Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.151
Filter
1.
Nat Commun ; 15(1): 5946, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009687

ABSTRACT

The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5'-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.


Subject(s)
ATP-Binding Cassette Transporters , Adenosine Diphosphate , Adenosine Triphosphate , Mass Spectrometry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Mass Spectrometry/methods , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Lipopolysaccharides/metabolism , Lipid A/metabolism , Lipid A/chemistry , Protein Binding , Models, Molecular , Crystallography, X-Ray , Lipids/chemistry , Escherichia coli/metabolism , Protein Conformation
2.
Mol Cell ; 84(12): 2368-2381.e6, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38834067

ABSTRACT

The Tn7 family of transposons is notable for its highly regulated integration mechanisms, including programmable RNA-guided transposition. The targeting pathways rely on dedicated target selection proteins from the TniQ family and the AAA+ adaptor TnsC to recruit and activate the transposase at specific target sites. Here, we report the cryoelectron microscopy (cryo-EM) structures of TnsC bound to the TniQ domain of TnsD from prototypical Tn7 and unveil key regulatory steps stemming from unique behaviors of ATP- versus ADP-bound TnsC. We show that TnsD recruits ADP-bound dimers of TnsC and acts as an exchange factor to release one protomer with exchange to ATP. This loading process explains how TnsC assembles a heptameric ring unidirectionally from the target site. This unique loading process results in functionally distinct TnsC protomers within the ring, providing a checkpoint for target immunity and explaining how insertions at programmed sites precisely occur in a specific orientation across Tn7 elements.


Subject(s)
Adenosine Diphosphate , Adenosine Triphosphate , Cryoelectron Microscopy , DNA Transposable Elements , Transposases , DNA Transposable Elements/genetics , Adenosine Triphosphate/metabolism , Transposases/metabolism , Transposases/genetics , Transposases/chemistry , Adenosine Diphosphate/metabolism , Protein Binding , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Models, Molecular , Protein Multimerization , Binding Sites
3.
BMC Microbiol ; 24(1): 229, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943061

ABSTRACT

BACKGROUND: Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS: Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS: The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.


Subject(s)
Ampicillin , Anti-Bacterial Agents , Doxycycline , Lactobacillus plantarum , Metabolomics , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/drug effects , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Doxycycline/pharmacology , Reactive Oxygen Species/metabolism , Purines/metabolism , Stress, Physiological/drug effects , Metabolic Networks and Pathways/drug effects , Adenosine Diphosphate/metabolism , Humans
4.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856231

ABSTRACT

Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.


Subject(s)
Leukocytes, Mononuclear , Membrane Potential, Mitochondrial , Humans , Membrane Potential, Mitochondrial/physiology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Rhodamines/chemistry , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Oxygen Consumption/physiology , Mitochondria/metabolism , Fluorescent Dyes/chemistry
5.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891956

ABSTRACT

Regulatory cystathionine ß-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the "half-of-the-sites" ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a "two non-interacting pairs of interacting regulatory sites" concept in CBS-PPase regulation.


Subject(s)
Cystathionine beta-Synthase , Cystathionine beta-Synthase/metabolism , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/genetics , Mutation , Protein Binding , Mutagenesis, Site-Directed , Adenine Nucleotides/metabolism , Adenine Nucleotides/chemistry , Protein Domains , Pyrophosphatases/metabolism , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Inorganic Pyrophosphatase/metabolism , Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/genetics , Models, Molecular , Binding Sites
6.
Eur J Cell Biol ; 103(2): 151423, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796920

ABSTRACT

Intracellular actin networks assemble through the addition of ATP-actin subunits at the growing barbed ends of actin filaments. This is followed by "aging" of the filament via ATP hydrolysis and subsequent phosphate release. Aged ADP-actin subunits thus "treadmill" through the filament before being released back into the cytoplasmic monomer pool as a result of depolymerization at filament pointed ends. The necessity for aging before filament disassembly is reinforced by preferential binding of cofilin to aged ADP-actin subunits over newly-assembled ADP-Pi actin subunits in the filament. Consequently, investigations into how cofilin influences pointed-end depolymerization have, thus far, focused exclusively on aged ADP-actin filaments. Using microfluidics-assisted Total Internal Reflection Fluorescence (mf-TIRF) microscopy, we reveal that, similar to their effects on ADP filaments, cofilin and cyclase-associated protein (CAP) also promote pointed-end depolymerization of ADP-Pi filaments. Interestingly, the maximal rates of ADP-Pi filament depolymerization by CAP and cofilin together remain approximately 20-40 times lower than for ADP filaments. Further, we find that the promotion of ADP-Pi pointed-end depolymerization is conserved for all three mammalian cofilin isoforms. Taken together, the mechanisms presented here open the possibility of newly-assembled actin filaments being directly disassembled from their pointed-ends, thus bypassing the slow step of Pi release in the aging process.


