Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.094
Filter
1.
Medicine (Baltimore) ; 103(19): e38116, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728474

ABSTRACT

RNA editing, as an epigenetic mechanism, exhibits a strong correlation with the occurrence and development of cancers. Nevertheless, few studies have been conducted to investigate the impact of RNA editing on cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). In order to study the connection between RNA editing and CESC patients' prognoses, we obtained CESC-related information from The Cancer Genome Atlas (TCGA) database and randomly allocated the patients into the training group or testing group. An RNA editing-based risk model for CESC patients was established by Cox regression analysis and least absolute shrinkage and selection operator (LASSO). According to the median score generated by this RNA editing-based risk model, patients were categorized into subgroups with high and low risks. We further constructed the nomogram by risk scores and clinical characteristics and analyzed the impact of RNA editing levels on host gene expression levels and adenosine deaminase acting on RNA. Finally, we also compared the biological functions and pathways of differentially expressed genes (DEGs) between different subgroups by enrichment analysis. In this risk model, we screened out 6 RNA editing sites with significant prognostic value. The constructed nomogram performed well in forecasting patients' prognoses. Furthermore, the level of RNA editing at the prognostic site exhibited a strong correlation with host gene expression. In the high-risk subgroup, we observed multiple biological functions and pathways associated with immune response, cell proliferation, and tumor progression. This study establishes an RNA editing-based risk model that helps forecast patients' prognoses and offers a new understanding of the underlying mechanism of RNA editing in CESC.


Subject(s)
Nomograms , RNA Editing , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Female , RNA Editing/genetics , Prognosis , Risk Assessment/methods , Middle Aged , Carcinoma, Squamous Cell/genetics , Adenocarcinoma/genetics , Adenosine Deaminase/genetics
2.
Neoplasma ; 71(2): 180-192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766853

ABSTRACT

It has been demonstrated that calreticulin (CALR) is expressed abnormally in various tumors and is involved in the occurrence and development of tumors. In this study, CALR and EIF2AK2 expression was measured in the clinical specimens of 39 patients with melanoma. Then, we constructed knockdown and overexpression cell models of CALR and EIF2AK2 and used wound healing and Transwell assays to observe cell migration and invasion. Apoptosis, EDU, and ROS assays were used to measure cell apoptosis and proliferation, as well as ROS levels. The effect of CALR on endoplasmic reticulum stress was detected using endoplasmic reticulum fluorescent probes. Western blotting was used to detect protein levels of CALR, EIF2AK2, ADAR1, and MMP14. The results indicated that CALR and EIF2AK2 expression levels were significantly higher in human melanoma tissues than in adjacent non-tumor tissue. In addition, we found a correlation between CALR and the expression of EIF2AK2 and MMP14, and the experimental results indicated that overexpression of CALR significantly upregulated the expression of EIF2AK2, MMP14, and ADAR1, while knockdown of CALR inhibited their expression. Notably, the knockdown of EIF2AK2 in the CALR overexpression group blocked the upregulation of MMP14 and ADAR1 expression by CALR, and the knockdown of both CALR and EIF2AK2 significantly inhibited MMP14 and ADAR1 expression. In conclusion, CALR and EIF2AK2 play a promoting role in melanoma progression, and knockdown of CALR and EIF2AK2 may be an effective anti-tumor target, and its mechanism may be through MMP14, ADAR1 signaling.


Subject(s)
Adenosine Deaminase , Calreticulin , Cell Proliferation , Matrix Metalloproteinase 14 , Melanoma , RNA-Binding Proteins , Signal Transduction , eIF-2 Kinase , Humans , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Calreticulin/genetics , Calreticulin/metabolism , Cell Line, Tumor , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Cell Movement , Apoptosis , Endoplasmic Reticulum Stress , Female , Disease Progression , Male , Gene Expression Regulation, Neoplastic , Middle Aged
3.
BMJ Case Rep ; 17(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724212

