Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.400
Filter
2.
Multisens Res ; 37(3): 243-259, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777333

ABSTRACT

Auditory speech can be difficult to understand but seeing the articulatory movements of a speaker can drastically improve spoken-word recognition and, on the longer-term, it helps listeners to adapt to acoustically distorted speech. Given that individuals with developmental dyslexia (DD) have sometimes been reported to rely less on lip-read speech than typical readers, we examined lip-read-driven adaptation to distorted speech in a group of adults with DD ( N = 29) and a comparison group of typical readers ( N = 29). Participants were presented with acoustically distorted Dutch words (six-channel noise-vocoded speech, NVS) in audiovisual training blocks (where the speaker could be seen) interspersed with audio-only test blocks. Results showed that words were more accurately recognized if the speaker could be seen (a lip-read advantage), and that performance steadily improved across subsequent auditory-only test blocks (adaptation). There were no group differences, suggesting that perceptual adaptation to disrupted spoken words is comparable for dyslexic and typical readers. These data open up a research avenue to investigate the degree to which lip-read-driven speech adaptation generalizes across different types of auditory degradation, and across dyslexic readers with decoding versus comprehension difficulties.


Subject(s)
Dyslexia , Lipreading , Reading , Speech Perception , Humans , Speech Perception/physiology , Male , Female , Dyslexia/physiopathology , Adult , Young Adult , Adaptation, Physiological/physiology , Noise , Acoustic Stimulation
3.
J Vis ; 24(5): 11, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38787570

ABSTRACT

Contextual modulation occurs for many aspects of high-level vision but is relatively unexplored for the perception of walking direction. In a recent study, we observed an effect of the temporal context on perceived walking direction. Here, we examined the spatial contextual modulation by measuring the perceived direction of a target point-light walker in the presence of two flanker walkers, one on each side. Experiment 1 followed a within-subjects design. Participants (n = 30) completed a spatial context task by judging the walking direction of the target in 13 different conditions: a walker alone in the center or with two flanking walkers either intact or scrambled at a flanker deviation of ±15°, ±30°, or ±45°. For comparison, participants completed an adaptation task where they reported the walking direction of a target after adaptation to ±30° walking direction. We found the expected repulsive effects in the adaptation task but attractive effects in the spatial context task. In Experiment 2 (n = 40), we measured the tuning of spatial contextual modulation across a wide range of flanker deviation magnitudes ranging from 15° to 165° in 15° intervals. Our results showed significant attractive effects across a wide range of flanker walking directions with the peak effect at around 30°. The assimilative versus repulsive effects of spatial contextual modulation and temporal adaptation suggest dissociable neural mechanisms, but they may operate on the same population of sensory channels coding for walking direction, as evidenced by similarity in the peak tuning across the walking direction of the inducers.


Subject(s)
Space Perception , Walking , Humans , Walking/physiology , Male , Female , Adult , Young Adult , Space Perception/physiology , Motion Perception/physiology , Photic Stimulation/methods , Adaptation, Physiological/physiology
4.
An Acad Bras Cienc ; 96(2): e20230240, 2024.
Article in English | MEDLINE | ID: mdl-38747786

ABSTRACT

There are few studies related to the biological and ecological aspects of the glass snake, a limbless lizard and with a wide geographic distribution. The aim of this study was to analyze the locomotion mode of specimens of Ophiodes cf. fragilis in different substrates and to investigate the morphological adaptations associated with this type of behavior. We observed that the analyzed specimens presented slide-push locomotion modes and lateral undulation in different substrates, using their hind limbs to aid locomotion in three of the four substrates analyzed. The bones of the hind limbs (proximal - femur - and distal - tibia and fibula) were present and highly reduced and the femur is connected to a thin pelvic girdle. Our data support that hind limbs observed in species of this genus are reduced rather than vestigial. The costocutaneous musculature was macroscopically absent. This is the first study of locomotor behavior and morphology associated with locomotion in Ophiodes, providing important information for studies on morphological evolution in the genus.


