Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.812
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1392675, 2024.
Article in English | MEDLINE | ID: mdl-38711986

ABSTRACT

Obesity and Type 2 Diabetes Mellitus (T2DM) are intricate metabolic disorders with a multifactorial etiology, often leading to a spectrum of complications. Recent research has highlighted the impact of these conditions on bone health, with a particular focus on the role of sclerostin (SOST), a protein molecule integral to bone metabolism. Elevated circulating levels of SOST have been observed in patients with T2DM compared to healthy individuals. This study aims to examine the circulating levels of SOST in a multiethnic population living in Kuwait and to elucidate the relationship between SOST levels, obesity, T2DM, and ethnic background. The study is a cross-sectional analysis of a large cohort of 2083 individuals living in Kuwait. The plasma level of SOST was measured using a bone panel multiplex assay. The study found a significant increase in SOST levels in individuals with T2DM (1008.3 pg/mL, IQR-648) compared to non-diabetic individuals (710.6 pg/mL, IQR-479). There was a significant gender difference in median SOST levels, with males exhibiting higher levels than females across various covariates (diabetes, IR, age, weight, and ethnicity). Notably, SOST levels varied significantly with ethnicity: Arabs (677.4 pg/mL, IQR-481.7), South Asians (914.6 pg/mL, IQR-515), and Southeast Asians (695.2 pg/mL, IQR-436.8). Furthermore, SOST levels showed a significant positive correlation with gender, age, waist circumference, systolic and diastolic blood pressure, fasting blood glucose, HbA1c, insulin, total cholesterol, triglycerides, HDL, LDL, ALT, and AST (p-Value ≥0.05). South Asian participants, who exhibited the highest SOST levels, demonstrated the most pronounced associations, even after adjusting for age, gender, BMI, and diabetes status (p-Value ≥0.05). The observed correlations of SOST with various clinical parameters suggest its significant role in the diabetic milieu, particularly pronounced in the South Asian population compared to other ethnic groups.


Subject(s)
Adaptor Proteins, Signal Transducing , Diabetes Mellitus, Type 2 , Obesity , Humans , Male , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/epidemiology , Female , Kuwait/epidemiology , Middle Aged , Cross-Sectional Studies , Obesity/blood , Obesity/ethnology , Obesity/epidemiology , Adaptor Proteins, Signal Transducing/blood , Genetic Markers , Adult , Aged , Ethnicity , Biomarkers/blood , Bone Morphogenetic Proteins/blood
2.
Cell Transplant ; 33: 9636897241248942, 2024.
Article in English | MEDLINE | ID: mdl-38712762

ABSTRACT

Recently, we and others generated induced tissue-specific stem/progenitor (iTS/iTP) cells. The advantages of iTS/iTP cells compared with induced pluripotent stem (iPS) cells are (1) easier generation, (2) efficient differentiation, and (3) no teratomas formation. In this study, we generated mouse induced pancreatic stem cells (iTS-P cells) by the plasmid vector expressing Yes-associated protein 1 (YAP). The iTS-P YAP9 cells expressed Foxa2 (endoderm marker) and Pdx1 (pancreatic marker) while the expressions of Oct3/4 and Nanog (marker of embryonic stem [ES] cells) in iTS-P YAP9 cells was significantly lower compared with those in ES cells. The iTS-P YAP9 cells efficiently differentiated into insulin-expressing cells compared with ES cells. The ability to generate autologous iTS cells may be applied to diverse applications of regenerative medicine.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Induced Pluripotent Stem Cells , YAP-Signaling Proteins , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Pancreas/cytology , Pancreas/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics
3.
Int J Biol Sci ; 20(7): 2592-2606, 2024.
Article in English | MEDLINE | ID: mdl-38725855

ABSTRACT

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.


Subject(s)
Autophagy , Lysosomes , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , Autophagy/physiology , Lysosomes/metabolism , Animals , Mice , Humans , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Adaptor Proteins, Signal Transducing
4.
Elife ; 132024 May 28.
Article in English | MEDLINE | ID: mdl-38805545

ABSTRACT

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Subject(s)
Cartilage, Articular , Hippo Signaling Pathway , Homeostasis , Osteoarthritis , Transforming Growth Factor beta , YAP-Signaling Proteins , Animals , Cartilage, Articular/metabolism , Mice , Osteoarthritis/genetics , Osteoarthritis/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Wnt Signaling Pathway , beta Catenin/metabolism , beta Catenin/genetics , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
5.
Sci Signal ; 17(838): eado6266, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805583

ABSTRACT

Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.


