Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Food Microbiol ; 122: 104550, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839218

ABSTRACT

Listeria monocytogenes presents significant risk to human health due to its high resistance and capacity to form toxin-producing biofilms that contaminate food. The objective of this study was to assess the inhibitory effect of citronella aldehyde (CIT) on L. monocytogenes and investigate the underlying mechanism of inhibition. The results indicated that the minimum inhibitory concentration (MIC) and Minimum sterilisation concentration (MBC) of CIT against L. monocytogenes was 2 µL/mL. At this concentration, CIT was able to effectively suppress biofilm formation and reduce metabolic activity. Crystalline violet staining and MTT reaction demonstrated that CIT was able to inhibit biofilm formation and reduce bacterial cell activity. Furthermore, the motility assessment assay revealed that CIT inhibited bacterial swarming and swimming. Scanning electron microscopy (SEM) and laser confocal microscopy (LSCM) observations revealed that CIT had a significant detrimental effect on L. monocytogenes cell structure and biofilm integrity. LSCM also observed that nucleic acids of L. monocytogenes were damaged in the CIT-treated group, along with an increase in bacterial extracellular nucleic acid leakage. The proteomic results also confirmed the ability of CIT to affect the expression of proteins related to processes including metabolism, DNA replication and repair, transcription and biofilm formation in L. monocytogenes. Consistent with the proteomics results are ATPase activity and ATP content of L. monocytogenes were significantly reduced following treatment with various concentrations of CIT. Notably, CIT showed good inhibitory activity against L. monocytogenes on cheese via fumigation at 4 °C.This study establishes a foundation for the potential application of CIT in food safety control.


Subject(s)
Biofilms , Cheese , Listeria monocytogenes , Microbial Sensitivity Tests , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/physiology , Cheese/microbiology , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Food Microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aldehydes/pharmacology , Plant Extracts/pharmacology , Acyclic Monoterpenes/pharmacology
2.
BMC Complement Med Ther ; 24(1): 211, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831283

ABSTRACT

OBJECTIVE: Although cancer therapy suppresses recurrence and prolongs life, it may be accompanied by strong side effects; thus, there is a strong demand for the development effective treatments with fewer side effects. Cancer therapy using plant-derived essential oils is attracting attention as one promising method. This study investigated the antitumor effects of essential oil volatiles on breast cancer cells and identifies four essential oils that display antitumor activity. METHODS: Breast cancer cells were cultured in a 96-well plate, then one of twenty essential oils was added dropwise to the central well. The plate was incubated at 37 °C for 48 h and the effect of the volatile components of each essential oil on the surrounding breast cancer cell growth ability was examined using an MTT assay. Gas chromatography was used to investigate the concentration of the transpiration components that may affect cancer cells. RESULTS: Of the 20 essential oils, Lemongrass, Lemon myrtle, Litsea, and Melissa displayed strong anti-tumor effects. These essential oils inhibited the growth of nearby breast cancer cells, even when diluted more than 500-fold. The transpiration component of lemon Myrtle showed the strongest antitumor effect, but was the least cytotoxic to mononuclear cells in normal peripheral blood (PBMC). Each of these essential oils contained a very large amount of citral. The IC50 against breast cancer cells when citral was volatilized from each essential oil was 1.67 µL/mL for geranial and 1.31 µL/mL for neral. Volatilized citral alone showed strong anti-proliferation and infiltration-inhibiting effects. CONCLUSION: The transpiration components of Lemongrass, Lemon myrtle, Litsea, and Melissa are thought to inhibit breast cancer cell proliferation due to their high levels of citral.


Subject(s)
Acyclic Monoterpenes , Breast Neoplasms , Litsea , Oils, Volatile , Humans , Oils, Volatile/pharmacology , Acyclic Monoterpenes/pharmacology , Breast Neoplasms/drug therapy , Litsea/chemistry , Female , Cell Line, Tumor , Melissa/chemistry , Cell Proliferation/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Monoterpenes/pharmacology
3.
Sci Rep ; 14(1): 10650, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724532