Subject(s)
Adaptation, Physiological , Lizards , Locomotion , Animals , Lizards/anatomy & histology , Lizards/physiology , Lizards/classification , Locomotion/physiology , Adaptation, Physiological/physiology , Hindlimb/anatomy & histology , Hindlimb/physiology
5.
J Neuroeng Rehabil ; 21(1): 81, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762552

ABSTRACT

BACKGROUND: Proprioceptive impairments are common after stroke and are associated with worse motor recovery and poor rehabilitation outcomes. Motor learning may also be an important factor in motor recovery, and some evidence in healthy adults suggests that reduced proprioceptive function is associated with reductions in motor learning. It is unclear how impairments in proprioception and motor learning relate after stroke. Here we used robotics and a traditional clinical assessment to examine the link between impairments in proprioception after stroke and a type of motor learning known as visuomotor adaptation. METHODS: We recruited participants with first-time unilateral stroke and controls matched for overall age and sex. Proprioceptive impairments in the more affected arm were assessed using robotic arm position- (APM) and movement-matching (AMM) tasks. We also assessed proprioceptive impairments using a clinical scale (Thumb Localization Test; TLT). Visuomotor adaptation was assessed using a task that systematically rotated hand cursor feedback during reaching movements (VMR). We quantified how much participants adapted to the disturbance and how many trials they took to adapt to the same levels as controls. Spearman's rho was used to examine the relationship between proprioception, assessed using robotics and the TLT, and visuomotor adaptation. Data from healthy adults were used to identify participants with stroke who were impaired in proprioception and visuomotor adaptation. The independence of impairments in proprioception and adaptation were examined using Fisher's exact tests. RESULTS: Impairments in proprioception (58.3%) and adaptation (52.1%) were common in participants with stroke (n = 48; 2.10% acute, 70.8% subacute, 27.1% chronic stroke). Performance on the APM task, AMM task, and TLT scores correlated weakly with measures of visuomotor adaptation. Fisher's exact tests demonstrated that impairments in proprioception, assessed using robotics and the TLT, were independent from impairments in visuomotor adaptation in our sample. CONCLUSION: Our results suggest impairments in proprioception may be independent from impairments in visuomotor adaptation after stroke. Further studies are needed to understand factors that influence the relationship between motor learning, proprioception and other rehabilitation outcomes throughout stroke recovery.


Subject(s)
Adaptation, Physiological , Proprioception , Psychomotor Performance , Robotics , Stroke Rehabilitation , Stroke , Humans , Male , Female , Proprioception/physiology , Middle Aged , Adaptation, Physiological/physiology , Stroke/physiopathology , Stroke/complications , Stroke Rehabilitation/methods , Aged , Psychomotor Performance/physiology , Adult
6.
Nat Commun ; 15(1): 4084, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744847

ABSTRACT

Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.


Subject(s)
Adaptation, Physiological , Learning , Models, Neurological , Motor Cortex , Learning/physiology , Adaptation, Physiological/physiology , Motor Cortex/physiology , Animals , Neural Networks, Computer , Neurons/physiology , Movement/physiology , Nerve Net/physiology
7.
Behav Brain Res ; 468: 115024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705283

ABSTRACT

Motor adaptations are responsible for recalibrating actions and facilitating the achievement of goals in a constantly changing environment. Once consolidated, the decay of motor adaptation is a process affected by available sensory information during deadaptation. However, the cortical response to task error feedback during the deadaptation phase has received little attention. Here, we explored changes in brain cortical responses due to feedback of task-related error during deadaptation. Twelve healthy volunteers were recruited for the study. Right hand movement and EEG were recorded during repetitive trials of a hand reaching movement. A visuomotor rotation of 30° was introduced to induce motor adaptation. Volunteers participated in two experimental sessions organized in baseline, adaptation, and deadaptation blocks. In the deadaptation block, the visuomotor rotation was removed, and visual feedback was only provided in one session. Performance was quantified using angle end-point error, averaged speed, and movement onset time. A non-parametric spatiotemporal cluster-level permutation test was used to analyze the EEG recordings. During deadaptation, participants experienced a greater error reduction when feedback of the cursor was provided. The EEG responses showed larger activity in the left centro-frontal parietal areas during the deadaptation block when participants received feedback, as opposed to when they did not receive feedback. Centrally distributed clusters were found for the adaptation and deadaptation blocks in the absence of visual feedback. The results suggest that visual feedback of the task-related error activates cortical areas related to performance monitoring, depending on the accessible sensory information.


