondria , Sirtuin 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cisplatin/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Autophagy/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Exosomes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Trehalose/pharmacology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Humans , Kidney/pathology , Kidney/metabolism , Disease Models, Animal
12.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791106

ABSTRACT

Acute kidney injury (AKI) is common following liver transplantation and is associated with liver ischeamia reperfusion (IR) injury. The purpose of this study was to use a mouse model of liver IR injury and AKI to study the role of Neutrophil Gelatinase Associated Lipocalin (NGAL), a biomarker of AKI, in liver IR injury and AKI. We demonstrate an adapted, reproducible model of liver IR injury and AKI in which remote ischemic preconditioning (RIPC) by repeated episodes of hindleg ischemia prior to liver IR reduced the severity of the IR injury. In this model, serum NGAL at 2 h post reperfusion correlated with AKI development early following IR injury. This early rise in serum NGAL was associated with hepatic but not renal upregulation of NGAL mRNA, suggesting NGAL production in the liver but not the kidney in the early phase post liver IR injury.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Ischemic Preconditioning , Lipocalin-2 , Liver , Reperfusion Injury , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Lipocalin-2/metabolism , Lipocalin-2/blood , Reperfusion Injury/metabolism , Ischemic Preconditioning/methods , Mice , Liver/metabolism , Liver/pathology , Male , Kidney/metabolism , Biomarkers , Mice, Inbred C57BL
13.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739452

ABSTRACT

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Subject(s)
Acute Kidney Injury , Intercellular Adhesion Molecule-1 , Kidney , MicroRNAs , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Kidney/pathology , Kidney/blood supply , Kidney/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Nitric Oxide Synthase Type III/metabolism , Rats , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism
14.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802835

ABSTRACT

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Subject(s)
Acute Kidney Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Tretinoin , Acute Kidney Injury/therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Tretinoin/pharmacology , Tretinoin/therapeutic use , Humans , Mice , Male , Mice, Inbred C57BL , Hyaluronic Acid/pharmacology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Reperfusion Injury/therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Disease Models, Animal , Apoptosis/drug effects
15.
Ren Fail ; 46(1): 2358187, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38803234

ABSTRACT

BACKGROUND AND OBJECTIVES: Acute kidney injury (AKI) is one of the most common and severe clinical syndromes of diffuse proliferative lupus nephritis (DPLN), of which poor prognosis is indicated by aggravated renal function deterioration. However, the specific therapy and mechanisms of AKI in DPLN remain to be explored. METHODS: The correlation between AKI and clinical pathological changes in DPLN patients was analyzed. Expression of STAT3 signaling was detected in MRL/lpr mice with DPLN using immunohistochemical staining and immunoblotting. Inhibition of STAT3 activation by combination therapy was assessed in MRL/lpr mice. RESULTS: Correlation analysis revealed only the interstitial leukocytes were significantly related to AKI in endocapillary DPLN patients. MRL/lpr mice treated with vehicle, which can recapitulate renal damages of DPLN patients, showed upregulation of STAT3, pSTAT3 and caspase-1 in renal cortex. FLLL32 combined with methylprednisolone therapy significantly inhibited the STAT3 activation, improved acute kidney damage, reduced the interstitial infiltration of inflammatory cells and decreased the AKI incidence in MRL/lpr mice. CONCLUSION: STAT3 activation may play an important role in the pathogenesis of DPLN and the development of AKI. Hence, STAT3 inhibition based on the combination of FLLL32 with methylprednisolone may represent a new strategy for treatment of DPLN with AKI.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Lupus Nephritis , Mice, Inbred MRL lpr , STAT3 Transcription Factor , Animals , Lupus Nephritis/drug therapy , Lupus Nephritis/pathology , Lupus Nephritis/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Mice , Female , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Humans , Methylprednisolone/therapeutic use , Kidney/pathology , Kidney/drug effects , Signal Transduction/drug effects , Adult , Male
16.
Mol Biol Rep ; 51(1): 608, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704766

ABSTRACT

BACKGROUND: Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS: Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-ß1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION: Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.


