Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.160
Filter
1.
PLoS One ; 19(5): e0303282, 2024.
Article in English | MEDLINE | ID: mdl-38758742

ABSTRACT

BACKGROUND: Severe acute lung failure (ALF) often necessitates veno-venous extracorporeal membrane oxygenation (VV-ECMO), where identifying predictors of weaning success and mortality remains crucial yet challenging. The study aims to identify predictors of weaning success and mortality in adults undergoing VV-ECMO for severe ALF, a gap in current clinical knowledge. METHODS AND ANALYSIS: PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials will be searched for cohort studies examining the predictive factors of successful weaning and mortality in adult patients on VV-ECMO due to severe ALF. Risk of bias assessment will be conducted using the Newcastle-Ottawa scale for each included study. The primary outcomes will be successful weaning from VV-ECMO and all-cause mortality. Between-study heterogeneity will be evaluated using the I2 statistic. Sensitivity, subgroup, and meta-regression analyses will be performed to ascertain potential sources of heterogeneity and assess the robustness of our results. We will use the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) tool to recommend the level of evidence. DISCUSSION: This study seeks to provide clinically significant insights into predictors for weaning and mortality during VV-ECMO treatment for ALF, aiming to support clinical decisions and potentially influence health policy, thereby improving patient outcomes. ETHICS AND DISSEMINATION: Given the absence of direct engagement with human subjects or access to personal medical records, ethical approval for this study is deemed unnecessary. The study findings will be shared at a scientific conference either at the global or national level. Alternatively, the results will be presented for publication in a rigorously peer-reviewed journal regarding critical care medicine.


Subject(s)
Acute Lung Injury , Extracorporeal Membrane Oxygenation , Humans , Extracorporeal Membrane Oxygenation/methods , Adult , Acute Lung Injury/therapy , Acute Lung Injury/mortality , Cohort Studies
2.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727303

ABSTRACT

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Subject(s)
Acute Lung Injury , Cholesterol , Interleukin-6 , RNA, Small Interfering , Animals , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Acute Lung Injury/therapy , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cholesterol/metabolism , Mice , Lipopolysaccharides , Male , Disease Models, Animal , Mice, Inbred C57BL , Cell Line , Lung/pathology , Lung/metabolism
3.
Cell Commun Signal ; 22(1): 293, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802896

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS: EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS: Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS: This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.


Subject(s)
Endothelial Cells , Extracellular Vesicles , Isocitrate Dehydrogenase , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/metabolism , Endothelial Cells/metabolism , Humans , Mice , Mesenchymal Stem Cell Transplantation/methods , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice, Inbred C57BL , Male , Lipopolysaccharides/pharmacology , Signal Transduction , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Cell Movement
4.
Biochem Biophys Res Commun ; 714: 149973, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657444

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse inflammatory lung injury with a high mortality rate. Mesenchymal stromal cells (MSC) are pluripotent adult cells that can be extracted from a variety of tissues, including the lung. Lung-resident MSC (LR-MSC) located around vascular vessels and act as important regulators of lung homeostasis, regulating the balance between lung injury and repair processes. LR-MSC support the integrity of lung tissue by modulating immune responses and releasing trophic factors. Studies have reported that the STING pathway is involved in the progression of lung injury inflammation, but the specific mechanism is unclear. In this study, we found that STING deficiency could ameliorate lipopolysaccharides (LPS)-induced acute lung injury, STING knockout (STING KO) LR-MSC had an enhanced treatment effect on acute lung injury. STING depletion protected LR-MSC from LPS-induced apoptosis. RNA-sequencing and Western blot results showed that STING KO LR-MSC expressed higher levels of MSC immunoregulatory molecules, such as Igfbp4, Icam1, Hgf and Cox2, than WT LR-MSC. This study highlights that LR-MSC have a therapeutic role in acute lung injury, and we demonstrate that STING deficiency can enhance the immunomodulatory function of LR-MSC in controlling lung inflammation. Thus, STING can be used as an intervention target to enhance the therapeutic effect of MSC.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Lung , Membrane Proteins , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Lipopolysaccharides/toxicity , Mesenchymal Stem Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/deficiency , Lung/pathology , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Mice , Mice, Knockout , Apoptosis , Male
5.
BMC Pulm Med ; 24(1): 197, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649913