Subject(s)
Adaptor Proteins, Signal Transducing , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hippo Signaling Pathway/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Transcriptional Activation , Phosphorylation , HEK293 Cells , Epithelial-Mesenchymal Transition , Phosphoproteins/metabolism , Phosphoproteins/genetics , Animals , Serine-Threonine Kinase 3 , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
6.
Front Immunol ; 15: 1392933, 2024.
Article in English | MEDLINE | ID: mdl-38779683

ABSTRACT

Introduction: Antigen binding to the T cell antigen receptor (TCR) leads to the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 complex, and thereby to T cell activation. The CD3ε subunit plays a unique role in TCR activation by recruiting the kinase LCK and the adaptor protein NCK prior to ITAM phosphorylation. Here, we aimed to investigate how phosphorylation of the individual CD3ε ITAM tyrosines impacts the CD3ε signalosome. Methods: We mimicked irreversible tyrosine phosphorylation by substituting glutamic acid for the tyrosine residues in the CD3ε ITAM. Results: Integrating CD3ε phospho-mimetic variants into the complete TCR-CD3 complex resulted in reduced TCR signal transduction, which was partially compensated by the involvement of the other TCR-CD3 ITAMs. By using novel CD3ε phospho-mimetic Chimeric Antigen Receptor (CAR) variants, we avoided any compensatory effects of other ITAMs in the TCR-CD3 complex. We demonstrated that irreversible CD3ε phosphorylation prevented signal transduction upon CAR engagement. Mechanistically, we demonstrated that glutamic acid substitution at the N-terminal tyrosine residue of the CD3ε ITAM (Y39E) significantly reduces NCK binding to the TCR. In contrast, mutation at the C-terminal tyrosine of the CD3ε ITAM (Y50E) abolished LCK recruitment to the TCR, while increasing NCK binding. Double mutation at the C- and N-terminal tyrosines (Y39/50E) allowed ZAP70 to bind, but reduced the interaction with LCK and NCK. Conclusions: The data demonstrate that the dynamic phosphorylation of the CD3ε ITAM tyrosines is essential for CD3ε to orchestrate optimal TCR and CAR signaling and highlights the key role of CD3ε signalosome to tune signal transduction.


Subject(s)
CD3 Complex , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Signal Transduction , CD3 Complex/metabolism , CD3 Complex/immunology , Phosphorylation , Humans , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Lymphocyte Activation/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptor-CD3 Complex, Antigen, T-Cell/metabolism , Receptor-CD3 Complex, Antigen, T-Cell/immunology , Receptor-CD3 Complex, Antigen, T-Cell/genetics , HEK293 Cells , ZAP-70 Protein-Tyrosine Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , Immunoreceptor Tyrosine-Based Activation Motif , Protein Binding , Jurkat Cells , Oncogene Proteins
7.
Kidney Int ; 105(6): 1157-1159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777398

ABSTRACT

Chen et al. identify dysregulation of the transcriptional activator Yes-associated protein in the podocytes of diabetic mouse and human kidneys. Podocyte Yes-associated protein deficiency led to downregulation of the key transcription factor Wilms' tumor 1, and worsened podocyte injury in a mouse model of diabetic kidney injury. Yes-associated protein may therefore play a critical role in diabetic podocyte injury via regulation of Wilms' tumor 1 expression.


Subject(s)
Adaptor Proteins, Signal Transducing , Diabetic Nephropathies , Podocytes , Transcription Factors , WT1 Proteins , YAP-Signaling Proteins , Podocytes/metabolism , Podocytes/pathology , Animals , Humans , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , WT1 Proteins/metabolism , WT1 Proteins/genetics , Mice , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
8.
Science ; 384(6695): 584-590, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38696583

ABSTRACT

Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22 , Meningomyelocele , Animals , Female , Humans , Male , Mice , Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/genetics , Exome Sequencing , Folic Acid/administration & dosage , Folic Acid Deficiency/complications , Folic Acid Deficiency/genetics , Meningomyelocele/epidemiology , Meningomyelocele/genetics , Penetrance , Spinal Dysraphism/genetics , Risk , Adaptor Proteins, Signal Transducing/genetics
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710517

ABSTRACT

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Subject(s)
Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
10.
Yakugaku Zasshi ; 144(5): 497-501, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692923