Subject(s)
Actin Cytoskeleton , Actins , Actin Cytoskeleton/metabolism , Animals , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Adenosine Diphosphate/metabolism , Rabbits , Mice , Polymerization , Cofilin 1/metabolism
7.
Diabetes ; 73(6): 849-855, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38768365

ABSTRACT

The canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels. This model presents several challenges. First, how mitochondrially generated PEP, but not ATP produced abundantly by the mitochondrial F1F0-ATP synthase, can gain access to the proposed microdomains is unclear. Second, ATP/ADP fluctuations imaged immediately beneath the plasma membrane closely resemble those in the bulk cytosol. Third, ADP privation of the respiratory chain at high glucose, suggested to drive alternating, phased-locked generation by mitochondria of ATP or PEP, has yet to be directly demonstrated. Finally, the approaches used to explore these questions may be complicated by off-target effects. We suggest instead that Ca2+ changes, well known to affect both ATP generation and consumption, likely drive cytosolic ATP/ADP oscillations that in turn regulate KATP channels and membrane potential. Thus, it remains to be demonstrated that a new model is required to replace the existing, mitochondrial bioenergetics-based model.


Subject(s)
Glucose , Insulin-Secreting Cells , KATP Channels , Insulin-Secreting Cells/metabolism , KATP Channels/metabolism , Glucose/metabolism , Humans , Animals , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Insulin/metabolism , Adenosine Diphosphate/metabolism , Models, Biological , Insulin Secretion/physiology
8.
Nat Commun ; 15(1): 4491, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802374

ABSTRACT

Actin nucleotide-dependent actin remodeling is essential to orchestrate signal transduction and cell adaptation. Rapid energy starvation requires accurate and timely reorganization of the actin network. Despite distinct treadmilling mechanisms of ADP- and ATP-actin filaments, their filament structures are nearly identical. How other actin-binding proteins regulate ADP-actin filament assembly is unclear. Here, we show that Spa2 which is the polarisome scaffold protein specifically remodels ADP-actin upon energy starvation in budding yeast. Spa2 triggers ADP-actin monomer nucleation rapidly through a dimeric core of Spa2 (aa 281-535). Concurrently, the intrinsically disordered region (IDR, aa 1-281) guides Spa2 undergoing phase separation and wetting on the surface of ADP-G-actin-derived F-actin and bundles the filaments. Both ADP-actin-specific nucleation and bundling activities of Spa2 are actin D-loop dependent. The IDR and nucleation core of Spa2 are evolutionarily conserved by coexistence in the fungus kingdom, suggesting a universal adaptation mechanism in the fungal kingdom in response to glucose starvation, regulating ADP-G-actin and ADP-F-actin with high nucleotide homogeneity.


Subject(s)
Actins , Adenosine Diphosphate , Glucose , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Actin Cytoskeleton/metabolism , Actins/metabolism , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/analogs & derivatives , Glucose/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry
9.
Nat Commun ; 15(1): 3850, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719864

ABSTRACT

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cation Transport Proteins , Potassium , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Binding Sites , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , Models, Molecular , Potassium/metabolism , Protein Binding , Sodium/metabolism
10.
Neurochem Res ; 49(8): 2021-2037, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814360

ABSTRACT

Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.