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) has emerged as a promising noninvasive method for delivering oxygen to critically ill patients, particularly those with sepsis and acute lung injury. However, uncertainties persist regarding its therapeutic benefits in this specific patient population. METHODS: This retrospective study utilized a propensity score-matched cohort from the Medical Information Mart in Intensive Care-IV (MIMIC-IV) database to explore the correlation between HFNC utilization and mortality in patients with sepsis-induced acute lung injury. The primary outcome was 28-day all-cause mortality. RESULTS: In the propensity score-matched cohort, the 28-day all-cause mortality rate was 18.63% (95 out of 510) in the HFNC use group, compared to 31.18% (159 out of 510) in the non-HFNC group. The use of HFNC was associated with a lower 28-day all-cause mortality rate (hazard ratio [HR] = 0.53; 95% confidence interval [CI] = 0.41-0.69; P < 0.001). HFNC use was also associated with lower ICU mortality (odds ratio [OR] = 0.52; 95% CI = 0.38-0.71; P < 0.001) and lower in-hospital mortality (OR = 0.51; 95% CI = 0.38-0.68; P < 0.001). Additionally, HFNC use was found to be associated with a statistically significant increase in both the ICU and overall hospitalization length. CONCLUSIONS: These findings indicate that HFNC may be beneficial for reducing mortality rates among sepsis-induced acute lung injury patients; however, it is also associated with longer hospital stays.


Subject(s)
Acute Lung Injury , Cannula , Hospital Mortality , Intensive Care Units , Oxygen Inhalation Therapy , Propensity Score , Sepsis , Humans , Retrospective Studies , Male , Sepsis/mortality , Sepsis/therapy , Sepsis/complications , Female , Middle Aged , Aged , Acute Lung Injury/mortality , Acute Lung Injury/therapy , Acute Lung Injury/etiology , Oxygen Inhalation Therapy/methods , Critical Illness/mortality
6.
Stem Cell Res Ther ; 15(1): 95, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566259

ABSTRACT

BACKGROUND: Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS: haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS: The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION: haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , Rats , Animals , Chromatography, Liquid , Proteomics , Lipopolysaccharides/pharmacology , Tandem Mass Spectrometry , Acute Lung Injury/therapy , Respiratory Distress Syndrome/therapy , Obesity , Quality Control , Extracellular Vesicles/physiology , Mesenchymal Stem Cells/physiology
7.
BMC Pulm Med ; 24(1): 128, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481171

ABSTRACT

BACKGROUND: With the increasing research on extracellular vesicles (EVs), EVs have received widespread attention as biodiagnostic markers and therapeutic agents for a variety of diseases. Stem cell-derived EVs have also been recognized as a new viable therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). To assess their efficacy, we conducted a meta-analysis of existing preclinical experimental animal models of EVs for ALI treatment. METHODS: The database was systematically interrogated for pertinent data encompassing the period from January 2010 to April 2022 concerning interventions involving extracellular vesicles (EVs) in animal models of acute lung injury (ALI). The lung injury score was selected as the primary outcome measure for statistical analysis. Meta-analyses were executed utilizing RevMan 5.3 and State15.1 software tools. RESULTS: The meta-analyses comprised 31 studies, exclusively involving animal models of acute lung injury (ALI), categorized into two cohorts based on the presence or absence of extracellular vesicle (EV) intervention. The statistical outcomes from these two study groups revealed a significant reduction in lung injury scores with the administration of stem and progenitor cell-derived EVs (SMD = -3.63, 95% CI [-4.97, -2.30], P < 0.05). Conversely, non-stem cell-derived EVs were associated with an elevation in lung injury scores (SMD = -4.34, 95% CI [3.04, 5.63], P < 0.05). EVs originating from stem and progenitor cells demonstrated mitigating effects on alveolar neutrophil infiltration, white blood cell counts, total cell counts in bronchoalveolar lavage fluid (BALF), lung wet-to-dry weight ratios (W/D), and total protein in BALF. Furthermore, pro-inflammatory mediators exhibited down-regulation, while anti-inflammatory mediators demonstrated up-regulation. Conversely, non-stem cell-derived EVs exacerbated lung injury. CONCLUSION: In preclinical animal models of acute lung injury (ALI), the administration of extracellular vesicles (EVs) originating from stem and progenitor cells demonstrably enhances pulmonary function. This ameliorative effect is attributed to the mitigation of pulmonary vascular permeability and the modulation of immune homeostasis, collectively impeding the progression of inflammation. In stark contrast, the utilization of EVs derived from non-stem progenitor cells exacerbates the extent of lung injury. These findings substantiate the potential utility of EVs as a novel therapeutic avenue for addressing acute lung injury.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Animals , Humans , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Lung , Inflammation/metabolism , Bronchoalveolar Lavage Fluid , Extracellular Vesicles/metabolism , Disease Models, Animal
8.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500170

