Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.543
Filter
2.
Int J Biol Sci ; 20(7): 2491-2506, 2024.
Article in English | MEDLINE | ID: mdl-38725850

ABSTRACT

Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.


Subject(s)
Adenosine , Lipopolysaccharides , Macrophages , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Animals , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Methylation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Methyltransferases/metabolism , Methyltransferases/genetics , Inflammation/metabolism , Colon/metabolism , Colon/drug effects , Male , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/metabolism , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT2/genetics , RAW 264.7 Cells
3.
Neurosurg Rev ; 47(1): 215, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730072

ABSTRACT

BACKGROUND AND OBJECTIVES: Cerebral aneurysms in complex anatomical locations and intraoperative rupture can be challenging. Many methods to reduce blood flow can facilitate its exclusion from the circulation. This study evaluated the safety and efficacy of using adenosine, rapid ventricular pacing, and hypothermia in cerebral aneurysm clipping. METHODS: Databases (PubMed, Embase, and Web of Science) were systematically searched for studies documenting the use of adenosine, rapid ventricular pacing, and hypothermia in cerebral aneurysm clipping and were included in this single-arm meta-analysis. The primary outcome was 30-day mortality. Secondary outcomes included neurological outcomes by mRs and GOS, and cardiac outcomes. We evaluated the risk of bias using ROBIN-I, a tool developed by the Cochrane Collaboration. OpenMetaAnalyst version 2.0 was used for statistical analysis and I2 measured data heterogeneity. Heterogeneity was defined as an I2 > 50%. RESULTS: Our systematic search yielded 10,100 results. After the removal of duplicates and exclusion by title and abstract, 64 studies were considered for full review, of which 29 were included. The overall risk of bias was moderate. The pooled proportions of the adenosine analysis for the different outcomes were: For the primary outcome: 11,9%; for perioperative arrhythmia: 0,19%; for postoperative arrhythmia: 0,56%; for myocardial infarction incidence: 0,01%; for follow-up good recovery (mRs 0-2): 88%; and for neurological deficit:14.1%. In the rapid ventricular pacing analysis, incidences were as follows: peri operative arrhythmia: 0,64%; postoperative arrhythmia: 0,3%; myocardial infarction: 0%. In the hypothermia analysis, the pooled proportion of 30-day mortality was 11,6%. The incidence of post-op neurological deficits was 35,4% and good recovery under neurological analysis by GOS was present in 69.2%. CONCLUSION: The use of the three methods is safe and the related complications were very low. Further studies are necessary, especially with comparative analysis, for extended knowledge.


Subject(s)
Adenosine , Intracranial Aneurysm , Humans , Intracranial Aneurysm/surgery , Adenosine/therapeutic use , Hypothermia, Induced/methods , Treatment Outcome , Neurosurgical Procedures/methods , Cardiac Pacing, Artificial/methods
4.
Sci Rep ; 14(1): 10427, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714753

ABSTRACT

This study aimed to synchronously determine epitranscriptome-wide RNA N6-methyladenosine (m6A) modifications and mRNA expression profile in high grade serous ovarian cancer (HGSOC). The methylated RNA immunoprecipitation sequencing (MeRIP-seq) was used to comprehensively examine the m6A modification profile and the RNA-sequencing (RNA-seq) was performed to analyze the mRNA expression profile in HGSOC and normal fallopian tube (FT) tissues. Go and KEGG analyses were carried out in the enrichment of those differentially methylated and expressed genes. MeRIP-seq data showed 53,794 m6A methylated peaks related to 19,938 genes in the HGSOC group and 51,818 m6A peaks representing 19,681 genes in the FT group. RNA-seq results revealed 2321 upregulated and 2486 downregulated genes in HGSOC. Conjoint analysis of MeRIP-seq and RNA-seq data identified differentially expressed genes in which 659 were hypermethylated (330 up- and 329 down-regulated) and 897 were hypomethylated (475 up- and 422 down-regulated). Functional enrichment analysis indicated that these differentially modulated genes are involved in pathways related to cancer development. Among methylation regulators, the m6A eraser (FTO) expression was significantly lower, but the m6A readers (IGF2BP2 and IGF2BP3) were higher in HGSOC, which was validated by the subsequent real-time PCR assay. Exploration through public databases further corroborated their possible clinical application of certain methylation regulators and differentially expressed genes. For the first time, our study screens the epitranscriptome-wide m6A modification and expression profiles of their modulated genes and signaling pathways in HGSOC. Our findings provide an alternative direction in exploring the molecular mechanisms of ovarian pathogenesis and potential biomarkers in the diagnosis and predicting the prognosis of the disease.