Subject(s)
Connective Tissue Growth Factor , Hypoxia-Inducible Factor 1, alpha Subunit , Kidney , Linagliptin , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Tacrolimus , Animals , Tacrolimus/pharmacology , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NF-E2-Related Factor 2/metabolism , Connective Tissue Growth Factor/metabolism , Linagliptin/pharmacology , Oxidative Stress/drug effects , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Plasminogen Activator Inhibitor 1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Signal Transduction/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Immunosuppressive Agents/pharmacology
17.
Article in English | MEDLINE | ID: mdl-38780272

ABSTRACT

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Subject(s)
Epithelial Cells , Fatty Acid-Binding Proteins , Ferroptosis , Janus Kinase 2 , Kidney Tubules , Lipopolysaccharides , STAT3 Transcription Factor , Signal Transduction , Humans , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Janus Kinase 2/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Signal Transduction/drug effects , Cell Line , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/chemically induced
18.
Front Immunol ; 15: 1385696, 2024.
Article in English | MEDLINE | ID: mdl-38770013

ABSTRACT

Background: Recent studies have demonstrated a strong association between acute kidney injury (AKI) and chronic kidney disease (CKD), while the unresolved inflammation is believed to be a driving force for this chronic transition process. As a transmembrane pattern recognition receptor, Mincle (macrophage-inducible C-type lectin, Clec4e) was identified to participate in the early immune response after AKI. However, the impact of Mincle on the chronic transition of AKI remains largely unclear. Methods: We performed single-cell RNA sequencing (scRNA-seq) with the unilateral ischemia-reperfusion (UIR) murine model of AKI at days 1, 3, 14 and 28 after injury. Potential effects and mechanism of Mincle on renal inflammation and fibrosis were further validated in vivo utilizing Mincle knockout mice. Results: The dynamic expression of Mincle in macrophages and neutrophils throughout the transition from AKI to CKD was observed. For both cell types, Mincle expression was significantly up-regulated on day 1 following AKI, with a second rise observed on day 14. Notably, we identified distinct subclusters of Minclehigh neutrophils and Minclehigh macrophages that exhibited time-dependent influx with dual peaks characterized with remarkable pro-inflammatory and pro-fibrotic functions. Moreover, we identified that Minclehigh neutrophils represented an "aged" mature neutrophil subset derived from the "fresh" mature neutrophil cluster in kidney. Additionally, we observed a synergistic mechanism whereby Mincle-expressing macrophages and neutrophils sustained renal inflammation by tumor necrosis factor (TNF) production. Mincle-deficient mice exhibited reduced renal injury and fibrosis following AKI. Conclusion: The present findings have unveiled combined persistence of Minclehigh neutrophils and macrophages during AKI-to-CKD transition, contributing to unresolved inflammation followed by fibrosis via TNF-α as a central pro-inflammatory cytokine. Targeting Mincle may offer a novel therapeutic strategy for preventing the transition from AKI to CKD.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Lectins, C-Type , Macrophages , Membrane Proteins , Mice, Knockout , Neutrophils , Renal Insufficiency, Chronic , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Acute Kidney Injury/etiology , Acute Kidney Injury/immunology , Acute Kidney Injury/metabolism , Macrophages/immunology , Macrophages/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Mice , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Inflammation/immunology , Mice, Inbred C57BL , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Fibrosis , Disease Progression
19.
Int Immunopharmacol ; 133: 112001, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608443