Subject(s)
Adaptation, Physiological , Electroencephalography , Feedback, Sensory , Psychomotor Performance , Humans , Male , Female , Adult , Psychomotor Performance/physiology , Adaptation, Physiological/physiology , Young Adult , Feedback, Sensory/physiology , Cerebral Cortex/physiology , Hand/physiology , Movement/physiology , Motor Activity/physiology
8.
PLoS Comput Biol ; 20(5): e1012043, 2024 May.
Article in English | MEDLINE | ID: mdl-38739640

ABSTRACT

Sensory neurons reconstruct the world from action potentials (spikes) impinging on them. To effectively transfer information about the stimulus to the next processing level, a neuron needs to be able to adapt its working range to the properties of the stimulus. Here, we focus on the intrinsic neural properties that influence information transfer in cortical neurons and how tightly their properties need to be tuned to the stimulus statistics for them to be effective. We start by measuring the intrinsic information encoding properties of putative excitatory and inhibitory neurons in L2/3 of the mouse barrel cortex. Excitatory neurons show high thresholds and strong adaptation, making them fire sparsely and resulting in a strong compression of information, whereas inhibitory neurons that favour fast spiking transfer more information. Next, we turn to computational modelling and ask how two properties influence information transfer: 1) spike-frequency adaptation and 2) the shape of the IV-curve. We find that a subthreshold (but not threshold) adaptation, the 'h-current', and a properly tuned leak conductance can increase the information transfer of a neuron, whereas threshold adaptation can increase its working range. Finally, we verify the effect of the IV-curve slope in our experimental recordings and show that excitatory neurons form a more heterogeneous population than inhibitory neurons. These relationships between intrinsic neural features and neural coding that had not been quantified before will aid computational, theoretical and systems neuroscientists in understanding how neuronal populations can alter their coding properties, such as through the impact of neuromodulators. Why the variability of intrinsic properties of excitatory neurons is larger than that of inhibitory ones is an exciting question, for which future research is needed.


Subject(s)
Action Potentials , Adaptation, Physiological , Models, Neurological , Animals , Mice , Action Potentials/physiology , Adaptation, Physiological/physiology , Computational Biology , Computer Simulation , Neurons/physiology , Sensory Receptor Cells/physiology , Somatosensory Cortex/physiology
9.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732825

ABSTRACT

This study aimed to investigate the effects of wearing virtual reality (VR) with a head-mounted display (HMD) on body sway in younger and older adults. A standing posture with eyes open without an HMD constituted the control condition. Wearing an HMD and viewing a 30°-tilt image and a 60°-tilt image in a resting standing position were the experimental conditions. Measurements were made using a force plate. All conditions were performed three times each and included the X-axis trajectory length (mm), Y-axis trajectory length (mm), total trajectory length (mm), trajectory length per unit time (mm/s), outer peripheral area (mm2), and rectangular area (mm2). The results showed a significant interaction between generation and condition in Y-axis trajectory length (mm) and total trajectory length (mm), with an increased body center-of-gravity sway during the viewing of tilted VR images in older adults than in younger adults in both sexes. The results of this study show that body sway can be induced by visual stimulation alone with VR without movement, suggesting the possibility of providing safe and simple balance training to older adults.