Subject(s)
Adenosine , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , RNA, Messenger , Humans , Female , Adenosine/analogs & derivatives , Adenosine/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Pilot Projects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/metabolism , Neoplasm Grading , Middle Aged , Transcriptome , DNA Methylation
5.
BMC Genomics ; 25(1): 447, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714941

ABSTRACT

BACKGROUND: The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS: Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION: The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.


Subject(s)
Adenosine , Sexual Maturation , Testis , Animals , Male , Testis/metabolism , Testis/growth & development , Adenosine/analogs & derivatives , Adenosine/metabolism , Swine/genetics , Sexual Maturation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methylation , Gene Expression Regulation, Developmental , Signal Transduction , Gene Expression Profiling
6.
BMC Psychiatry ; 24(1): 342, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714976

ABSTRACT

OBJECTIVE: To find the relationship between N6-methyladenosine (m6A) genes and Major Depressive Disorder (MDD). METHODS: Differential expression of m6A associated genes between normal and MDD samples was initially identified. Subsequent analysis was conducted on the functions of these genes and the pathways they may affect. A diagnostic model was constructed using the expression matrix of these differential genes, and visualized using a nomogram. Simultaneously, an unsupervised classification method was employed to classify all patients based on the expression of these m6A associated genes. Following this, common differential genes among different clusters were computed. By analyzing the functions of the common differential expressed genes among clusters, the role of m6A-related genes in the pathogenesis of MDD patients was elucidated. RESULTS: Differential expression was observed in ELAVL1 and YTHDC2 between the MDD group and the control group. ELAVL1 was associated with comorbid anxiety in MDD patients. A linear regression model based on these two genes could accurately predict whether patients in the GSE98793 dataset had MDD and could provide a net benefit for clinical decision-making. Based on the expression matrix of ELAVL1 and YTHDC2, MDD patients were classified into three clusters. Among these clusters, there were 937 common differential genes. Enrichment analysis was also performed on these genes. The ssGSEA method was applied to predict the content of 23 immune cells in the GSE98793 dataset samples. The relationship between these immune cells and ELAVL1, YTHDC2, and different clusters was analyzed. CONCLUSION: Among all the m6A genes, ELAVL1 and YTHDC2 are closely associated with MDD, ELAVL1 is related to comorbid anxiety in MDD. ELAVL1 and YTHDC2 have opposite associations with immune cells in MDD.


Subject(s)
Adenosine , Depressive Disorder, Major , Humans , Depressive Disorder, Major/genetics , Adenosine/analogs & derivatives , Adenosine/genetics , Female , Male , Methylation , RNA-Binding Proteins/genetics , Adult , Nomograms , RNA Helicases
7.
BMC Biol ; 22(1): 106, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715001

ABSTRACT

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Subject(s)
Protein Biosynthesis , RNA Editing , Retina , Animals , Mice , Retina/metabolism , Retina/embryology , Alternative Splicing , Inosine/metabolism , Inosine/genetics , Adenosine/metabolism
8.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690769

ABSTRACT

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
9.
Clin Exp Pharmacol Physiol ; 51(7): e13875, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797522