ABSTRACT

Avoiding fatigue is a long-standing challenge in both healthy and diseased individuals. Establishing objective standard markers of fatigue is essential to evaluate conditions in spatiotemporally different locations and individuals and identify agents to fight against fatigue. Herein, we introduced a novel method for evaluating fatigue using nervous system markers (including dopamine, adrenaline, and noradrenaline), various cytokine levels (such as interleukin [IL]-1ß, tumor necrosis factor [TNF]-α, IL-10, IL-2, IL-5 and IL-17A), and oxidative stress markers (such as diacron-reactive oxygen metabolites [d-ROMs] and biological antioxidant potential [BAP]) in a rat fatigue model. Using this method, the anti-fatigue effects of methyl dihydrojasmonate (MDJ) and linalool, the fragrance/flavor compounds used in various products, were assessed. Our method evaluated the anti-fatigue effects of the aforementioned compounds based on the changes in levels of the nerves system markers, cytokines, and oxidative stress markers. MDJ exerted more potent anti-fatigue effects than linalool. In conclusion, the reported method could serve as a useful tool for fatigue studies and these compounds may act as effective therapeutic agents for abrogating fatigue symptoms.


Subject(s)
Acyclic Monoterpenes , Cytokines , Disease Models, Animal , Fatigue , Oxidative Stress , Animals , Oxidative Stress/drug effects , Acyclic Monoterpenes/pharmacology , Rats , Fatigue/drug therapy , Fatigue/metabolism , Cytokines/metabolism , Male , Cyclopentanes/pharmacology , Antioxidants/pharmacology , Biomarkers , Monoterpenes/pharmacology , Oxylipins/pharmacology , Rats, Sprague-Dawley
4.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 382-389, mayo 2024. ilus, tab, graf
Article in English | LILACS | ID: biblio-1538151

ABSTRACT

The extraction of geraniol from palmarosa oil using hydrotropic solvents was investigated. Palmarosa oil possesses an appealing rose aroma and properties like anti - inflammatory, antifungal, and antioxidant due to the presence of geraniol. The extraction of geraniol from palmarosa oil by using distillation methods like steam dis tillation and fractional distillation was a laborious process. So hydrotropes were tried for extraction. The geraniol yield and purity depend on parameters like concentration of hydrotrope, solvent volume ratio, and time period. Using the Box Benkhem Desig n (BBD), the extraction process was optimized. One of the major advantages of using hydrotropic solvents is that they were classified as green solvents, and recovery of solvents is also possible. To reduce the extraction time probe sonication is carried ou t. Different hydrotropic solvents with probe sonication are done on palmarosa oil by altering various process parameters to study the separation, yield, and purity.


Se investigó la extracción de geraniol del aceite de palmarosa utilizando solventes hidrotrópicos. El aceite de palmarosa posee un atractivo aroma a rosa y propiedades antiinflamatorias, antifúngicas y antioxidantes debido a la pr esencia de geraniol. La extracción de geraniol del aceite de palmarosa mediante métodos de destilación como la destilación por vapor y la destilación fraccionada ha sido un proceso laborioso. Por lo tanto, se probaron los hidrotropos para la extracción. El rendimiento y la pureza del geraniol dependen de parámetros como la concentración del hidrotropo, la relación de volumen del solvente y el período de tiempo. Se optimizó el proceso de extracción usando el diseño Box Benkhem (BBD). Una de las principales v entajas de usar solventes hidrotrópicos es que se clasifican como solventes verdes y también es posible recuperar los solventes. Para reducir el tiempo de extracción, se lleva a cabo una sonda de ultrasonido. Se realizan diferentes solventes hidrotropos co n sonda de ultrasonido en el aceite de palmarosa alterando varios parámetros del proceso para estudiar la separación, el rendimiento y la pureza.


Subject(s)
Cymbopogon/chemistry , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
5.
Pak J Pharm Sci ; 37(1(Special)): 223-229, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747273

ABSTRACT

In this study, the anti-osteogenic properties of the volatile oil extracted from Homalomena gigantea rhizome using ethyl acetate (EtOAc) and methanol (MeOH) were examined. Gas chromatography-mass spectrometry (GC-MS) was employed for the identification of volatile components. Following this, bioassays were performed to evaluate their effects on osteogenesis, encompassing parameters like cell viability, osteoblast differentiation, collagen synthesis and mineralization. The GC-MS analysis revealed 19 compounds in the EtOAc extract and 36 compounds in the MeOH extract. In the MeOH extract, major constituents included bis(2-ethylhexyl) terephthalate (13.83%), linalool (9.58%), palmitic acid (6.55%) and stearic acid (4.29%). The EtOAc extract contained bis(2-ethylhexyl) terephthalate (16.64%), palmitic acid (5.60%) and stearic acid (3.11%) as the predominant components. Both the EtOAc and MeOH extracts of H. gigantea exhibited promising potential for further investigation in anti-osteoporosis research. These findings contribute to the exploration of natural compounds with potential anti-osteoporotic properties, expanding our understanding of their therapeutic potential.