Subject(s)
Postural Balance , Standing Position , Virtual Reality , Humans , Male , Female , Postural Balance/physiology , Aged , Adult , Young Adult , Middle Aged , Adaptation, Physiological/physiology , Posture/physiology
10.
PeerJ ; 12: e17148, 2024.
Article in English | MEDLINE | ID: mdl-38708360

ABSTRACT

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.


Subject(s)
Lotus , Pollen , Thermotolerance , Pollen/physiology , Thermotolerance/physiology , Lotus/physiology , Lotus/growth & development , Adaptation, Physiological/physiology , Global Warming , Germination/physiology , Altitude , Climate Change , Temperature , Acclimatization/physiology
11.
Rev Med Suisse ; 20(875): 1040-1043, 2024 May 22.
Article in French | MEDLINE | ID: mdl-38783674

ABSTRACT

Physical activity is undeniably associated with numerous health benefits. However, performance of high intensity and/or high-volume exercise poses a significant physiological challenge to the cardiovascular and respiratory systems, which must undergo several adaptations to meet the increased metabolic demands of the organism. Repeated and prolonged exposure to training leads to long-term cardiac remodeling aimed at optimizing the efficiency of the work performed by the heart during exertion. This article discusses some of the fundamental mechanisms of cardiovascular physiology during exercise including adaptive responses to acute bouts of exercise and longer term structural and functional characteristics of the athlete's heart.


L'exercice physique est indéniablement associé à de nombreux bénéfices pour la santé. La réalisation d'un effort représente un défi physiologique important pour le système cardiovasculaire et respiratoire, qui doivent entreprendre plusieurs adaptations permettant l'augmentation du débit cardiaque afin de palier l'augmentation des demandes métaboliques de l'organisme. L'exposition répétée et prolongée à l'entraînement induit à long terme un remodelage cardiaque optimisant l'efficience du système cardiovasculaire à l'effort. Dans cet article, nous analysons certains des mécanismes de base de la physiologie cardiovasculaire à l'effort, en passant des adaptations survenant lors d'un effort, pour finalement discuter des adaptations structurelles et fonctionnelles qui caractérisent le cœur d'athlète.


Subject(s)
Adaptation, Physiological , Athletes , Exercise , Heart , Humans , Exercise/physiology , Adaptation, Physiological/physiology , Heart/physiology , Cardiovascular Physiological Phenomena
12.
PLoS Comput Biol ; 20(4): e1011951, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598603

ABSTRACT

Implicit adaptation has been regarded as a rigid process that automatically operates in response to movement errors to keep the sensorimotor system precisely calibrated. This hypothesis has been challenged by recent evidence suggesting flexibility in this learning process. One compelling line of evidence comes from work suggesting that this form of learning is context-dependent, with the rate of learning modulated by error history. Specifically, learning was attenuated in the presence of perturbations exhibiting high variance compared to when the perturbation is fixed. However, these findings are confounded by the fact that the adaptation system corrects for errors of different magnitudes in a non-linear manner, with the adaptive response increasing in a proportional manner to small errors and saturating to large errors. Through simulations, we show that this non-linear motor correction function is sufficient to explain the effect of perturbation variance without referring to an experience-dependent change in error sensitivity. Moreover, by controlling the distribution of errors experienced during training, we provide empirical evidence showing that there is no measurable effect of perturbation variance on implicit adaptation. As such, we argue that the evidence to date remains consistent with the rigidity assumption.


Subject(s)
Adaptation, Physiological , Humans , Adaptation, Physiological/physiology , Computer Simulation , Learning/physiology , Psychomotor Performance/physiology , Computational Biology , Movement/physiology , Male , Adult , Models, Neurological
13.
Scand J Med Sci Sports ; 34(5): e14638, 2024 May.
Article in English | MEDLINE | ID: mdl-38671559

ABSTRACT

This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.