ABSTRACT

N6-methyladenosine (m6A) methylation modification affects the tumorigenesis and metastasis of breast cancer (BC). This study investigated the association between m6A regulator-mediated methylation modification patterns and characterization of the tumour microenvironment in BC, as well as their prognostic importance. Public gene expression data and clinical annotations were collected from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus website and the METABRIC program. We analysed the genetic expression, gene-gene interactions, gene mutations and copy number variations using R software. The data were screened for risk genes using the Cox risk regression model, and we developed an algorithm for risk score and its predictive value. Compared to adjacent normal tissue, we identified 16 differentially expressed m6A regulators in BC, including six writers and 10 readers. Under unsupervised clustering, two distinguished modification patterns were identified, cluster C1 and C2. Compared to m6A cluster C2, cluster C1 was found to be more involved in immune-related pathways, with a relatively higher immune score and stromal score (P < 0.05). Patients were divided into two groups based on their risk scores for survival analysis. The patients in the high-risk score group had significantly worse overall survival than patients in the low-risk score group, (P < 0.0001). The TCGA database validation revealed the same prognostic tendency. In summary, our study showed distinct m6A regulator modification patterns contribute to the immunological heterogeneity and diversity of BC. The development of m6A gene signatures and the m6A score aid in the prognostic prediction of patients with BC.


Subject(s)
Adenosine , Breast Neoplasms , Tumor Microenvironment , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Female , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Methylation , Prognosis , Databases, Genetic
10.
PeerJ ; 12: e17376, 2024.
Article in English | MEDLINE | ID: mdl-38784389

ABSTRACT

Background: Condyloma acuminatum (CA) is caused by low-risk human papillomavirus, and is characterized by high recurrence after treatment. The RNA modification N6-methyladenosine (m6A) plays an important role during diverse viral infections, including high-risk HPV infection in cervical cancer. However, it is unclear whether low-risk HPV infection changes the RNA m6A methylation in CA. Methods: High-throughputm6A-sequencing was performed to profile the transcriptome-wide mRNA modifications of CA tissues infected by LR-HPVs and the paired normal tissues from CA patients. We further investigated the regulation of alternative splicing by RNA binding proteins (RBPs) with altered m6A modification and constructed a regulatory network among these RBPs, regulated alternative splicing events (RASEs) and regulated alternative splicing genes (RASGs) in CA. Results: The results show that the m6A level in CA tissues differed from that in the paired controls. Furthermore, cell cycle- and cell adhesion- associated genes with m6A modification were differentially expressed in CA tissues compared to the paired controls. In particular, seven RNA binding protein genes with specific m6A methylated sites, showed a higher or lower expression at the mRNA level in CA tissues than in the paired normal tissues. In addition, these differentially expressed RNA binding protein genes would regulate the alternative splicing pattern of apoptotic process genes in CA tissue. Conclusions: Our study reveals a sophisticated m6A modification profile in CA tissue that affects the response of host cells to HPV infection, and provides cues for the further exploration of the roles of m6A and the development of a novel treatment strategy for CA.


Subject(s)
Alternative Splicing , Condylomata Acuminata , RNA-Binding Proteins , Humans , Alternative Splicing/genetics , Condylomata Acuminata/genetics , Condylomata Acuminata/virology , Condylomata Acuminata/metabolism , Condylomata Acuminata/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Female , Adenosine/analogs & derivatives , Adenosine/metabolism , Methylation , Adult , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/pathology , RNA Methylation
11.
Biomolecules ; 14(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38785921

ABSTRACT

Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.


Subject(s)
Adenosine , Musculoskeletal Diseases , Humans , Musculoskeletal Diseases/genetics , Musculoskeletal Diseases/metabolism , Musculoskeletal Diseases/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Death/genetics , Animals , Epigenesis, Genetic
12.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Article in English | MEDLINE | ID: mdl-38774758

ABSTRACT

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Subject(s)
Liver , MAP Kinase Signaling System , Methyltransferases , Reperfusion Injury , Animals , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Mice , Methyltransferases/genetics , Methyltransferases/metabolism , Liver/pathology , Liver/metabolism , MAP Kinase Signaling System/genetics , Disease Models, Animal , Male , Apoptosis/genetics , Mice, Knockout , Humans , Adenosine/metabolism , Adenosine/analogs & derivatives , Hepatocytes/metabolism , Hepatocytes/pathology , Mice, Inbred C57BL
13.
BMC Med Genomics ; 17(1): 137, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778403

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS: RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS: A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS: Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.