Subject(s)
Gas Chromatography-Mass Spectrometry , Oils, Volatile , Osteogenesis , Plant Extracts , Rhizome , Osteogenesis/drug effects , Rhizome/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Cell Survival/drug effects , Osteoblasts/drug effects , Cell Differentiation/drug effects , Mice , Palmitic Acid/pharmacology , Acyclic Monoterpenes/pharmacology
6.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2364-2375, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812137

ABSTRACT

To explore the active substances exerting anti-tumour effect in lemon essential oil and the molecular mechanism inhibiting the proliferation of head and neck cancer cells SCC15 and CAL33, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay(MTT) was utilized to identify the active component inhibiting the proliferation of head and neck cancer cells, namely citral. The IC_(50) of citral inhibiting the proliferation of head and neck cancer cells and normal cells were also determined. In addition, a 5-ethynyl-2'-deoxyuridine(EdU) staining assay was used to detect the effect of citral on the proliferation rate of head and neck cancer cells, and a colony formation assay was used to detect the effect of citral on tumor sphere formation of head and neck cancer cells in vitro. The cell cycle arrest and apoptosis induction of head and neck cancer cells by citral were evaluated by flow cytometry, and Western blot was used to detect the effect of citral on the expression levels of cell cycle-and apoptosis-related proteins in head and neck cancer cells. The findings indicated that citral could effectively inhibit the proliferation and growth of head and neck cancer cells, with anti-tumor activity, and its half inhibitory concentrations for CAL33 and SCC15 were 54.78 and 25.23 µg·mL~(-1), respectively. Furthermore, citral arrested cell cycle at G_2/M phase by down-regulating cell cycle-related proteins such as S-phase kinase associated protein 2(SKP2), C-MYC, cyclin dependent kinase 1(CDK1), and cyclin B. Moreover, citral increased the cysteinyl aspartate-specific proteinase-3(caspase-3), cysteinyl aspartate-specific proteinase-9(caspase-9), and cleaved poly ADP-ribose polymerase(PARP). It up-regulated the level of autophagy-related proteins including microtubule associated protein 1 light chain 3B(LC3B), sequestosome 1(P62/SQSTM1), autophagy effector protein Beclin1(Beclin1), and lysosome-associate membrane protein 1(LAMP1), suggesting that citral could effectively trigger cell apoptosis and cell autophagy in head and neck cancer cells. Furthermore, the dual-tagged plasmid system mCherry-GFP-LC3 was used, and it was found that citral impeded the fusion of autophagosomes and lysosomes, leading to autophagic flux blockage. Collectively, our findings reveal that the main active anti-proliferation component of lemon essential oil is citral, and this component has a significant inhibitory effect on head and neck cancer cells. Its underlying molecular mechanism is that citral induces apoptosis and autophagy by cell cycle arrest and ultimately inhibits cell proliferation.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Cell Proliferation , Head and Neck Neoplasms , Monoterpenes , Oils, Volatile , Humans , Cell Proliferation/drug effects , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Apoptosis/drug effects , Cell Line, Tumor , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Cycle Checkpoints/drug effects , Citrus/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
7.
Neurochem Int ; 177: 105762, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723901

ABSTRACT

Linalool is a neuroprotective monoterpene found in essential oils from aromatic plants. Linalool's effectiveness in AD animal models has been established previously, but its mechanisms of action remain unclear. Therefore, this study aims to investigate whether linalool binds directly to the amyloid beta (Aß) fibrils to understand it's role in preventing neurodegeneration. The anti-aggregation ability of Linalool was determined using Dithiothreitol (DTT), and thermal aggregation assays followed by Thioflavin T (ThT) binding assay. AD animals were treated with Linalool, and Thioflavin T staining was used to check the binding of linalool to Aß fibrils in rat brain tissue sections. Preliminary studies revealed the anti-aggregation potential of linalool under the thermal and chemical stimulus. Further, in ThT binding assay Linalool inhibited Aß aggregation, binding directly to Aß fibrils. The reduced fluorescence intensity of ThT in AD brain tissues following linalool administration, highlights its neuroprotective potential as a therapeutic agent for AD.