ABSTRACT

Signal-transducing adaptor protein-2 (STAP-2) is a unique scaffold protein that regulates several immunological signaling pathways, including LIF/LIF receptor and LPS/TLR4 signals. STAP-2 is required for Fas/FasL-dependent T cell apoptosis and SDF-1α-induced T cell migration. Conversely, STAP-2 modulates integrin-mediated T cell adhesion, suggesting that STAP-2 is essential for several negative and positive T cell functions. However, whether STAP-2 is involved in T cell-antigen receptor (TCR)-mediated T cell activation is unknown. STAP-2 deficiency was recently reported to suppress TCR-mediated T cell activation by inhibiting LCK-mediated CD3ζ and ZAP-70 activation. Using STAP-2 deficient mice, it was demonstrated that STAP-2 is required for the pathogenesis of Propionibacterium acnes-induced granuloma formation and experimental autoimmune encephalomyelitis. Here, detailed functions of STAP-2 in TCR-mediated T cell activation, and how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases, are reviewed.


Subject(s)
Adaptor Proteins, Signal Transducing , Lymphocyte Activation , Receptors, Antigen, T-Cell , Signal Transduction , T-Lymphocytes , ZAP-70 Protein-Tyrosine Kinase , Animals , Receptors, Antigen, T-Cell/physiology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Humans , Adaptor Proteins, Signal Transducing/physiology , Adaptor Proteins, Signal Transducing/metabolism , Mice , ZAP-70 Protein-Tyrosine Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/physiology , Propionibacterium acnes/physiology , Propionibacterium acnes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Inflammation/immunology , Apoptosis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Cell Movement , Cell Adhesion , CD3 Complex , Chemokine CXCL12/physiology , Chemokine CXCL12/metabolism
11.
FASEB J ; 38(9): e23633, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690712

ABSTRACT

Recent reports suggest that the Hippo signaling pathway regulates testis development, though its exact roles in Sertoli cell differentiation remain unknown. Here, we examined the functions of the main Hippo pathway kinases, large tumor suppressor homolog kinases 1 and 2 (Lats1 and Lats2) in developing mouse Sertoli cells. Conditional inactivation of Lats1/2 in Sertoli cells resulted in the disorganization and overgrowth of the testis cords, the induction of a testicular inflammatory response and germ cell apoptosis. Stimulated by retinoic acid 8 (STRA8) expression in germ cells additionally suggested that germ cells may have been preparing to enter meiosis prior to their loss. Gene expression analyses of the developing testes of conditional knockout animals further suggested impaired Sertoli cell differentiation, epithelial-to-mesenchymal transition, and the induction of a specific set of genes associated with Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated integrin signaling. Finally, the involvement of YAP/TAZ in Sertoli cell differentiation was confirmed by concomitantly inactivating Yap/Taz in Lats1/2 conditional knockout model, which resulted in a partial rescue of the testicular phenotypic changes. Taken together, these results identify Hippo signaling as a crucial pathway for Sertoli cell development and provide novel insight into Sertoli cell fate maintenance.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Protein Serine-Threonine Kinases , Sertoli Cells , Tumor Suppressor Proteins , YAP-Signaling Proteins , Animals , Sertoli Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Mice , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Differentiation/physiology , Mice, Knockout , Signal Transduction , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Testis/metabolism , Epithelial-Mesenchymal Transition/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics
12.
BMC Cancer ; 24(1): 582, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741069

ABSTRACT

BACKGROUND: Local recurrence after surgery and radiochemotherapy seriously affects the prognosis of locally advanced rectal cancer (LARC) patients. Studies on molecular markers related to the radiochemotherapy sensitivity of cancers have been widely carried out, which might provide valued information for clinicians to carry out individual treatment. AIM: To find potential biomarkers of tumors for predicting postoperative recurrence. METHODS: In this study, LARC patients undergoing surgery and concurrent radiochemotherapy were enrolled. We focused on clinicopathological factors and PTEN, SIRT1, p-4E-BP1, and pS6 protein expression assessed by immunohistochemistry in 73 rectal cancer patients with local recurrence and 76 patients without local recurrence. RESULTS: The expression of PTEN was higher, while the expression of p-4E-BP1 was lower in patients without local recurrence than in patients with local recurrence. Moreover, TNM stage, lymphatic vessel invasion (LVI), PTEN and p-4E-BP1 might be independent risk factors for local recurrence after LARC surgery combined with concurrent radiochemotherapy. CONCLUSIONS: This study suggests that PTEN and p-4E-BP1 might be potential biomarkers for prognostic prediction and therapeutic targets for LARC.