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Hyperoxia , MicroRNAs , Rats , Animals , Cells, Cultured , Hyperoxia/metabolism , Inflammation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Extracellular Vesicles/physiology , Fibrosis , Acute Lung Injury/therapy , Acute Lung Injury/metabolism
9.
Cell Mol Life Sci ; 81(1): 124, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466420

ABSTRACT

Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cells , Pneumonia , Mice , Animals , Macrophages, Alveolar/metabolism , Lipopolysaccharides/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Lung/metabolism , Macrophages/metabolism , Disease Models, Animal , Inflammation/therapy , Inflammation/metabolism , Organoids/metabolism
11.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 104-112, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38430034

ABSTRACT

Acute lung injury (ALI) is a serious lung disease. The apoptosis and inflammation of pulmonary microvascular endothelial cells (PMVECs) are the primary reasons for ALI. This study aimed to explore the treatment effect and regulatory mechanism of bone mesenchymal stem cell-derived exosomes (BMSC-expos) on ALI. PMVECs were stimulated by Lipopolysaccharide (LPS) to imitate ALI environment. Cell viability was determined by CCK-8 assay. Cell apoptosis was evaluated by TUNEL and flow cytometry. ELISA was utilized for testing the contents of TNF-α, IL-1ß, IL-6, and IL-17. Western blot was applied for testing the levels of autophagy-related proteins LC3, p62, and Beclin-1. RNA interaction was determined by luciferase reporter assay. The ALI rat model was established by intratracheal injection of LPS. Evans blue staining was utilized for detecting pulmonary vascular permeability. Our results showed that LPS stimulation notably reduced cell viability, increased cell apoptosis rate, and enhanced the contents of inflammatory factors in PMVECs. However, BMSC-exo treatment significantly abolished the promoting effects of LPS on cell injury. In addition, we discovered that BMSC-exo treatment notably activated autophagy in LPS-induced PMVECs. Furthermore, BMSC-expos upregulated miR-26a-3p expression and downregulated PTEN in PMVECs. MiR-26a-3p was directly bound to PTEN. MiR-26a-3p overexpression reduced cell apoptosis, and inflammation and promoted autophagy by silencing PTEN. Animal experiments proved that miR-26a-3p overexpression effectively improved LPS-induced lung injury in rats. The results proved that BMSC-expos promotes autophagy to attenuate LPS-induced apoptosis and inflammation in pulmonary microvascular endothelial cells via miR-26a-3p/PTEN axis.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cells , MicroRNAs , Rats , Animals , Lipopolysaccharides/toxicity , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/genetics , Inflammation/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/therapy , Apoptosis/genetics , Mesenchymal Stem Cells/metabolism , Autophagy/genetics
12.
Front Immunol ; 15: 1360370, 2024.
Article in English | MEDLINE | ID: mdl-38533500

ABSTRACT

Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Endocytosis , Acute Lung Injury/therapy , Pinocytosis , Phagocytosis
13.
Stem Cells Transl Med ; 13(4): 371-386, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38349749

ABSTRACT

Acute lung injury (ALI) is an important pathological process of acute respiratory distress syndrome, yet there are limited therapies for its treatment. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been shown to be effective in suppressing inflammation. However, the effects of MSCs-Exo on ALI and the underlying mechanisms have not been well elucidated. Our data showed that MSCs-Exo, but not exosomes derived from MRC-5 cells (MRC-5-Exo), which are human fetal lung fibroblast cells, significantly improved chest imaging, histological observations, alveolocapillary membrane permeability, and reduced inflammatory response in ALI mice model. According to miRNA sequencing and proteomic analysis of MSCs-Exo and MRC-5-Exo, MSCs-Exo may inhibit pyroptosis by miRNAs targeting caspase-1-mediated pathway, and by proteins with immunoregulation functions. Taken together, our study demonstrated that MSCs-Exo were effective in treating ALI by inhibiting the pyroptosis of alveolar macrophages and reducing inflammation response. Its mechanism may be through pyroptosis-targeting miRNAs and immunoregulating proteins delivered by MSCs-Exo. Therefore, MSCs-Exo may be a new treatment option in the early stage of ALI.