Subject(s)
Adenosine , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Prognosis , Female , Biomarkers, Tumor/genetics , Risk Assessment , Gene Expression Regulation, Neoplastic , Middle Aged , Tumor Microenvironment
14.
BMC Musculoskelet Disord ; 25(1): 359, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711079

ABSTRACT

BACKGROUND: With the increasing incidence of steroid-induced necrosis of the femoral head (SNFH), numerous scholars have investigated its pathogenesis. Current evidence suggests that the imbalance between lipogenesis and osteoblast differentiation in bone marrow mesenchymal stem cells (BMSCs) is a key pathological feature of SNFH. MicroRNAs (miRNAs) have strong gene regulatory effects and can influence the direction of cell differentiation. N6-methyladenosine (m6A) is a prevalent epigenetic modification involved in diverse pathophysiological processes. However, knowledge of how miRNAs regulate m6A-related factors that affect BMSC differentiation is limited. OBJECTIVE: We aimed to investigate the role of miR27a in regulating the expression of YTHDF2 in BMSCs. METHODS: We compared miR27a, YTHDF2, and total m6A mRNA levels in SNFH-affected and control BMSCs. CCK-8 and TUNEL assays were used to assess BMSC proliferation and apoptosis. Western blotting and qRT‒PCR were used to measure the expression of osteogenic (ALP, RUNX2, and OCN) and lipogenic (PPARγ and C/EBPα) markers. Alizarin Red and Oil Red O staining were used to quantify osteogenic and lipogenic differentiation, respectively. miR27a was knocked down or overexpressed to evaluate its impact on BMSC differentiation and its relationship with YTHDF2. Bioinformatics analyses identified YTHDF2 as a differentially expressed gene in SNFH (ROC analysis) and revealed potential signaling pathways through GSEA. The effects of YTHDF2 silencing on the lipogenic and osteogenic functions of BMSCs were assessed. RESULTS: miR27a downregulation and YTHDF2 upregulation were observed in the SNFH BMSCs. miR27a knockdown/overexpression modulated YTHDF2 expression, impacting BMSC differentiation. miR27a silencing decreased m6A methylation and promoted osteogenic differentiation, while YTHDF2 silencing exerted similar effects. GSEA suggested potential signaling pathways associated with YTHDF2 in SNFH. CONCLUSION: miR27a regulates BMSC differentiation through YTHDF2, affecting m6A methylation and promoting osteogenesis. This finding suggests a potential therapeutic target for SNFH.


Subject(s)
Adenosine/analogs & derivatives , Cell Differentiation , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , RNA-Binding Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Osteogenesis/genetics , Humans , Femur Head Necrosis/genetics , Femur Head Necrosis/metabolism , Femur Head Necrosis/chemically induced , Cells, Cultured , Apoptosis , Adenosine/metabolism , Animals , Male , Methylation , Cell Proliferation , Lipogenesis/genetics
15.
J Hypertens ; 42(6): 1027-1038, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690904

ABSTRACT

OBJECTIVE: Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1ß modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS: In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1ß (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS: The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1ß infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1ß, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1ß, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION: The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1ß. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.


Subject(s)
Interleukin-1beta , Kidney , Sympathetic Nervous System , Tumor Necrosis Factor-alpha , Animals , Interleukin-1beta/pharmacology , Rats , Kidney/innervation , Kidney/drug effects , Male , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Rats, Sprague-Dawley , Heart Rate/drug effects , Bradykinin/pharmacology , Reflex/drug effects , Blood Pressure/drug effects , Adenosine/administration & dosage , Adenosine/pharmacology , Saline Solution, Hypertonic/administration & dosage , Saline Solution, Hypertonic/pharmacology
16.
Iran J Med Sci ; 49(5): 275-285, 2024 May.
Article in English | MEDLINE | ID: mdl-38751873