Subject(s)
Acyclic Monoterpenes , Amyloid beta-Peptides , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Acyclic Monoterpenes/pharmacology , Animals , Rats , Male , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Monoterpenes/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neuroprotective Agents/pharmacology , Brain/metabolism , Brain/drug effects , Rats, Wistar , Protein Aggregates/drug effects , Protein Aggregates/physiology , Rats, Sprague-Dawley , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/prevention & control
8.
Neurochem Int ; 177: 105748, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703789

ABSTRACT

Adaptation to psychosocial stress is psychologically distressing, initiating/promoting comorbidity with alcohol use disorders. Emerging evidence moreover showed that ethanol (EtOH) exacerbates social-defeat stress (SDS)-induced behavioral impairments, neurobiological sequelae, and poor therapeutic outcomes. Hence, this study investigated the effects of geraniol, an isoprenoid monoterpenoid alcohol with neuroprotective functions on EtOH escalated SDS-induced behavioral impairments, and neurobiological sequelae in mice. Male mice chronically exposed to SDS for 14 days were repeatedly fed with EtOH (2 g/kg, p. o.) from days 8-14. From days 1-14, SDS-EtOH co-exposed mice were concurrently treated with geraniol (25 and 50 mg/kg) or fluoxetine (10 mg/kg) orally. After SDS-EtOH translational interactions, arrays of behavioral tasks were examined, followed by investigations of oxido-inflammatory, neurochemicals levels, monoamine oxidase-B and acetylcholinesterase activities in the striatum, prefrontal-cortex, and hippocampus. The glial fibrillary acid protein (GFAP) expression was also quantified in the prefrontal-cortex immunohistochemically. Adrenal weights, serum glucose and corticosterone concentrations were measured. EtOH exacerbated SDS-induced low-stress resilience, social impairment characterized by anxiety, depression, and memory deficits were attenuated by geraniol (50 and 100 mg/kg) and fluoxetine. In line with this, geraniol increased the levels of dopamine, serotonin, and glutamic-acid decarboxylase enzyme, accompanied by reduced monoamine oxidase-B and acetylcholinesterase activities in the prefrontal-cortex, hippocampus, and striatum. Geraniol inhibited SDS-EtOH-induced adrenal hypertrophy, corticosterone, TNF-α, IL-6 release, malondialdehyde and nitrite levels, with increased antioxidant activities. Immunohistochemical analyses revealed that geraniol enhanced GFAP immunoreactivity in the prefrontal-cortex relative to SDS-EtOH group. We concluded that geraniol ameliorates SDS-EtOH interaction-induced behavioral changes via normalization of neuroimmune-endocrine and neurochemical dysregulations in mice brains.


Subject(s)
Acyclic Monoterpenes , Ethanol , Stress, Psychological , Terpenes , Animals , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/therapeutic use , Male , Stress, Psychological/psychology , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/complications , Mice , Ethanol/toxicity , Ethanol/pharmacology , Terpenes/pharmacology , Terpenes/therapeutic use , Brain/drug effects , Brain/metabolism , Social Defeat
9.
Int J Food Microbiol ; 418: 110733, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38754173

ABSTRACT

This research aimed to evaluate the effects of the addition of active essential oil components (linalool and/or eugenol) to a pickle-based marinade on controlling spoilage and extending the shelf life of fresh beef stored under vacuum packaging at 4 °C. Linalool and eugenol were used either separately at a concentration of 0.2 % (w/w) or together (1:1 ratio) to preserve marinated beef under vacuum packaging for 15 days. Samples were assessed for pH, color, texture, oxidative degradation, and microbiological parameters. All marinades exhibited significantly lower TBARS values than the control sample. The addition of linalool or eugenol to the marinate showed a significant antibacterial effect on total aerobic mesophilic bacteria (TAMB), lactic acid bacteria (LAB), Pseudomonas spp., and total coliform, and the reductions in microbial counts are as follows: TAMB: 1.563 log CFU/g and 1.46 log CFU/g; Pseudomonas spp.: 1.303 log CFU/g and 1.08 log CFU/g; LAB: 0.323 log CFU/g and 0.357 log CFU/g. Marinated beef with linalool and/or eugenol was found to be effective against the growth of yeast and mold. The use of eugenol presented the most effective inhibition activity against yeast and mold by reducing the number of yeast and molds to an uncountable level on the 12th and 15th days of storage. Physicochemical analysis also showed that the addition of active essential oils to marinade did not cause any undesirable effects on the color and texture properties of beef samples. Therefore, the findings revealed that eugenol and linalool could be suitable alternatives for beef marination.