ABSTRACT

A girl in the early adolescent age group presented with multisystem manifestations in the form of periodic fever, recurrent abdominal pain, hypertension, seizure, skin lesions over the chest and gangrene over the left ring and middle fingertips. Her condition had remained undiagnosed for 11 years. On evaluation, she had features of polyarteritis nodosa (PAN) (multiple aneurysms, symmetric sensorimotor peripheral neuropathy, superficial ulcers, digital necrosis, myalgia, hypertension and proteinuria). As childhood PAN is a phenocopy of adenosine deaminase 2 with a different management strategy, whole-exome sequencing was performed, which revealed a pathogenic variant in ADA2 gene. The child was treated with TNF alpha inhibitors and showed improvement in the Paediatric Vasculitis Activity Score. The paper highlights the gratifying consequences of correct diagnosis with disease-specific therapy that ended the diagnostic odyssey, providing relief to the patient from debilitating symptoms and to the family from the financial burden of continued out-of-pocket health expenditure.


Subject(s)
Adenosine Deaminase , Polyarteritis Nodosa , Humans , Polyarteritis Nodosa/diagnosis , Polyarteritis Nodosa/drug therapy , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Female , Diagnosis, Differential , Adolescent , Exome Sequencing , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/drug therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Child , Intercellular Signaling Peptides and Proteins
4.
J Clin Immunol ; 44(5): 118, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758417

ABSTRACT

Deficiency of Adenosine Deaminase 2 (DADA2) patients presenting with primary immunodeficiency are at risk of uncontrolled EBV infection and secondary malignancies including EBV-related lymphoproliferative disorders (LPD). This paper describes the first case of EBV related diffuse large B-cell lymphoma in a patient with DADA2 and uncontrolled EBV infection. Consideration should be given to monitoring for EBV viraemia and to preventative EBV specific therapy in DADA2 and patients with at risk primary immunodeficiencies. A type I interferon (IFN) gene signature is associated with DADA2 though its association with immune dysregulation is unclear.


Subject(s)
Adenosine Deaminase , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Male , Female , Hereditary Autoinflammatory Diseases
5.
Commun Biol ; 7(1): 594, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760406

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Subject(s)
Adenosine Deaminase , Diet, High-Fat , Mice, Knockout , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Signal Transduction , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/deficiency , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/etiology , Diet, High-Fat/adverse effects , Male , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Insulin Resistance , Mice, Obese , Obesity/metabolism , Obesity/genetics , Mice, Inbred C57BL , Liver/metabolism
6.
Commun Biol ; 7(1): 615, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777862

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Subject(s)
Adenosine Deaminase , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Zebrafish , Animals , Zebrafish/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/deficiency , Hematopoietic Stem Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Signal Transduction , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
7.
Int Immunopharmacol ; 134: 112177, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38696908

ABSTRACT

BACKGROUND: Ferroptosis, characterized by excessive iron ions and lipid peroxides accumulation, contributes to Nonalcoholic Fatty Liver Disease (NAFLD) development. The role of ADAR1, crucial for lipid metabolism and immune regulation, in ferroptosis-related NAFLD remains unexplored. METHODS: In this study, we analyzed the expression of ADAR1 in NAFLD patients using the GSE66676 database. Subsequently, We investigated the effects of ADAR1 knockdown on mitochondrial membrane potential (MMP), Fe2+ levels, oxidation products, and ferroptosis in NAFLD cells through in vitro and in vivo experiments. Additionally, RNA-seq analysis was performed following ADAR1 depletion in an NAFLD cell model. Overlapping and ferroptosis-related genes were identified using a Venn diagram, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted as well. Furthermore, a protein-protein interaction (PPI) network was constructed to identify hub genes associated with ferroptosis. RESULTS: We found the expression level of ADAR1 was downregulated in NAFLD patients and 22 ferroptosis-associated genes were differentially expressed in a NAFLD cell model upon ADAR1 knockdown. Based on PPI network, we identified NOS2, PTGS2, NOX4, ALB, IL6, and CCL5 as the central genes related to ferroptosis. ADAR1 deletion-related NAFLD was found to be involved in the ferroptosis signaling pathway. NOS2, PTGS2, ALB, and IL6 can serve as potential biomarkers. These findings offer new insights and expanded targets for NAFLD prevention and treatment. CONCLUSION: These findings provide new strategies and potential targets for preventing and treating NAFLD. NOS2, PTGS2, ALB, and IL6 may serve as biomarkers for ADAR1 deletion-related NAFLD, which could help for developing its new diagnostic and therapeutic strategies.