ABSTRACT

Background: The RNA-dependent RNA polymerase (RdRp) inhibitors, molnupiravir and VV116, have the potential to maximize clinical benefits in the oral treatment of COVID-19. Subjects who consume these drugs may experience an increased incidence of adverse events. This study aimed to evaluate the safety profile of molnupiravir and VV116. Methods: A comprehensive search of scientific and medical databases, such as PubMed Central/Medline, Embase, Web of Science, and Cochrane Library, was conducted to find relevant articles in English from January 2020 to June 2023. Any kind of adverse events reported in the study were pooled and analyzed in the drug group versus the control group. Estimates of risk effects were summarized through the random effects model using Review Manager version 5.2, and sensitivity analysis was performed by Stata 17.0 software. Results: Fifteen studies involving 32,796 subjects were included. Eleven studies were placebo-controlled, and four were Paxlovid-controlled. Twelve studies reported adverse events for molnupiravir, and three studies described adverse events for VV116. The total odds ratio (OR) for adverse events in the RdRp inhibitor versus the placebo-controlled group was 1.01 (95% CI=0.84-1.22; I2=26%), P=0.88. The total OR for adverse events in the RdRp inhibitor versus the Paxlovid-controlled group was 0.32 (95% CI=0.16-0.65; I2=87%), P=0.002. Individual drug subgroup analysis in the placebo-controlled study showed that compared with the placebo group, a total OR for adverse events was 0.97 (95% CI, 0.85-1.10; I2=0%) in the molnupiravir group and 3.77 (95% CI=0.08-175.77; I2=85%) in the VV116 group. Conclusion: The RdRp inhibitors molnupiravir and VV116 are safe for oral treatment of COVID-19. Further evidence is necessary that RdRp inhibitors have a higher safety profile than Paxlovid.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Cytidine , Hydroxylamines , RNA-Dependent RNA Polymerase , Humans , Hydroxylamines/therapeutic use , Hydroxylamines/pharmacology , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Cytidine/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Administration, Oral , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2 , Adenosine/analogs & derivatives
17.
Nature ; 629(8012): 639-645, 2024 May.
Article in English | MEDLINE | ID: mdl-38693264

ABSTRACT

Sleep is a nearly universal behaviour with unclear functions1. The synaptic homeostasis hypothesis proposes that sleep is required to renormalize the increases in synaptic number and strength that occur during wakefulness2. Some studies examining either large neuronal populations3 or small patches of dendrites4 have found evidence consistent with the synaptic homeostasis hypothesis, but whether sleep merely functions as a permissive state or actively promotes synaptic downregulation at the scale of whole neurons is unclear. Here, by repeatedly imaging all excitatory synapses on single neurons across sleep-wake states of zebrafish larvae, we show that synapses are gained during periods of wake (either spontaneous or forced) and lost during sleep in a neuron-subtype-dependent manner. However, synapse loss is greatest during sleep associated with high sleep pressure after prolonged wakefulness, and lowest in the latter half of an undisrupted night. Conversely, sleep induced pharmacologically during periods of low sleep pressure is insufficient to trigger synapse loss unless adenosine levels are boosted while noradrenergic tone is inhibited. We conclude that sleep-dependent synapse loss is regulated by sleep pressure at the level of the single neuron and that not all sleep periods are equally capable of fulfilling the functions of synaptic homeostasis.


Subject(s)
Homeostasis , Larva , Neurons , Sleep , Synapses , Wakefulness , Zebrafish , Animals , Zebrafish/physiology , Synapses/metabolism , Synapses/physiology , Sleep/physiology , Neurons/physiology , Neurons/metabolism , Wakefulness/physiology , Larva/physiology , Adenosine/metabolism , Single-Cell Analysis
18.
Methods Mol Biol ; 2807: 195-208, 2024.
Article in English | MEDLINE | ID: mdl-38743230