Subject(s)
Adaptation, Physiological , Magnetic Resonance Imaging , Muscle, Skeletal , Tendons , Ultrasonography , Humans , Male , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Tendons/physiology , Tendons/diagnostic imaging , Adaptation, Physiological/physiology , Biomechanical Phenomena , Adult , Female , Isometric Contraction/physiology , Elastic Modulus/physiology
14.
FASEB J ; 38(8): e23615, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38651657

ABSTRACT

Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN. Sixteen healthy young men performed nine repeated sprint training sessions in either normoxia (FIO2 = 0.209, RSN, n = 7) or normobaric hypoxia (FIO2 = 0.136, RSH, n = 9). Before and after the training period, exercise performance was assessed by using repeated sprint ability (RSA) and Wingate tests. Vastus lateralis muscle biopsies were performed to investigate muscle metabolic adaptations using proteomics combined with western blot analysis. Similar improvements were observed in RSA and Wingate tests in both RSN and RSH groups. At the muscle level, RSN and RSH reduced oxidative phosphorylation protein content but triggered an increase in mitochondrial biogenesis proteins. Proteomics showed an increase in several S100A family proteins in the RSH group, among which S100A13 most strongly. We confirmed a significant increase in S100A13 protein by western blot in RSH, which was associated with increased Akt phosphorylation and its downstream targets regulating protein synthesis. Altogether our data indicate that RSH may activate an S100A/Akt pathway to trigger specific adaptations as compared to RSN.


Subject(s)
Adaptation, Physiological , Hypoxia , Muscle, Skeletal , S100 Proteins , Signal Transduction , Humans , Male , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Adaptation, Physiological/physiology , Signal Transduction/physiology , Young Adult , S100 Proteins/metabolism , Adult , Proto-Oncogene Proteins c-akt/metabolism , Exercise/physiology
15.
J Neural Eng ; 21(3)2024 May 03.
Article in English | MEDLINE | ID: mdl-38653251

ABSTRACT

Objective.The functional asymmetry between the two brain hemispheres in language and spatial processing is well documented. However, a description of difference in control between the two hemispheres in motor function is not well established. Our primary objective in this study was to examine the distribution of control in the motor hierarchy and its variation across hemispheres.Approach.We developed a computation model termed the bilateral control network and implemented the same in a neural network framework to be used to replicate certain experimental results. The network consists of a simple arm model capable of making movements in 2D space and a motor hierarchy with separate elements coding target location, estimated position of arm, direction, and distance to be moved by the arm, and the motor command sent to the arm. The main assumption made here is the division of direction and distance coding between the two hemispheres with distance coded in the non-dominant and direction coded in the dominant hemisphere.Main results.With this assumption, the network was able to show main results observed in visuomotor adaptation studies. Importantly it showed decrease in error exhibited by the untrained arm while the other arm underwent training compared to the corresponding naïve arm's performance-transfer of motor learning from trained to the untrained arm. It also showed how this varied depending on the performance variable used-with distance as the measure, the non-dominant arm showed transfer and with direction, dominant arm showed transfer.Significance.Our results indicate the possibility of shared control between the two hemispheres. If indeed found true, this result could have major significance in motor rehabilitation as treatment strategies will need to be designed in order to account for this and can no longer be confined to the arm contralateral to the affected hemisphere.


Subject(s)
Adaptation, Physiological , Functional Laterality , Psychomotor Performance , Adaptation, Physiological/physiology , Humans , Functional Laterality/physiology , Psychomotor Performance/physiology , Rotation , Neural Networks, Computer , Models, Neurological , Nerve Net/physiology , Movement/physiology , Arm/physiology
16.
J Strength Cond Res ; 38(5): e264-e272, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662890