ABSTRACT

Acute kidney injury (AKI) is a critical complication known for their extremely high mortality rate and lack of effective clinical therapy. Disorders in mitochondrial dynamics possess a pivotal role in the occurrence and progression of contrast-induced nephropathy (CIN) by activating NLRP3 inflammasome. The activation of dynamin-related protein-1 (Drp1) can trigger mitochondrial dynamic disorders by regulating excessive mitochondrial fission. However, the precise role of Drp1 during CIN has not been clarified. In vivo experiments revealed that inhibiting Drp1 through Mdivi-1 (one selective inhibitor of Drp1) can significantly decrease the expression of p-Drp1 (Ser616), mitochondrial p-Drp1 (Ser616), mitochondrial Bax, mitochondrial reactive oxygen species (mROS), NLRP3, caspase-1, ASC, TNF-α, IL-1ß, interleukin (IL)-18, IL-6, creatinine (Cr), malondialdehyde (MDA), blood urea nitrogen (BUN), and KIM-1. Moreover, Mdivi-1 reduced kidney pathological injury and downregulated the interaction between NLRP3 and thioredoxin-interacting protein (TXNIP), which was accompanied by decreased interactions between TRX and TXNIP. This resulted in increasing superoxide dismutase (SOD) and CAT activity, TRX expression, up-regulating mitochondrial membrane potential, and augmenting ATP contents and p-Drp1 (Ser616) levels in the cytoplasm. However, it did not bring impact on the expression of p-Drp1 (Ser637) and TXNIP. Activating Drp-1though Acetaldehyde abrogated the effects of Mdivi-1. In addition, the results of in vitro studies employing siRNA-Drp1 and plasmid-Drp1 intervention in HK-2 cells treated with iohexol were consistent with the in vivo experiments. Our findings revealed inhibiting Drp1 phosphorylation at Ser616 could ameliorate iohexol -induced acute kidney injury though alleviating the activation of the TXNIP-NLRP3 inflammasome pathway.


Subject(s)
Acute Kidney Injury , Carrier Proteins , Contrast Media , Dynamins , Inflammasomes , Mitochondrial Dynamics , NLR Family, Pyrin Domain-Containing 3 Protein , Quinazolinones , Reactive Oxygen Species , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Dynamins/metabolism , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Mitochondrial Dynamics/drug effects , Inflammasomes/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Male , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , Mice , Contrast Media/adverse effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Humans , Signal Transduction/drug effects , Thioredoxins/metabolism , Thioredoxins/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cell Line
20.
Eur J Pharmacol ; 974: 176617, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38679120

ABSTRACT

Acute kidney injury and other renal disorders are thought to be primarily caused by renal ischemia-reperfusion (RIR). Cyclic adenosine monophosphate (cAMP) has plenty of physiological pleiotropic effects and preserves tissue integrity and functions. This research aimed to examine the potential protective effects of the ß3-adrenergic receptors agonist mirabegron in a rat model of RIR and its underlying mechanisms. Male rats enrolled in this work were given an oral dose of 30 mg/kg mirabegron for two days before surgical induction of RIR. Renal levels of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), Interleukin-10 (IL-10), cAMP, cAMP-responsive element binding protein (pCREB), and glycogen synthase kinase-3 beta (GSK-3ß) were assessed along with blood urea nitrogen and serum creatinine. Additionally, caspase-3 and nuclear factor-kappa B (NF-κB) p65 were explored by immunohistochemical analysis. Renal specimens were inspected for histopathological changes. RIR led to renal tissue damage with elevated blood urea nitrogen and serum creatinine levels. The renal KIM-1, MCP-1, TNF-α, and GSK-3ß were significantly increased, while IL-10, cAMP, and pCREB levels were reduced. Moreover, upregulation of caspase-3 and NF-κB p65 protein expression was seen in RIR rats. Mirabegron significantly reduced kidney dysfunction, histological abnormalities, inflammation, and apoptosis in the rat renal tissues. Mechanistically, mirabegron mediated these effects via modulation of cAMP/pCREB and GSK-3ß/NF-κB p65 signaling pathways. Mirabegron administration could protect renal tissue and maintain renal function against RIR.


Subject(s)
Acetanilides , Cyclic AMP Response Element-Binding Protein , Cyclic AMP , Glycogen Synthase Kinase 3 beta , Kidney , Reperfusion Injury , Signal Transduction , Thiazoles , Transcription Factor RelA , Animals , Male , Thiazoles/pharmacology , Thiazoles/therapeutic use , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Rats , Glycogen Synthase Kinase 3 beta/metabolism , Cyclic AMP/metabolism , Acetanilides/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Rats, Sprague-Dawley , Adrenergic beta-3 Receptor Agonists/pharmacology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...