Subject(s)
Eugenol , Food Packaging , Food Preservation , Oils, Volatile , Red Meat , Oils, Volatile/pharmacology , Food Packaging/methods , Cattle , Vacuum , Eugenol/pharmacology , Food Preservation/methods , Animals , Red Meat/microbiology , Food Microbiology , Acyclic Monoterpenes/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Colony Count, Microbial , Food Storage , Monoterpenes/pharmacology
10.
Pestic Biochem Physiol ; 201: 105886, 2024 May.
Article in English | MEDLINE | ID: mdl-38685252

ABSTRACT

This study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT50). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC). The KT50 values were 6.07; 8.83; 7.17 and 27.23 h for linalool, 1,8 -cineole, eugenol, and thymol, respectively. For the eugenol:linalool mixtures, the efficacy was lower or equal to that obtained for the nanoformulations of the pure compounds, with values of KT50 about 13.33, 8.16 and 6.71 h for mixtures with ratios 3:1, 1:1 and 1:3, respectively. These mixtures present IC > 1, evidencing antagonistic interaction, which is enhanced with eugenol content. In the case of the binary mixtures of 1,8 -cineole: linalool, KT50 values were similar to those obtained for eugenol:linalool mixtures with similar ratios. In this case, IC assumes values close to unity, suggesting additive interactions independently of the mixture composition. On the other side, mixtures of eugenol:thymol with 1:1 and 1:3 ratios showed values of 9.40 and 32.93 h, while the mixture with a 3:1 ratio showed the greatest effectiveness (KT50 of 4.42 h). Eugenol:thymol mixtures show synergistic interaction (IC < 1) for combinations 3:1 and 1:1, while no interaction was observed for 1:3 combination. This indicates that eugenol enhances thymol activity. These results must be considered an important step forward to the development of effective pediculicidal nanoformulations based on botanical compounds.


Subject(s)
Acyclic Monoterpenes , Eucalyptol , Eugenol , Monoterpenes , Monoterpenes/pharmacology , Monoterpenes/chemistry , Animals , Eugenol/pharmacology , Eugenol/chemistry , Eucalyptol/pharmacology , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Pediculus/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Thymol/pharmacology , Thymol/chemistry , Micelles , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Nanoparticles/chemistry , Lice Infestations/drug therapy
11.
Parasit Vectors ; 17(1): 194, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664829

ABSTRACT

BACKGROUND: Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS: Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS: All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS: These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.


Subject(s)
Acaricides , Isoxazoles , Plant Oils , Sarcoptes scabiei , Scabies , Animals , Sarcoptes scabiei/drug effects , Acaricides/pharmacology , Isoxazoles/pharmacology , Scabies/drug therapy , Scabies/parasitology , Plant Oils/pharmacology , Plant Oils/chemistry , Acyclic Monoterpenes/pharmacology , Swine , Limonene/pharmacology , Limonene/chemistry , Terpenes/pharmacology , Terpenes/chemistry , Cyclohexenes/pharmacology , Cyclohexenes/chemistry , Lethal Dose 50
12.
Int J Biol Macromol ; 266(Pt 2): 131344, 2024 May.
Article in English | MEDLINE | ID: mdl-38574923

ABSTRACT

In this study, we obtained triple-layer films based on furcellaran and gelatin, in which the middle layer was enriched with extract of Curcuma longa in citral. This newly developed material underwent a comprehensive characterisation process to identify significant improvements in its functional properties. Both SEM, XRD and FTIR analyzes indicated the formation of interactions not only between the components but also between the film layers. Notably, the incorporation of the natural extract led to a significant reduction in solubility, decreasing it from 74.79 % to 57.25 %, while enhancing thermal stability expressed as a melting point elevating it from 147.10 °C in the control film to 158.80 °C in the film with the highest concentration of the active ingredient. Simultaneously, the addition of this active ingredient resulted in decreased water contact angle (WCA) values, rendering the film more hydrophilic. The produced films exhibit great promise as packaging materials, particularly within the food industry, and the conducted research is marked by its forward-looking and developmental approach.