ABSTRACT

ABSTRACT: Harry, JR, Hurwitz, J, Agnew, C, and Bishop, C. Statistical tests for sports science practitioners: identifying performance gains in individual athletes. J Strength Cond Res 38(5): e264-e272, 2024-There is an ongoing surge of sports science professionals within sports organizations. However, when seeking to determine training-related adaptations, sports scientists have demonstrated continued reliance on group-style statistical analyses that are held to critical assumptions not achievable in smaller-sample team settings. There is justification that these team settings are better suited for replicated single-subject analyses, but there is a dearth of literature to guide sports science professionals seeking methods appropriate for their teams. In this report, we summarize 4 methods' ability to detect performance adaptations at the replicated single-subject level and provide our assessment for the ideal methods. These methods included the model statistic, smallest worthwhile change, coefficient of variation (CV), and standard error of measurement (SEM), which were discussed alongside step-by-step guides for how to conduct each test. To contextualize the methods' use in practice, real countermovement vertical jump (CMJ) test data were used from 4 (2 females and 2 males) athletes who complete 5 biweekly CMJ test sessions. Each athlete was competing in basketball at the NCAA Division 1 level. We concluded that the combined application of the model statistic and CV methods should be preferred when seeking to objectively detect meaningful training adaptations in individual athletes. This combined approach ensures that the differences between the tests are (a) not random and (b) reflect a worthwhile change. Ultimately, the use of simple and effective methods that are not restricted by group-based statistical assumptions can aid practitioners when conducting performance tests to determine athlete adaptations.


Subject(s)
Athletic Performance , Humans , Athletic Performance/physiology , Female , Male , Athletes , Basketball/physiology , Exercise Test/methods , Adaptation, Physiological/physiology , Young Adult
17.
BMC Microbiol ; 24(1): 131, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643098

ABSTRACT

BACKGROUND: Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS: The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS: Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Hot Temperature , Animals , Mice , Temperature , Gastrointestinal Microbiome/physiology , Cold Temperature , Adaptation, Physiological/physiology
18.
J Comput Neurosci ; 52(2): 145-164, 2024 May.
Article in English | MEDLINE | ID: mdl-38607466

ABSTRACT

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.


Subject(s)
Models, Neurological , Motion Perception , Photic Stimulation , Motion Perception/physiology , Humans , Neurons/physiology , Animals , Computer Simulation , Visual Cortex/physiology , Adaptation, Physiological/physiology
19.
Exp Physiol ; 109(6): 939-955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643471

ABSTRACT

Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.


Subject(s)
Muscle, Skeletal , Physical Endurance , Resistance Training , Signal Transduction , Humans , Signal Transduction/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Resistance Training/methods , Physical Endurance/physiology , Animals , Adaptation, Physiological/physiology , Exercise/physiology , Models, Biological
20.
J Cogn Neurosci ; 36(6): 1206-1220, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38579248

ABSTRACT

Given that informative and relevant feedback in the real world is often intertwined with distracting and irrelevant feedback, we asked how the relevancy of visual feedback impacts implicit sensorimotor adaptation. To tackle this question, we presented multiple cursors as visual feedback in a center-out reaching task and varied the task relevance of these cursors. In other words, participants were instructed to hit a target with a specific task-relevant cursor, while ignoring the other cursors. In Experiment 1, we found that reach aftereffects were attenuated by the mere presence of distracting cursors, compared with reach aftereffects in response to a single task-relevant cursor. The degree of attenuation did not depend on the position of the distracting cursors. In Experiment 2, we examined the interaction between task relevance and attention. Participants were asked to adapt to a task-relevant cursor/target pair, while ignoring the task-irrelevant cursor/target pair. Critically, we jittered the location of the relevant and irrelevant target in an uncorrelated manner, allowing us to index attention via how well participants tracked the position of target. We found that participants who were better at tracking the task-relevant target/cursor pair showed greater aftereffects, and interestingly, the same correlation applied to the task-irrelevant target/cursor pair. Together, these results highlight a novel role of task relevancy on modulating implicit adaptation, perhaps by giving greater attention to informative sources of feedback, increasing the saliency of the sensory prediction error.


Subject(s)
Adaptation, Physiological , Attention , Feedback, Sensory , Psychomotor Performance , Humans , Male , Female , Young Adult , Psychomotor Performance/physiology , Adult , Feedback, Sensory/physiology , Attention/physiology , Adaptation, Physiological/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...