Subject(s)
Adenosine Deaminase , Ferroptosis , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Ferroptosis/genetics , Humans , Non-alcoholic Fatty Liver Disease/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Mice , RNA-Seq , Male , Mice, Inbred C57BL , Protein Interaction Maps
8.
BMC Neurol ; 24(1): 130, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632524

ABSTRACT

BACKGROUND: Monogenic autoinflammatory disorders result in a diverse range of neurological symptoms in adults, often leading to diagnostic delays. Despite the significance of early detection for effective treatment, the neurological manifestations of these disorders remain inadequately recognized. METHODS: We conducted a systematic review searching Pubmed, Embase and Scopus for case reports and case series related to neurological manifestations in adult-onset monogenic autoinflammatory diseases. Selection criteria focused on the four most relevant adult-onset autoinflammatory diseases-deficiency of deaminase 2 (DADA2), tumor necrosis factor receptor associated periodic fever syndrome (TRAPS), cryopyrin associated periodic fever syndrome (CAPS), and familial mediterranean fever (FMF). We extracted clinical, laboratory and radiological features to propose the most common neurological phenotypes. RESULTS: From 276 records, 28 articles were included. The median patient age was 38, with neurological symptoms appearing after a median disease duration of 5 years. Headaches, cranial nerve dysfunction, seizures, and focal neurological deficits were prevalent. Predominant phenotypes included stroke for DADA2 patients, demyelinating lesions and meningitis for FMF, and meningitis for CAPS. TRAPS had insufficient data for adequate phenotype characterization. CONCLUSION: Neurologists should be proactive in diagnosing monogenic autoinflammatory diseases in young adults showcasing clinical and laboratory indications of inflammation, especially when symptoms align with recurrent or chronic meningitis, small vessel disease strokes, and demyelinating lesions.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Familial Mediterranean Fever , Hereditary Autoinflammatory Diseases , Meningitis , Young Adult , Humans , Adult , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Neurologists , Adenosine Deaminase/genetics , Intercellular Signaling Peptides and Proteins/genetics , Familial Mediterranean Fever/genetics , Cryopyrin-Associated Periodic Syndromes/genetics , Fever , Phenotype
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 591-595, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684307

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic etiology for a Chinese pedigree affected with Dyschromatosis symmetrica hereditaria (DSH) in conjunct with developmental delay. METHODS: A child who had presented at the First Affiliated Hospital of Zhengzhou University on May 28 2021 for abnormal skin pigmentation of the extremities and growth retardation for over 2 years was selected as the study subject. Clinical data of the child and his pedigree (11 individuals from three generations) was collected. The child was subjected to whole exome sequencing, and candidate variant was verified by Sanger sequencing. RESULTS: The child, a two-year-and-seven-month-old male, had hyper- and hypopigmentation on his hands, feet and face, in addition with delayed development. All members of his pedigree had typical presentation of DSH. A heterozygous c.2657G>A variant was found in exon 8 of the ADAR gene in the child, his mother, and elder sister. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as likely pathogenic (PM1+PM2_Supporting+PP1+PP3). CONCLUSION: The c.2657G>A variant of the ADAR gene probably underlay the DSH in this pedigree.


Subject(s)
Adenosine Deaminase , Developmental Disabilities , Pedigree , Pigmentation Disorders , RNA-Binding Proteins , Adult , Child, Preschool , Female , Humans , Male , Adenosine Deaminase/genetics , China , Developmental Disabilities/genetics , East Asian People/genetics , Exome Sequencing , Mutation , Pigmentation Disorders/genetics , Pigmentation Disorders/congenital , RNA-Binding Proteins/genetics
10.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688902

ABSTRACT

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Subject(s)
Adenosine Deaminase , Agammaglobulinemia , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Mas , Severe Combined Immunodeficiency , Humans , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Genetic Therapy/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/genetics , Genetic Vectors/genetics , Agammaglobulinemia/therapy , Agammaglobulinemia/genetics , Male , Retroviridae/genetics
11.
J Clin Immunol ; 44(5): 107, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676811