Subject(s)
Acute Lung Injury , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Mice , Animals , Humans , Macrophages, Alveolar/metabolism , Pyroptosis , Exosomes/metabolism , Proteomics , Acute Lung Injury/therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism
14.
BMC Pulm Med ; 24(1): 45, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245672

ABSTRACT

Inflammation and oxidative stress are recognized as two primary causes of lung damage induced by methotrexate, a drug used in the treatment of cancer and immunological diseases. This drug triggers the generation of oxidants, leading to lung injury. Given the antioxidant and anti-inflammatory effects of high-intensity intermittent training (HIIT), our aim was to evaluate the therapeutic potential of HIIT in mitigating methotrexate-induced lung damage in rats. Seventy male Wistar rats were randomly divided into five groups: CTL (Control), HIIT (High-intensity intermittent training), ALI (Acute Lung Injury), HIIT+ALI (pretreated with HIIT), and ALI + HIIT (treated with HIIT).HIIT sessions were conducted for 8 weeks. At the end of the study, assessments were made on malondialdehyde, total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (Gpx), myeloperoxidase (MPO), interleukin 10 (IL-10), tumor necrosis factor-alpha (TNF-α), gene expression of T-bet, GATA3, FOXP3, lung wet/dry weight ratio, pulmonary capillary permeability, apoptosis (Caspase-3), and histopathological indices.Methotrexate administration resulted in increased levels of TNF-α, MPO, GATA3, caspase-3, and pulmonary edema indices, while reducing the levels of TAC, SOD, Gpx, IL-10, T-bet, and FOXP3. Pretreatment and treatment with HIIT reduced the levels of oxidant and inflammatory factors, pulmonary edema, and other histopathological indicators. Concurrently, HIIT increased the levels of antioxidant and anti-inflammatory factors.


Subject(s)
Acute Lung Injury , High-Intensity Interval Training , Pulmonary Edema , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Interleukin-10/metabolism , Methotrexate/toxicity , Caspase 3/metabolism , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Acute Lung Injury/therapy , Acute Lung Injury/drug therapy , Oxidative Stress , Lung/pathology , Glutathione Peroxidase/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Superoxide Dismutase/metabolism , Forkhead Transcription Factors/metabolism
15.
J Cell Biochem ; 125(2): e30519, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224137

ABSTRACT

Acute lung injury (ALI) is a severe condition that can progress to acute respiratory distress syndrome (ARDS), with a high mortality rate. Currently, no specific and compelling drug treatment plan exists. Mesenchymal stem cells (MSCs) have shown promising results in preclinical and clinical studies as a potential treatment for ALI and other lung-related conditions due to their immunomodulatory properties and ability to regenerate various cell types. The present study focuses on analyzing the role of umbilical cord MSC (UC-MSC))-derived exosomes in reducing lipopolysaccharide-induced ALI and investigating the mechanism involved. The study demonstrates that UC-MSC-derived exosomes effectively improved the metabolic function of alveolar macrophages and promoted their shift to an anti-inflammatory phenotype, leading to a reduction in ALI. The findings also suggest that creating three-dimensional microspheres from the MSCs first can enhance the effectiveness of the exosomes. Further research is needed to fully understand the mechanism of action and optimize the therapeutic potential of MSCs and their secretome in ALI and other lung-related conditions.


Subject(s)
Acute Lung Injury , Exosomes , Mesenchymal Stem Cell Transplantation , Humans , Lipopolysaccharides/adverse effects , Exosomes/metabolism , Macrophages, Alveolar/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Umbilical Cord/metabolism
16.
Acta Biomater ; 177: 332-346, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290689