Subject(s)
Acyclic Monoterpenes , Alginates , Curcuma , Gelatin , Plant Extracts , Plant Gums , Curcuma/chemistry , Gelatin/chemistry , Plant Extracts/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Solubility , Food Packaging/methods , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Spectroscopy, Fourier Transform Infrared
13.
Food Chem ; 449: 139240, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38599109

ABSTRACT

The study reports the efficacy of nanofabricated citronellal inside the chitosan biopolymer (NeCn) against Aspergillus flavus growth, aflatoxin B1 (AFB1) production, and active ingredient biodeterioration (Piperine) in Piper longum L. The prepared NeCn was characterized by Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FTIR). The results revealed that the NeCn exhibited distantly improved antifungal (1.25 µL/mL) and AFB1 inhibition (1.0 µL/mL) compared to free Cn. The perturbances in membrane function, mitochondrial membrane potential, antioxidant defense system, and regulatory genes (Ver-1 and Nor-1) of AFB1 biosynthesis were reported as probable modes of action of NeCn. The NeCn (1.25 µL/mL) effectively protects the P. longum from A. flavus (78.8%), AFB1 contamination (100%), and deterioration of Piperine (62.39%), thus demonstrating its potential as a promising novel antifungal agent for food preservation.


Subject(s)
Acyclic Monoterpenes , Aflatoxin B1 , Aspergillus flavus , Chitosan , Piper , Aflatoxin B1/metabolism , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Chitosan/chemistry , Chitosan/pharmacology , Piper/chemistry , Biopolymers/chemistry , Biopolymers/pharmacology , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Food Preservation/methods , Monoterpenes/pharmacology , Monoterpenes/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
Int J Biol Macromol ; 268(Pt 2): 131767, 2024 May.
Article in English | MEDLINE | ID: mdl-38657918

ABSTRACT

In this study, linalool-nanoparticles (L-NPs) were prepared (encapsulation efficiency was 68.54 %) and introduced pH-indicator film based on cranberry-extract (CEF) to develop multifunctional smart films. XRD analysis and FTIR spectroscopy indicated that cranberry-extract (CE) and L-NPs were uniformly distributed in the gelatin/agar matrix and could change the intermolecular structure of the film. Color change of smart films showed that CE endowed the film with pH-sensitive property. As CE and L-NPs were added to the film, the water contact angle (WCA) was increased from 57.03° to 117.73°, the elongation at break (EAB) was increased from 12.30 % to 34.60 %. Additionally, the introduction of L-NPs enhanced the antioxidant activity (DPPH free radical scavenging rate increased from 26.80 % to 36.35 %) and antibacterial activity (against S. aureus and E. coli) of the smart film, which were verified by its retarding effect on pork spoilage.


Subject(s)
Acyclic Monoterpenes , Antioxidants , Gelatin , Nanoparticles , Plant Extracts , Vaccinium macrocarpon , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Hydrogen-Ion Concentration , Gelatin/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Nanoparticles/chemistry , Vaccinium macrocarpon/chemistry , Agar/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests
15.
Int J Food Microbiol ; 418: 110718, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38678956

ABSTRACT

Shigella flexneri has the ability to contaminate pork and cause foodborne diseases. This study aimed to examine the effectiveness of linalool (a natural preservative) against S. flexneri and explore its potential application in contaminated pork. The results showed that linalool was capable of damaging the cell membrane and binding to the DNA of S. flexneri, and inhibiting biofilm formation and disrupting mature biofilms. The antibacterial effectiveness of linalool on the surface of pork was further demonstrated by analyzing the physicochemical properties of the pork (i.e., weight loss rate, pH value, color index, and TVB-N value) and its protein profiles. Linalool did not completely kill S. flexneri in pork at minimum bactericidal concentration (MBC) concentration and its antibacterial effect of linalool was stronger during the initial stage of storage. During storage, linalool influenced the abundance of specific proteins in the pork, particularly those involved in pathways related to fat metabolism. These findings offer novel insights into the antibacterial efficacy of linalool and its underlying mechanism in pork.