ABSTRACT

PURPOSE: Patients with adenosine deaminase 1 deficient severe combined immunodeficiency (ADA-SCID) are initially treated with enzyme replacement therapy (ERT) with polyethylene glycol-modified (PEGylated) ADA while awaiting definitive treatment with hematopoietic stem cell transplant (HSCT) or gene therapy. Beginning in 1990, ERT was performed with PEGylated bovine intestinal ADA (ADAGEN®). In 2019, a PEGylated recombinant bovine ADA (Revcovi®) replaced ADAGEN following studies in older patients previously treated with ADAGEN for many years. There are limited longitudinal data on ERT-naïve newborns treated with Revcovi. METHODS: We report our clinical experience with Revcovi as initial bridge therapy in three newly diagnosed infants with ADA-SCID, along with comprehensive biochemical and immunologic data. RESULTS: Revcovi was initiated at twice weekly dosing (0.2 mg/kg intramuscularly), and monitored by following plasma ADA activity and the concentration of total deoxyadenosine nucleotides (dAXP) in erythrocytes. All patients rapidly achieved a biochemically effective level of plasma ADA activity, and red cell dAXP were eliminated within 2-3 months. Two patients reconstituted B-cells and NK-cells within the first month of ERT, followed by naive T-cells one month later. The third patient reconstituted all lymphocyte subsets within the first month of ERT. One patient experienced declining lymphocyte counts with improvement following Revcovi dose escalation. Two patients developed early, self-resolving thrombocytosis, but no thromboembolic events occurred. CONCLUSION: Revcovi was safe and effective as initial therapy to restore immune function in these newly diagnosed infants with ADA-SCID, however, time course and degree of reconstitution varied. Revcovi dose may need to be optimized based on immune reconstitution, clinical status, and biochemical data.


Subject(s)
Adenosine Deaminase , Agammaglobulinemia , Enzyme Replacement Therapy , Severe Combined Immunodeficiency , Animals , Female , Humans , Infant , Infant, Newborn , Male , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Agammaglobulinemia/therapy , Immune Reconstitution , Recombinant Proteins/therapeutic use , Severe Combined Immunodeficiency/therapy , Treatment Outcome
12.
Epigenetics ; 19(1): 2333665, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38525798

ABSTRACT

Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.


Subject(s)
Drosophila Proteins , RNA Editing , Animals , Proteomics , DNA Methylation , Mutation , Drosophila/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Drosophila Proteins/genetics
13.
Genome Res ; 34(2): 231-242, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38471738

ABSTRACT

A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.


Subject(s)
RNA Polymerase II , RNA Precursors , Humans , Animals , Mice , RNA Polymerase II/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Transcription, Genetic , RNA Splicing , RNA, Messenger/metabolism , Adenosine Deaminase/genetics
14.
Cancer Res Commun ; 4(4): 986-1003, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38530197

ABSTRACT

Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The IFN-inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for adenosine deaminase acting on RNA 1 (ADAR1) in many cancers, including breast. Although ADAR1-p150 has been well established in this role, the functions of the constitutively expressed ADAR1-p110 isoform are less understood. We used proximity labeling to identify putative ADAR1-p110-interacting proteins in breast cancer cell lines. Of the proteins identified, the RNA helicase DHX9 was of particular interest. Knockdown of DHX9 in ADAR1-dependent cell lines caused cell death and activation of the dsRNA sensor PKR. In ADAR1-independent cell lines, combined knockdown of DHX9 and ADAR1, but neither alone, caused activation of multiple dsRNA sensing pathways leading to a viral mimicry phenotype. Together, these results reveal an important role for DHX9 in suppressing dsRNA sensing by multiple pathways. SIGNIFICANCE: These findings implicate DHX9 as a suppressor of dsRNA sensing. In some cell lines, loss of DHX9 alone is sufficient to cause activation of dsRNA sensing pathways, while in other cell lines DHX9 functions redundantly with ADAR1 to suppress pathway activation.