Subject(s)
Membrane Microdomains , Neuromuscular Junction , Oxidation-Reduction , Signal Transduction , Synaptic Transmission , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Membrane Microdomains/metabolism , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Mice , Signal Transduction/physiology , Signal Transduction/drug effects , Male , Reactive Oxygen Species/metabolism , Exocytosis/physiology , Exocytosis/drug effects , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Calcium/metabolism
11.
J Food Prot ; 87(7): 100287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697482

ABSTRACT

Given its presence in a wide spectrum of soils relevant to food process hygiene, the biological metabolite adenosine triphosphate (ATP) is used as a target for surface hygiene assessments in food processing facilities. Yet, ample evidence demonstrates that ATP is depleted into adenosine di- (ADP) and monophosphate (AMP) homologs resulting in a loss of sensitivity for ATP-based hygiene assays. Yet, there are few studies that denote the degree of these shifts under routine processing conditions such as those encountered during various meat processing steps that may likely alter redox potential and adenosine profiles (e.g., tissue/cellular disruption, application of reducing additives, fermentation, or thermal treatment steps). In this study, meat samples were collected from homogenized beef tissue treated with nonmeat ingredients (sodium chloride, sodium nitrite, sodium erythorbate, natural smoke condensate, and sodium acid pyrophosphate) during manufacture at predetermined steps, and from retail meat products purchased from local markets. Concentrations of ATP, ADP, AMP, and AXP (sum concentration of all homologs) in a lab setting and in situ meat processing venues were determined and compared. Greater differences in AXP were seen during manufacture, where ADP generally comprised ∼90% as a mole fraction of AXP across all treatments, with the exception of the final cook step where AMP predominated. ATP concentrations averaged 2 log values lower than ADP and AMP. Adenosine profiles in retail samples followed similar trends with minimal ATP concentrations with ADP predominant in uncooked samples and AMP predominant in cooked samples. Resultingly, meat processing steps during product manufacture will alter AXP-reliant test sensitivities which should be considered when such technologies are utilized for hygiene verification in meat processing.


Subject(s)
Adenosine Triphosphate , Food Handling , Adenosine Triphosphate/metabolism , Animals , Meat/analysis , Adenosine Diphosphate/metabolism , Adenosine Monophosphate , Food Contamination/analysis , Cattle , Humans , Meat Products/analysis
12.
Nat Commun ; 15(1): 4655, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821922

ABSTRACT

The human AAA-ATPase Bcs1L translocates the fully assembled Rieske iron-sulfur protein (ISP) precursor across the mitochondrial inner membrane, enabling respiratory Complex III assembly. Exactly how the folded substrate is bound to and released from Bcs1L has been unclear, and there has been ongoing debate as to whether subunits of Bcs1L act in sequence or in unison hydrolyzing ATP when moving the protein cargo. Here, we captured Bcs1L conformations by cryo-EM during active ATP hydrolysis in the presence or absence of ISP substrate. In contrast to the threading mechanism widely employed by AAA proteins in substrate translocation, subunits of Bcs1L alternate uniformly between ATP and ADP conformations without detectable intermediates that have different, co-existing nucleotide states, indicating that the subunits act in concert. We further show that the ISP can be trapped by Bcs1 when its subunits are all in the ADP-bound state, which we propose to be released in the apo form.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Electron Transport Complex III , Humans , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , Cryoelectron Microscopy , Electron Transport Complex III/metabolism , Electron Transport Complex III/chemistry , Hydrolysis , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Models, Molecular , Protein Conformation , Protein Folding , Protein Transport
14.
Int J Biol Macromol ; 269(Pt 1): 132000, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697445

ABSTRACT

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions per ATP hydrolyzed from the cytoplasm to the lumen. However, how the ATP hydrolysis remotely drives the Ca2+ transport is unclear. In the SERCA1a crystal structures, the ATP hydrolysis is accompanied by the notably increasing tilting angle of the central core (CC) and the Ca2+ transport, and the CC tilting angle dramatically decreases in the E2 to E1 transition. We demonstrated that the significantly increasing tilting motion of the CC drove the Ca2+ release in the molecular dynamics simulation of the R836A variant, and the dramatic spontaneous decrease in the CC tilting angle of the E2 state triggers the restart of the SERCA1a's transport cycle. The repulsion between the phosphorylated D351 and the phosphate groups in ADP triggers the release of ADP from the SERCA1a headpiece. We proposed a novel SERCA transport mechanism in which ATP hydrolysis drives a significant tilting motion of the CC, which drives Ca2+ transport and the A domain rotational motion in the E1P-ADP-2Ca2+ to E2P transition. The dramatic spontaneous decrease in the CC tilting angle of the E2 state drives the restart of the transport cycle.