ABSTRACT

Trans-mucosal delivery of anti-inflammatory siRNA into alveolar macrophages represents a promising modality for the treatment of acute lung injury (ALI). However, its therapeutic efficacy is often hurdled by the lack of effective carriers that can simultaneously overcome the mucosal barrier and cell membrane barrier. Herein, we developed mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes which enabled efficient intratracheal delivery of TNF-α siRNA (siTNF-α) to attenuate pulmonary inflammation against lipopolysaccharide (LPS)-induced ALI. P-G@Zn, a cationic helical polypeptide bearing both guanidine and zinc dipicolylamine (Zn-DPA) side charged groups, was designed to condense siTNF-α and promote macrophage internalization due to its helicity-dependent membrane activity. Coating of the polyplexes with charge-neutralizing carboxylated mannan (Man-COOH) greatly enhanced the mucus penetration potency due to shielding of the electrostatic adhesive interactions with the mucus, and it cooperatively enabled active targeting to alveolar macrophages to potentiate the intracellular delivery efficiency of siTNF-α. As such, intratracheally administered Man-COOH/P-G@Zn/siTNF-α polyplexes provoked notable TNF-α silencing by ∼75 % in inflamed lung tissues at 500 µg siRNA/kg, and demonstrated potent anti-inflammatory performance to treat ALI. This study provides an effective tool for the synchronized trans-mucosal delivery of siRNA into macrophages, and the unique properties of the polyplexes render remarkable potentials for anti-inflammatory therapy against ALI. STATEMENT OF SIGNIFICANCE: siRNA-mediated anti-inflammatory management of acute lung injury (ALI) is greatly challenged by the insufficient delivery across the mucus layer and cell membrane. To address such critical issue, mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes are herein developed, which are comprised of an outer shell of carboxylated mannan (Man-COOH) and an inner nanocore formed by TNF-α siRNA (siTNF-α) and a cationic helical polypeptide P-G@Zn. Man-COOH coating endowed the polyplexes with high mucus-penetrating capability and macrophage-targeting ability, while P-G@Zn bearing both guanidine and zinc dipicolylamine afforded potent siTNF-α condensation capacity and high intracellular delivery efficiency with reduced cytotoxicity. Intratracheally administered polyplexes solicit pronounced TNF-α silencing and anti-inflammatory efficiencies in ALI mice. This study renders an effective example for overcoming the multiple barriers against trans-mucosal delivery of siRNA into macrophages, and holds profound potentials for gene therapy against ALI.


Subject(s)
Acute Lung Injury , Organometallic Compounds , Picolinic Acids , Tumor Necrosis Factor-alpha , Humans , Male , Mice , Animals , RNA Interference , Tumor Necrosis Factor-alpha/metabolism , Mannans , Lung , RNA, Small Interfering/pharmacology , Acute Lung Injury/therapy , Anti-Inflammatory Agents/pharmacology , Guanidines
17.
Adv Sci (Weinh) ; 11(6): e2306156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062916

ABSTRACT

Acute lung injury (ALI) is a severe respiratory disease with a high mortality rate. The integrity of the pulmonary endothelial barrier influences the development and prognosis of ALI. Therefore, it has become an important target for ALI treatment. Extracellular vesicles (EVs) are promising nanotherapeutic agents against ALI. Herein, endothelium-derived engineered extracellular vesicles (eEVs) that deliver microRNA-125b-5p (miRNA-125b) to lung tissues exerting a protective effect on endothelial barrier integrity are reported. eEVs that are modified with lung microvascular endothelial cell-targeting peptides (LET) exhibit a prolonged retention time in lung tissues and targeted lung microvascular endothelial cells in vivo and in vitro. To improve the efficacy of the EVs, miRNA-125b is loaded into EVs. Finally, LET-EVs-miRNA-125b is constructed. The results show that compared to the EVs, miRNA-125b, and EVs-miRNA-125b, LET-EVs-miRNA-125b exhibit the most significant treatment efficacy in ALI. Moreover, LET-EVs-miRNA-125b is found to have an important protective effect on endothelial barrier integrity by inhibiting cell apoptosis, promoting angiogenesis, and protecting intercellular junctions. Sequencing analysis reveals that LET-EVs-miRNA-125b downregulates early growth response-1 (EGR1) levels, which may be a potential mechanism of action. Taken together, these findings suggest that LET-EVs-miRNA-125b can treat ALI by protecting the endothelial barrier integrity.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , MicroRNAs , Humans , Endothelial Cells , Lung , MicroRNAs/genetics , Acute Lung Injury/therapy , Endothelium
18.
Int J Surg ; 110(1): 72-86, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37737899