Subject(s)
Adenosine Deaminase , Breast Neoplasms , DEAD-box RNA Helicases , Neoplasm Proteins , RNA-Binding Proteins , Female , Humans , Breast Neoplasms/genetics , Cell Line , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Immunity, Innate , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Double-Stranded/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Line, Tumor
15.
Chem Res Toxicol ; 37(3): 476-485, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38494904

ABSTRACT

Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.


Subject(s)
Asthma , Interferons , Animals , Mice , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Allergens/immunology , Allergens/toxicity , Asthma/chemically induced , Asthma/genetics , Gene Expression , Interferons/immunology , Interferons/metabolism , Isocyanates , Lung/metabolism , Ovalbumin
16.
Trends Cancer ; 10(4): 280-282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458943

ABSTRACT

Understanding the mechanisms underlying the generation and maintenance of leukemia stem cells (LSCs) is crucial for the development of effective therapies against T cell acute lymphoblastic leukemia (T-ALL). In a recent study, Rivera et al. discovered that elevated adenosine deaminase acting on RNA (ADAR)-1-mediated RNA editing is a distinguishing feature of T-ALL relapse, and that ADAR1 suppresses apoptosis triggered by the double-stranded (ds)RNA-sensing pathway.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , RNA, Double-Stranded/genetics , Stem Cells/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
17.
RNA ; 30(5): 512-520, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531652

ABSTRACT

Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.


Subject(s)
RNA Editing , RNA , Humans , RNA, Messenger/metabolism , RNA/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Inosine/metabolism , Adenosine/genetics , Adenosine/metabolism
18.
RNA ; 30(5): 521-529, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531651

ABSTRACT

In this article, I recount my memories of key experiments that led to my entry into the RNA editing/modification field. I highlight initial observations made by the pioneers in the ADAR field, and how they fit into our current understanding of this family of enzymes. I discuss early mysteries that have now been solved, as well as those that still linger. Finally, I discuss important, outstanding questions and acknowledge my hope for the future of the RNA editing/modification field.


Subject(s)
Adenosine Deaminase , RNA , RNA/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA Editing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Inosine/metabolism , RNA, Double-Stranded
19.
Sci Adv ; 10(9): eadk0820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427731

ABSTRACT

Chronic and aberrant nucleic acid sensing causes type I IFN-driven autoimmune diseases, designated type I interferonopathies. We found a significant reduction of regulatory T cells (Tregs) in patients with type I interferonopathies caused by mutations in ADAR1 or IFIH1 (encoding MDA5). We analyzed the underlying mechanisms using murine models and found that Treg-specific deletion of Adar1 caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Similarly, knock-in mice with Treg-specific expression of an MDA5 gain-of-function mutant caused apoptosis of peripheral Tregs and severe autoimmunity. Moreover, the impact of ADAR1 deficiency on Tregs is multifaceted, involving both MDA5 and PKR sensing. Together, our results highlight the dysregulation of Treg homeostasis by intrinsic aberrant RNA sensing as a potential determinant for type I interferonopathies.


Subject(s)
Autoimmune Diseases , Nucleic Acids , Humans , Mice , Animals , Autoimmunity , RNA , T-Lymphocytes, Regulatory , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
20.
Exp Dermatol ; 33(2): e15031, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375898

ABSTRACT

The pathogenesis of dyschromatosis symmetrica hereditaria (DSH) has not been well defined. In this study, we sought to investigate the influence of the ADAR1 gene on DSH both in vitro and in vivo. Morpholino knockdown of adar1 in zebrafish produced phenotypes characterized by polarity changes, and abnormal migration and distribution of melanocytes. Differential expression of C-KIT and distinct patterns of apoptosis between hyperpigmented and hypopigmented areas in DSH patient were detected by means of immunohistochemical methods and TUNEL assays, respectively. This study revealed that adar1 knockdown in a zebrafish model resulted in abnormal migration and changes in the cell polarity of melanocytes, and provided novel insight into the mechanism of DSH pathogenesis.


Subject(s)
Adenosine Deaminase , Pigmentation Disorders , RNA-Binding Proteins , Zebrafish , Animals , Humans , Adenosine Deaminase/genetics , Mutation , Pedigree , Pigmentation Disorders/congenital , RNA-Binding Proteins/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...