Subject(s)
Adenosine Triphosphate , Calcium , Molecular Dynamics Simulation , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Calcium/metabolism , Adenosine Triphosphate/metabolism , Hydrolysis , Adenosine Diphosphate/metabolism , Humans , Biological Transport
15.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791359

ABSTRACT

The excessive activation of frog eggs, referred to as overactivation, can be initiated by strong oxidative stress, leading to expedited calcium-dependent non-apoptotic cell death. Overactivation also occurs spontaneously, albeit at a low frequency, in natural populations of spawned frog eggs. Currently, the cytological and biochemical events of the spontaneous process have not been characterized. In the present study, we demonstrate that the spontaneous overactivation of Xenopus frog eggs, similarly to oxidative stress- and mechanical stress-induced overactivation, is characterized by the fast and irreversible contraction of the egg's cortical layer, an increase in egg size, the depletion of intracellular ATP, a drastic increase in the intracellular ADP/ATP ratio, and the degradation of M phase-specific cyclin B2. These events manifest in eggs in the absence of caspase activation within one hour of triggering overactivation. Importantly, substantial amounts of ATP and ADP leak from the overactivated eggs, indicating that plasma membrane integrity is compromised in these cells. The rupture of the plasma membrane and acute depletion of intracellular ATP explicitly define necrotic cell death. Finally, we report that egg overactivation can occur in the frog's genital tract. Our data suggest that mechanical stress may be a key factor promoting egg overactivation during oviposition in frogs.


Subject(s)
Adenosine Triphosphate , Necrosis , Ovum , Animals , Adenosine Triphosphate/metabolism , Ovum/metabolism , Xenopus laevis/metabolism , Female , Oxidative Stress , Adenosine Diphosphate/metabolism , Cell Death , Cell Membrane/metabolism , Stress, Mechanical
16.
PLoS Comput Biol ; 20(5): e1012158, 2024 May.
Article in English | MEDLINE | ID: mdl-38768214

ABSTRACT

The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in directly observing these events have hindered progress toward understanding their diverse behaviors. One notable example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying distances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the proposed binding process. Our model suggests that a typical binding event is limited by ADP state rather than physical search. Lastly, we predict how these association rates can be modulated in distinct ways through variation of environmental concentrations and physical properties.


Subject(s)
Kinesins , Microtubules , Protein Binding , Kinesins/metabolism , Kinesins/chemistry , Kinetics , Microtubules/metabolism , Microtubules/chemistry , Computational Biology , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/chemistry , Computer Simulation , Models, Biological , Diffusion
17.
Biosystems ; 240: 105228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735525

ABSTRACT

The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet >90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, q and the phenomenological stoichiometry, Z of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, η, and the Gibbs free energy dissipation, Φ have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield Vmax rates of ATP synthesis, a maximum in Φ of ∼0.5J(hmgprotein)-1, corresponding to a thermodynamic efficiency of ∼60% for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.


Subject(s)
Adenosine Triphosphate , Energy Metabolism , Oxidative Phosphorylation , Thermodynamics , Adenosine Triphosphate/metabolism , Energy Metabolism/physiology , Oxidation-Reduction , Models, Biological , Kinetics , Adenosine Diphosphate/metabolism , Humans
18.
J Biol Chem ; 300(5): 107279, 2024 May.
Article in English | MEDLINE | ID: mdl-38588808

ABSTRACT

Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.


Subject(s)
Actins , Animals , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Adenosine Diphosphate/metabolism , Cell Cycle Proteins/metabolism , Microfilament Proteins/metabolism , Microvilli/metabolism , Protein Binding
19.
Front Immunol ; 15: 1328306, 2024.
Article in English | MEDLINE | ID: mdl-38590528

ABSTRACT

CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.


Subject(s)
Single-Domain Antibodies , Humans , Single-Domain Antibodies/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Monophosphate , Adenosine Diphosphate/metabolism
20.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38592738

ABSTRACT

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Subject(s)
AMP-Activated Protein Kinases , Adenosine Diphosphate , Adenosine Monophosphate , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Humans , Allosteric Regulation , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/chemistry , Ligands , Phosphorylation , Adenosine Triphosphate/metabolism , Enzyme Activation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...