ABSTRACT

BACKGROUND: The purpose of this study was to prepare neutrophil membrane-engineered Panax ginseng root-derived exosomes (N-exo) and investigate the effects of N-exo microRNA (miRNA) 182-5p (N-exo-miRNA 182-5p) on acute lung injury (ALI) in sepsis. METHODS: Panax ginseng root-derived exosomes were separated by differential centrifugation. Neutrophil membrane engineering was performed on exo to obtain N-exo. miRNA182-5p was transmitted into N-exo by electroporation technology to obtain N-exo-miRNA 182-5p. LPS was used to establish an in-vivo and in-vitro model of ALI of sepsis to evaluate the anti-inflammatory effect of N-exo-miRNA 182-5p. RESULTS: The results of transmission electron microscope showed that exo was a double-layer membrane structure like a saucer. Nanoparticle size analysis showed that the average particle size of exo was 129.7 nm. Further, compared with exo, the level of miRNA182-5p was significantly increased in N-exo. The experimental results showed that N-exo-miRNA 182-5p significantly improved ALI via target regulation of NOX4/Drp-1/NLRP3 signal pathway in vivo and in vitro . CONCLUSION: In conclusion, this study prepared a novel engineered exosome (N-exo and N-exo-miRNA 182-5p significantly improved ALI in sepsis via target regulation of NOX4/Drp-1/NLRP3 signal pathway, providing new ideas and methods for treatment of ALI in sepsis.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Exosomes , MicroRNAs , Panax , Plant Extracts , Sepsis , Humans , MicroRNAs/genetics , Exosomes/genetics , Exosomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils , Acute Lung Injury/genetics , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Signal Transduction , Sepsis/genetics , Sepsis/therapy , NADPH Oxidase 4/metabolism
19.
Cell Prolif ; 57(1): e13531, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37553821

ABSTRACT

Apoptosis triggers immunoregulation to prevent and suppress inflammation and autoimmunity. However, the mechanism by which apoptotic cells modulate immune responses remains largely elusive. In the context of allogeneic mesenchymal stem cells (MSCs) transplantation, long-term immunoregulation is observed in the host despite the short survive of the injected MSCs. In this study, utilizing a mouse model of acute lung injury (ALI), we demonstrate that apoptotic bodies (ABs) released by transplanted human umbilical cord MSCs (UC-MSCs) convert the macrophages from a pro-inflammatory to an anti-inflammatory state, thereby ameliorating the disease. Mechanistically, we identify the expression of programmed cell death 1 ligand 1 (PDL1) on the membrane of UC-MSCs-derived ABs, which interacts with programmed cell death protein 1 (PD1) on host macrophages. This interaction leads to the reprogramming of macrophage metabolism, shifting from glycolysis to mitochondrial oxidative phosphorylation via the Erk-dependent pathway in ALI. Importantly, we have reproduced the PDL1-PD1 effects of ABs on metabolic switch using alveolar macrophages from patients with ALI, suggesting the potential clinical implications of developing therapeutic strategies for the patients.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mice , Animals , Humans , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor , Metabolic Reprogramming , Inflammation/metabolism , Acute Lung Injury/therapy , Extracellular Vesicles/metabolism , Macrophages/metabolism
20.
J Trauma Acute Care Surg ; 96(3): 371-377, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37880828

ABSTRACT

BACKGROUND: Acute lung injury and subsequent resolution following severe injury are coordinated by a complex lung microenvironment that includes extracellular vesicles (EVs). We hypothesized that there is a heterogenous population of EVs recruited to the alveoli postinjury and that we could identify specific immune-relevant mediators expressed on bronchoalveolar lavage (BAL) EVs as candidate biomarkers of injury and injury resolution. METHODS: Mice underwent 30% TBSA burn injury and BAL fluid was collected 4 hours postinjury and compared with sham. Extracellular vesicles were purified and single vesicle flow cytometry (vFC) was performed using fluorescent antibodies to quantify the expression of specific cell surface markers on individual EVs. Next, we evaluated human BAL specimens from injured patients to establish translational relevance of the mouse vFC analysis. Human BAL was collected from intubated patients following trauma or burn injury, EVs were purified, then subjected to vFC analysis. RESULTS: A diverse population of EVs were mobilized to the alveoli after burn injury in mice. Quantitative BAL vFC identified significant increases in macrophage-derived CD44+ EVs (preinjury, 10.8% vs. postinjury, 13%; p < 0.05) and decreases in IL-6 receptor alpha (CD126) EVs (preinjury, 19.3% vs. postinjury, 9.3%, p < 0.05). Bronchoalveolar lavage from injured patients also contained a heterogeneous population of EVs derived from myeloid cells, endothelium, and epithelium sources, with CD44+ EVs being highly detected. CONCLUSION: Injury causes mobilization of a heterogeneous population of EVs to the alveoli in both animal models and injured patients. Defining EV release after injury will be critical in identifying diagnostic and therapeutic targets to limit postinjury acute lung injury.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Humans , Animals , Mice , Lung , Extracellular Vesicles/metabolism , Acute Lung Injury/therapy , Pulmonary Alveoli , Bronchoalveolar Lavage Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...