Subject(s)
Acyclic Monoterpenes , Anti-Bacterial Agents , Shigella flexneri , Acyclic Monoterpenes/pharmacology , Animals , Swine , Anti-Bacterial Agents/pharmacology , Shigella flexneri/drug effects , Shigella flexneri/growth & development , Biofilms/drug effects , Biofilms/growth & development , Microbial Sensitivity Tests , Food Microbiology , Pork Meat/microbiology , Red Meat/microbiology , Monoterpenes/pharmacology
16.
J Trace Elem Med Biol ; 84: 127455, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657337

ABSTRACT

Cadmium (Cd) is a heavy metal that has harmful effects and is one of the contaminants found in the environment. Cd exposure causes important pathophysiological processes, such as reproductive toxicity. Linalool (Lnl) is a monoterpene, a component of essential oils known to be produced synthetically. Additionally, Lnl has many important beneficial effects, such as anti-inflammatory and antioxidant effects. The objective of this study is to determine whether Lnl has a healing impact in opposition to testicular tissue damage due to Cd exposure. In the study, 28 male rats were divided at random into four equal groups (n = 7). No treatment was applied to the control group. CdCl2 was applied intraperitoneally to the Cd group at a dose of 3 mg/kg for the first 7 days of the trial. For the Cd + Lnl group, 3 mg/kg CdCl2 was applied intraperitoneally for the first 7 days of the trial, and 100 mg/kg/day Lnl was applied. Upon completion of all applications, the rats were sacrificed and blood samples and testicular tissue were taken. Cd exposure caused histopathological changes, oxidative stress, inflammation, and an increase in apoptotic cells in testicular tissue. However, Cd altered endocrine hormones in the hypothalamic-pituitary-gonad axis. However, Lnl application against Cd exposure was able to regulate the negativity caused by Cd in both testicular tissue and endocrine hormone levels. In conclusion, Lnl may be a potential therapeutic strategy against Cd-induced reproductive toxicity. We believe that Lnl has a high potential for further studies to determine its detailed mechanisms of action and cellular signaling pathways.


Subject(s)
Acyclic Monoterpenes , Cadmium , Testis , Animals , Male , Testis/drug effects , Testis/pathology , Testis/metabolism , Cadmium/toxicity , Acyclic Monoterpenes/pharmacology , Rats , Monoterpenes/pharmacology , Oxidative Stress/drug effects , Apoptosis/drug effects , Rats, Wistar
17.
J Bioenerg Biomembr ; 56(3): 193-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38446318

ABSTRACT

Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, ß-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and ß-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Endothelial Cells , Glucose , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Reactive Oxygen Species , Humans , Apoptosis/drug effects , Acyclic Monoterpenes/pharmacology , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Heme Oxygenase-1/metabolism , Oxygen/metabolism , Brain/metabolism , Brain/blood supply , Microvessels/metabolism , Microvessels/pathology , Microvessels/drug effects
18.
Insect Sci ; 31(1): 134-146, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37358042

ABSTRACT

Monochamus alternatus is the primary carrier of pine wood nematodes, which pose a serious threat to Pinus spp. in many countries. Newly emerging M. alternatus adults feed on heathy host pines, while matured adults transfer to stressed host pines for mating and oviposition. Several odorant-binding proteins (OBPs) of M. alternatus have been proved to aid in the complex process of host location. To clarify the corresponding relations between OBPs and pine volatiles, more OBPs need to be studied. In this research, MaltOBP19 showed a specific expression in the antennae and mouthparts of M. alternatus, and it was marked in 4 types of antenna sensilla by immunolocalization. Fluorescence binding assays demonstrated the high binding affinity of MaltOBP19 with camphene and myrcene in vitro. In Y-tube olfactory experiments, M. alternatus adults were attracted by camphene and RNAi of OBP19 via microinjection significantly decreased their attraction index. Myrcene induced phobotaxis, but RNAi had no significant effect on this behavior. Further, we found that ingesting dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of MaltOBP19. These results suggest that MaltOBP19 may play a role in the process of host conversion via the recognition of camphene, which has been identified to be strongly released in stressed host pines. In addition, it is proved that knockdown of OBP can be achieved by oral administration of bacteria-expressed double-stranded RNA in M. alternatus adults, providing a new perspective in the control of M. alternatus.