ABSTRACT

N6-methyladenosine (m6A) modification of RNA is an important area in studying viral replication, cellular responses, and host immunity. HIV-1 RNA contains multiple m6A modifications that regulate viral replication and gene expression. HIV-1 infection of CD4+ T-cells or HIV-1 envelope protein treatment upregulates m6A levels of cellular RNA. Changes in the m6A modification of cellular transcripts in response to HIV-1 infection provide new insights into the mechanisms of posttranscriptional gene regulation in the host cell. To better investigate the functions of m6A modification in HIV-1 infection and innate immune responses, it is helpful to standardize basic protocols. Here, we describe a method for the selective enrichment of m6A-modified RNA from HIV-1-infected primary CD4+ T-cells based on immunoprecipitation. The enriched RNA with m6A modifications can be used in a variety of downstream applications to determine the methylation status of viral or cellular RNA at resolution from transcript level down to single nucleotide.


Subject(s)
Adenosine , CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , RNA, Viral , HIV-1/genetics , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/virology , Methylation , Virus Replication , Immunoprecipitation/methods
19.
Cell Commun Signal ; 22(1): 274, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755598

ABSTRACT

BACKGROUND: Extracellular ATP-AMP-adenosine metabolism plays a pivotal role in modulating tumor immune responses. Previous studies have shown that the conversion of ATP to AMP is primarily catalysed by Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39), a widely studied ATPase, which is expressed in tumor-associated immune cells. However, the function of ATPases derived from tumor cells themselves remains poorly understood. The purpose of this study was to investigate the role of colon cancer cell-derived ATPases in the development and progression of colon cancer. METHODS: Bioinformatic and tissue microarray analyses were performed to investigate the expression of ATPase family members in colon cancer. An ATP hydrolysis assay, high-performance liquid chromatography (HPLC), and CCK8 and colony formation assays were used to determine the effects of ENTPD2 on the biological functions of colon cancer cells. Flow cytometric and RNA-seq analyses were used to explore the function of CD8+ T cells. Immunoelectron microscopy and western blotting were used to evaluate the expression of ENTPD2 in exosomes. Double-labelling immunofluorescence and western blotting were used to examine the expression of ENTPD2 in serum exosomes and colon cancer tissues. RESULTS: We found that ENTPD2, rather than the well-known ATPase CD39, is highly expressed in cancer cells and is significantly positively associated with poor patient prognosis in patients with colon cancer. The overexpression of ENTPD2 in cancer cells augmented tumor progression in immunocompetent mice by inhibiting the function of CD8+ T cells. Moreover, ENTPD2 is localized primarily within exosomes. On the one hand, exosomal ENTPD2 reduces extracellular ATP levels, thereby inhibiting P2X7R-mediated NFATc1 nuclear transcription; on the other hand, it facilitates the increased conversion of ATP to adenosine, hence promoting adenosine-A2AR pathway activity. In patients with colon cancer, the serum level of exosomal ENTPD2 is positively associated with advanced TNM stage and high tumor invasion depth. Moreover, the level of ENTPD2 in the serum exosomes of colon cancer patients is positively correlated with the ENTPD2 expression level in paired colon cancer tissues, and the ENTPD2 level in both serum exosomes and tissues is significantly negatively correlated with the ENTPD2 expression level in tumor-infiltrating CD8+ T cells. CONCLUSION: Our study suggests that exosomal ENTPD2, originated from colon cancer cells, contributes to the immunosuppressive microenvironment by promoting ATP-adenosine metabolism. These findings highlight the importance of exosome-derived hydrolytic enzymes as independent entities in shaping the tumor immune microenvironment.


Subject(s)
Adenosine Triphosphate , Adenosine , Apyrase , CD8-Positive T-Lymphocytes , Colonic Neoplasms , Exosomes , Humans , Exosomes/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Apyrase/metabolism , Apyrase/genetics , Animals , Mice , Cell Line, Tumor , Male , Female , Metabolic Reprogramming , Receptor, Adenosine A2A
20.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745192

ABSTRACT

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


Subject(s)
N-Myc Proto-Oncogene Protein , Neuroblastoma , Tripartite Motif-Containing Protein 28 , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Tripartite Motif-Containing Protein 28/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability , Cell Line, Tumor , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Mice, Nude , Adenosine/analogs & derivatives , Adenosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...