Subject(s)
Adaptor Proteins, Signal Transducing , Biomarkers, Tumor , Cell Cycle Proteins , Chemoradiotherapy , Neoplasm Recurrence, Local , PTEN Phosphohydrolase , Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Rectal Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Male , Female , Middle Aged , Chemoradiotherapy/methods , Biomarkers, Tumor/metabolism , Aged , Prognosis , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Phosphoproteins/metabolism , Adult , Neoplasm Staging
13.
BMC Cancer ; 24(1): 587, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741073

ABSTRACT

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Hippo Signaling Pathway , Organoplatinum Compounds , Oxaliplatin , Protein Serine-Threonine Kinases , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Suppressor Protein p53 , Humans , Oxaliplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Verteporfin/pharmacology , Verteporfin/therapeutic use , Cell Line, Tumor , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , YAP-Signaling Proteins/metabolism , Porphyrins/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects
14.
Sci Transl Med ; 16(747): eadj7685, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748774

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.


Subject(s)
Adaptor Proteins, Signal Transducing , Cholangiocarcinoma , Dasatinib , Isocitrate Dehydrogenase , Mutation , src-Family Kinases , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Humans , Dasatinib/pharmacology , Mutation/genetics , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Animals , Cell Adhesion Molecules/metabolism , Cell Proliferation/drug effects , Phosphorylation/drug effects , Signal Transduction/drug effects , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
15.
Immunity ; 57(5): 973-986.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697117

ABSTRACT

The ubiquitin-binding endoribonuclease N4BP1 potently suppresses cytokine production by Toll-like receptors (TLRs) that signal through the adaptor MyD88 but is inactivated via caspase-8-mediated cleavage downstream of death receptors, TLR3, or TLR4. Here, we examined the mechanism whereby N4BP1 limits inflammatory responses. In macrophages, deletion of N4BP1 prolonged activation of inflammatory gene transcription at late time points after TRIF-independent TLR activation. Optimal suppression of inflammatory cytokines by N4BP1 depended on its ability to bind polyubiquitin chains, as macrophages and mice-bearing inactivating mutations in a ubiquitin-binding motif in N4BP1 displayed increased TLR-induced cytokine production. Deletion of the noncanonical IκB kinases (ncIKKs), Tbk1 and Ikke, or their adaptor Tank phenocopied N4bp1 deficiency and enhanced macrophage responses to TLR1/2, TLR7, or TLR9 stimulation. Mechanistically, N4BP1 acted in concert with the ncIKKs to limit the duration of canonical IκB kinase (IKKα/ß) signaling. Thus, N4BP1 and the ncIKKs serve as an important checkpoint against over-exuberant innate immune responses.


Subject(s)
Endoribonucleases , I-kappa B Kinase , Inflammation , Macrophages , Mice, Knockout , Protein Serine-Threonine Kinases , Signal Transduction , Toll-Like Receptors , Animals , Mice , Inflammation/immunology , Inflammation/metabolism , Toll-Like Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , I-kappa B Kinase/metabolism , I-kappa B Kinase/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Ubiquitin/metabolism , Cytokines/metabolism , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
16.
Nat Commun ; 15(1): 4153, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755212

ABSTRACT

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Subject(s)
ADAM Proteins , Cardiovirus Infections , Encephalomyocarditis virus , Immunity, Innate , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Membrane Proteins , Mice, Knockout , Myocarditis , Animals , Encephalomyocarditis virus/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , ADAM Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/immunology , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Myocarditis/immunology , Myocarditis/virology , Humans , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Signal Transduction/immunology , Male , HEK293 Cells
17.
Cell Commun Signal ; 22(1): 277, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755629

ABSTRACT

INTRODUCTION: Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS: We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS: We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS: We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.


Subject(s)
Cell Movement , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2 , Humans , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Movement/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/metabolism
18.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38717859

ABSTRACT

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Subject(s)
Adaptor Proteins, Signal Transducing , Dynamin II , Tumor Suppressor Proteins , Dynamin II/metabolism , Dynamin II/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Membrane/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mitochondrial Dynamics/physiology , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism
19.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744825

ABSTRACT

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Subject(s)
Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Glucose/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fatty Acids/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , NADP/metabolism , Protein Biosynthesis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Oxidative Stress , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics
20.
Nat Commun ; 15(1): 4052, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744820

ABSTRACT

Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.


Subject(s)
Adaptor Proteins, Signal Transducing , Adipocytes , Diet, High-Fat , Mice, Knockout , Tumor Microenvironment , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Diet, High-Fat/adverse effects , Transcription Factors/metabolism , Transcription Factors/genetics , Obesity/metabolism , Obesity/pathology , Humans , Verteporfin/pharmacology , Signal Transduction , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Disease Progression , Male , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Lipodystrophy/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...