Subject(s)
Alkenes , Coleoptera , Pinus , Receptors, Odorant , Female , Animals , Coleoptera/genetics , Acyclic Monoterpenes/pharmacology , Bicyclic Monoterpenes/pharmacology
19.
Phytomedicine ; 120: 155070, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37729771

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are considered as the most potential alternatives to antibiotics, but they have several drawbacks, including high cost, medium antimicrobial efficacy, poor cell selectivity, which limit clinical application. To overcome the above problems, combination therapy of AMPs with adjuvants might maximize the effectiveness of AMPs. We found that citronellal can substantially potentiate the ZY4R peptide efficacy against Escherichia coli ATCC25922. However, it is unclear whether ZY4R/citronellal combination poses synergistic antimicrobial effects against most bacteria, and their synergy mechanism has not been elucidated. PURPOSE: To investigate synergistic antimicrobial efficacies, biosafety, and synergy mechanism of ZY4R/citronellal combination. METHOD: Checkerboard, time-kill curves, cytotoxicity assays, and in vivo animal models were conducted to assess synergistic antimicrobial effects and biosafety of the ZY4R/citronellal combination. To evaluate their synergy mechanism, a series of cell-based assays and transcriptome analysis were performed. RESULTS: ZY4R/citronellal combination exhibited synergistic antimicrobial effects against 20 clinically significant pathogens, with the fractional inhibitory concentration index (FICI) ranging from 0.313 to 0.047. Meanwhile, ZY4R/citronellal combination enhanced antimicrobial efficacies without compromising cell selectivity, contributing to decreasing drug dosage and improving biosafety. Compared with ZY4R (4 mg/kg) and citronellal (25 mg/kg) alone, ZY4R (4 mg/kg)/citronellal (25 mg/kg) combination significantly decreased the bacterial load in peritoneal fluid, liver, and kidney (P < 0.05) and alleviated pathological damage of the organs of mice. Mechanistic studies showed that ZY4R allowed citronellal to pass through the outer membrane rapidly and acted on the inner membrane together with citronellal, causing more potent membrane damage. The membrane damage prompted the continuous accumulation of citronellal in cells, and citronellal further induced energy breakdown and inhibited exopolysaccharide (EPS) production, which aggravated ZY4R-induced outer membrane damage, thereby resulting in bacterial death. CONCLUSIONS: ZY4R/citronellal combination exhibited broad-spectrum synergy with a low resistance development and high biosafety. Their synergy mechanism acted on two important cellular targets (energy metabolism and membrane integrity). Combination therapy of ZY4R with citronellal may be a promising mixture to combat bacterial infections facing an antibiotic-resistance crisis.


Subject(s)
Adjuvants, Immunologic , Antimicrobial Peptides , Animals , Mice , Acyclic Monoterpenes/pharmacology , Drug Resistance, Multiple
20.
Sci Rep ; 13(1): 11063, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422493

ABSTRACT

Several Eurydema species (Hemiptera: Pentatomidae) are considered as pests, however, reports on their chemical ecology are scarce. In the current study we focused on Eurydema ornata (Linnaeus) a pentatomid pest of several brassicaceous crops. Since the species is known to feed preferably on generative parts of plants, a series of floral and green leaf volatiles were tested by electroantennography and compounds eliciting remarkable responses were also tested in the field. Three compounds elicited the most outstanding responses from antennae of E. ornata: allyl isothiocyanate, phenylacetaldehyde and ± linalool. Field experiments were conducted in Hungary between 2017 and 2021 to test the potential attractive effects of the compounds. Three Eurydema species were caught in the experiments E. ornata, E. oleracea (Linnaeus) and E. ventralis Kolenati. In the experiments combinations containing allyl isothiocyanate attracted both males and females of E. ornata. The compound was also attractive on its own, in a positive, dose-dependent manner. When presented alone, neither phenylacetaldehyde nor ± linalool was attractive to the species, furthermore, addition of these compounds to allyl isothiocyanate did not affect attraction considerably. To our knowledge this is the first demonstration of field attration of an Eurydema species to a semiochemical and one of the few reports on trapping of a pentatomid species with a synthetic plant volatile in the field. Perspectives regarding research and potential practical applications are discussed in the paper.


Subject(s)
Hemiptera , Heteroptera , Volatile Organic Compounds , Animals , Male , Female , Heteroptera/physiology , Acyclic Monoterpenes/pharmacology , Volatile Organic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...